
 

 

 

  

Abstract— In this paper, we describe the dynamical analysis 

and improvement of velocity for a precise inchworm mechanism 

with 3 DOF. This mechanism is composed of 4 piezoelectric 

actuators and pair of electromagnets and moves like an 

inchworm with less than a 10 nm resolution. We calculate the 

dynamical relationship between 3 DOF motion and 4 

piezoelectric displacements. We also calculate the maximum 

velocity with no slip of electromagnets because the no slip 

condition is very important for motion repeatability. In several 

experiments, we have checked the theoretical validity and we 

confirm that the analysis procedure works well as an initial 

design of the inchworm mechanism. The design procedure, basic 

performance, and chip-mounting applications are also discussed 

as an advance in the new field of micro-robotics used in precision 

regions. 

I. INTRODUCTION 

ecently, miniaturization of portable devices and 

electronic parts has been remarkable. Moving stages 

inside conventional chip-mounting devices are more than 

100kg and big vibrations occur to the precise instruments 

around them, although electronic chip parts themselves are 

less than 1mg. The final goal of this study is the development 

of low-vibration, low-power and low-floorage mounting 

devices supported by 3 DOF precise inchworm mechanisms. 

In the last ten years, we have developed a unique inchworm 

mechanism composed of four piezoelectric actuators and two 

electromagnets. We have developed unique applications 

where these small mechanisms play important roles [1][2]. 

We show that small mobile mechanisms are effective in 

reducing the size and weight for precise instruments [3]–[6]. 

We also have developed a compensation and navigating 

device for this 3 DOF mechanism for accurate motion [7]. The 

main purpose of this paper is to study the maximum velocity 

with good motion repeatability to discuss applications of the 

mechanism. No slip of electromagnets is important in 

achieving good repeatability, however maximum velocity is 

also important in improving productive efficiency. To 
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describe the maximum velocity, we analyze the relationships 

among the force and mass of electromagnets, displacements 

and spring constants of piezoelectric actuators by an 

approximate vibration model. We have also developed a new 

mechanism by using the analytical results to improve the 

maximum velocity. In several experiments, we confirm that 

we have increased maximum velocity over 2 times compared 

with conventional mechanisms. We also discuss an 

energy-efficient, cost-saving, and low-vibration chip 

mounting device organized by this tiny mobile mechanism to 

propose a new design for precise and flexible instruments. 

II. STRUCTURE OF 3DOF INCHWORM MECHANISM 

Fig.1 shows the structure of the precise miniature 

mechanism with 3 DOF. Two closed loop electromagnets, 

EM-1 and EM-2, arranged to cross each other are connected 

by four piezoelectric actuators, PZT-F, PZT-B, PZT-R, and 

PZT-L, so that the mechanism can move in any direction 

precisely in the manner of an inchworm. As shown in Fig.2, 

the mechanism can move in X and Y directions as well as 

rotate at a specified point precisely in the manner of an 

inchworm. This small mechanism can move flexibly and 

widely on the well-polished iron surface. Fig.3 shows the 

photographs of a conventional mechanism, “C” type. A joint 

mechanism composed of a V-shaped groove and a 

cylinder-shaped magnetic core is attached to one of 4 legs to 

stabilize simultaneously the contact of the 4 legs on the 

surface. Recently, we have developed a new type of the 

mechanism with a pair of amplified piezoelectric actuators  
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connected in a series to obtain larger step width as shown in 

Fig. 4. This new mechanism, the “G” type, also has parallel 

leaf springs for smooth contact of 4 legs on the surface. Table 

I shows a typical performance of the piezoelectric actuators. 

In this paper, we compare the performance of these 2 types, 

“C” and “G”. Fig.5 shows the motion sequence. This 

mechanism moves like an inchworm while retaining the 

synchronism among rectangular-shaped forces of two 

electromagnets and sine-wave-shaped displacements of four 

piezoelectric actuators. Here AF, AB, AR, and AL are the 

displacement amplitudes. We define 1 step motion when the 

mechanism moves from t=0 to t=T. If we change the AF, AB, AR, 

and AL reasonably, the mechanism moves 3DOF precisely 

with less than a 10 nm resolution.  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
TABLE I 

PERFORMANCE OF PIEZOELECTRIC ACTUATORS 

Quantity APA35XS(C) Pair of APA50XS(G) 

Displacement (100V) 32.4 µm 100 µm 

Generative Force (100V) 19.35 N 18 N 

Spring constant 490,000 N/m 115,000 N/m 

Capacitance 0.52 µF 0.26 µF 

Natural Frequency 

(blocked free) 
3.88 kHz 1.45 kHz 

Height 12.85 mm 12.85 mm 

Thickness 6.4 mm 6.4 mm 

Length 4.6 mm 9.2 mm 

Weight 2 g 4 g 

III. DYNAMICAL ANALYSIS 

A. Definition of dynamical model 

As depicted in Fig. 6, we define the dynamical model of the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mechanism. Here, kL is the spring constant of the piezoelectric 

actuators. dF is the displacement of the piezoelectric actuator 

PZTF.  dB, dR and dL are similarly defined. EM1 and EM2 are 

electromagnets separated from each other. We assume EM1 

and EM2 are rigid bodies. P1, P2, P3, and P4 are hinged joints 

on EM1 and EM2. x1 and y1 are coordinates of P1. x2, y2, x3,  y3,  

x4, and y4  are similarly defined. PG1 is the gravity point of EM1.  

PG2, which is not shown in Fig. 6, is the gravity point of EM2. 

The position of PG1 represents an orthogonal coordinate 

system used by xG1 and yG1. OG1 and OG2 are the original points 

of PG1 and PG2 respectively. O1, O2, O3, and O4 are the initial 

positions of P1, P2, P3, and P4. We assume piezoelectric 

actuators move two electromagnets, EM1 and EM2. P1, P2, P3, 

and P4 are moved by four piezoelectric actuators. 

Displacements of   EM1 and EM2 are determined by the 

positions of  P1, P2, P3, and P4. We define the shearing force of 

PZTF  as FSF.  FSB, FSR, and FSL are similarly defined. If kS is the 

spring constant of the shear conversion of piezoelectric 

actuators, we can represent the shearing forces as follows: 
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Fig. 5.  Motion sequence of the inchworm locomotion 
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Fig. 8.  Vector resolution of EM1 in X, Y and θθθθ   axes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When EM2 is fixed and EM1 is free, we consider the 3 DOF 

dynamical model of EM1 as depicted in Fig. 7. In this figure, 

we assume P3 and P4 are fixed at initial position O3 and O4 

respectively. In this condition, x3, y3, x4, and y4 all become 

zero, so shearing forces become as follows: 

1
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F k y
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= −= −= −= −
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We assume the residual deformation of PZT is negligible for 

the velocity, however it may influence the motion 

repeatability. We discuss the motion repeatability in another 

publication.  

B. Calculation of dynamical model 

Fig. 8 shows the vector resolution of the motion of EM1. We 

represent the motion of the free magnet as a combination of 

translation and rotation. Here, L
����
 is the translational vector. 

1
R
����
 and 

2
R
����
 are rotational vectors. θθθθ  represents the rotational 

angle of  EM1.φφφφ  is direction of  L
����
. We describe the triangle 

PG1P’1 P1 in Fig. 9. We assume 
1
R
����
 is equal approximately to 

R
����
 because displacements of the piezoelectric actuators are 

very small, less than 0.2 mm. However, half the length of 

electromagnet, r, is more than 20 mm. 
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In Fig. 8, we find the following relationships. Here, we rewrite 

xG1 and yG1 as xG and yG for simplicity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9.  Geometric analysis of triangle PG1P’1 P1 

Fig. 6.  Dynamical model of precise 3 DOF inchworm mechanism 

Fig. 7.  Dynamical model of EM1 when EM2  is fixed 
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When we use the approximation of (1) and (4), we can 

simplify equations (2), (3) as follows: 
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We find an important relationship among x1, y1, x2, and y2 as 

shown in the equation (7). 

1 2 1 2
0 (7)x x y y− + − ≈− + − ≈− + − ≈− + − ≈  

This equation means that EM1 is a rigid body. The mechanism 

has 3 DOF and the input parameters are 4 input voltages of the 

piezoelectric actuators. Equation (7) represents one condition. 

In Fig. 7, force of point P1 is 
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Newton’s second low of translational motion of EM1 is 

calculated as below, 
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We define displacements of piezoelectric actuators as the 

following: 

0

0
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 l0 is the offset displacement. As explained in Fig. 5, AF is the 

amplitude displacement of PZTF. AB, and AR, and AL is 

similarly defined. When we substitute (11) into (10), we 

obtain linear differential equations of xG and yG. 
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Newton’s second law of the rotational motion of EM1 is 

calculated as below, 
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Here, IG is the inertia moment of EM1 around the center of 

mass. From (1), (2), and (3), 
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When we substitute (15) into (14), we obtain linear 

differential equations of θθθθ , 
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The solutions to the differential equations of (12), (13) and 

(16) become the following: 
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Here, (21) is the natural angular frequency in the vibration of 

X and Y axes and (22) is the natural angular frequency in 

rotational vibration around the gravity point. (23) and (24) are 

the natural angular frequency when shearing forces do not 

exist. 

C. Approximation of oscillations 

When we control the mechanism with angular frequency, 

which is much smaller than natural angular frequency, as in 

(21) and (22), we can describe (18), (19) and (20) 

approximately as follows: 
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D. Step width and step angle 

As depicted in Fig. 5, we switch magnetic force at every peak 

of the sine wave. We design the 1 step motion to be mainly 

determined by peak-to-peak amplitudes of piezoelectric 

displacements, 2AF, 2AB, 2AR and 2AL. However, we need to 

consider the influence of kL, kS, f and m from (25), (26) and 

(27), when shearing forces are not negligible and driving 

frequency and mass are increased.  Peak-to-peak amplitudes 

of xG, (25), and yG, (26), make a step width, W. 
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We determine the maximum and minimum value of 

displacement amplitudes as follows: 

0 0
, , , (29)
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l A A A A l− ≤ ≤− ≤ ≤− ≤ ≤− ≤ ≤  

As depicted in Figs. 7 and 8, when EM1 moves to a plus yG 

direction, 
2

ππππφφφφ ==== , with maximum step width, the combination 

of amplitudes become as follows: 

0 0
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We see that the mechanism keeps moving to the plus yG 

direction when it repeats its inchworm motion as in Fig. 5. A 

substitution of (30) to (28) results in the maximum step width 

of orthogonal motion, 
.ortho

W . Here, we assume orthogonal 

motion is straight motion in 30, , ,
2 2

π ππ ππ ππ πφ πφ πφ πφ π====  . 

0

. 2 2

2
(31)

2

L

ortho

L S

k l
W

k k f mππππ
====

+ −+ −+ −+ −
 

A substitution of (30) to (27) confirms that this motion is 

translational motion because θ is zero. When EM1 moves to 

diagonally forward left in a straight line, 3
4

ππππφφφφ ==== , with 

maximum step width, the combination of amplitudes become 

as follows:  

0 0 0 0
, , , (32)
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Using the same procedure, we get maximum step width of 

diagonal straight motions, 3 5 7, , ,
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We use these simplified equations to calculate the required 

performance of piezoelectric actuators and electromagnets for 

accurate inchworm motion. In this paper, we focus on 

orthogonal motions, 30, , ,
2 2

π ππ ππ ππ πφ πφ πφ πφ π====  and 0θθθθ ==== , to calculate 

the required performance of piezoelectric actuators and 

electromagnets.  

IV. CALCULATION OF MAXIMUM VELOCITY WITH NO SLIP  

A. Maximum frequency with no slip 

The purpose of this paper is the analysis of the maximum 

velocity with good repeatability. We assume that a slip of 

electromagnets influences motion repeatability. Frictional 

force between fixed electromagnet, EM2, and floor surface 

should be more than the inertia force of EM1, Finertia, when 

there is no slip. The following conditions must be satisfied 

when µ is a coefficient of static friction. 

(36)
inertia mag
F Fµµµµ≤≤≤≤  

Finertia with Wortho is calculated from (25), (26), (30) and (31). 
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 When we substitute (37) into (36), we get maximum 

frequency, finertia-max, with no slip. 
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We should consider the slip of magnets when frequency, f, 

becomes more than finertia-max.  The current rise time, τ  and 

the magnetic force, Fmag, are mainly determined by the voltage 

and current source of its amplifier. In this paper, we use the 

amplifier with a voltage source of 12 V and a current source of 

0.35 A. As shown in table II, τ  of “C” is about 0.4 ms and 

that of “G” is 2.5 ms. The Fmag of “C” is about 4 N and that of 

“G” is 8 N at 0.35 A. The mass of the electromagnet of “C” is 

13.5 g and that of “G” is 20.3 g. From (38) and table II, we get 

the finertia-max of “G ”, which is 177.4 Hz and that of “C”, which 

is 378.7 Hz as shown in table II. We consider another 

limitation of maximum frequency, frise-max, made from current 

rise time as shown below: 
1

(39)
2

rise max
f

ττττ−−−− ====  

If the frequency becomes more than (39), electromagnets can 

not generate the maximum magnetic force. The frise-max of “C” 

is 1250 Hz and that of “G” is 667 Hz. Because frise-max is more 

than finertia-max, we assume that maximum frequencies with no 

slip become finertia-max. 

B. Maximum velocity with no slip 

If there is no slip, the velocity of translational motion, V, is 

mainly determined as follows: 
(40)V W f≈ ×≈ ×≈ ×≈ ×  

We assume that there are f steps in a unit of time and the step 

width, W, is a constant value at all steps. We get the maximum 

velocity of orthogonal motions, Vortho., when we substitute 

(31) into (40). 
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When we substitute (38) into (41), we get maximum velocity, 

Vortho.-max, of orthogonal motions.  

_ 0 _

.

21
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2

mag max L mag max
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F l k F
V

m k k

µµµµ
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−−−−
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++++

The Vortho.-max of “G” becomes 18.3 mm/s and that of “C” 

becomes 7.9 mm/s from (42). Table II shows the quantities 

used for the calculations. We determine kS and µ from other  
TABLE II 

QUANTITIES FOR CALCULATIONS 

Symbol Quantity C type G type 

Fmag Electromagnetic Force [N] 4.0 8.0 

τ  Current rise time [ms] 0.15 2.5 

m Mass of an electromagnet [g] 13.5 20.3 

2 nπω  Natural Frequency [Hz] 1575.6 550.4 

finertia-max Maximum frequency (no slip) [Hz] 378.7 177.4 

frise-max Maximum frequency (rise time) [Hz] 1250 667 

Vortho.-max Maximum velocity (no slip) [mm/s] 7.9 18.3 
µ  Coefficient of static friction 0.2 0.2 

l0 Amplitude displacement [µm] 16.2(100V) 60(120V) 

ks Spring constant of shearing force 
[N/m] 

367,500 34,500 

kl Spring constant of PZT[N/m] 490,000 115,000 

 Height-Width-Length [mm] 20-30-30 23-50-50 

 Weight [g] 37.1 65.9 
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Fig. 10.  Experimental setup 

experiments. From (42), we designed electromagnets to 

increase the ratio of magnetic force to mass. We also reduced 

the spring constant of shear conversion, kS. The more we 

increase l0, the less the spring constant kL becomes. That is 

because the piezoelectric actuator amplifies displacement of 

stacked type piezoelectric element by the mechanical 

amplifier. If kL becomes smaller, the natural angular frequency 

also becomes smaller from (21). If the natural angular 

frequency becomes too small, the term of 
sin

n
n

tωωωω ωωωωωωωω−−−−  in (18) 

and (19) can not negligible. This term works as a disturbance 

when we want to keep step width constant with every step. If 

the step width changes with every step, the moving distance is 

not proportional to the number of steps and operability 

becomes worse. In this paper, we assume that the natural 

frequency is more than 500 Hz when we move “G” type less 

than 200 Hz. From table II, we see that “G” is designed to 

increase l0 and to decrease natural frequency as much as 

possible. The positioning resolution of “G” is larger than that 

of “C” because we amplify displacement of PZT. However, 

we confirmed “G” still has less than 100 nm resolution. 

V. EXPERIMENTAL RESULTS 

As shown in Fig. 10, we measure the mechanism’s position by 

an image analyzer and a CCD-camera with 4 million pixels. 

We put LEDs, as measuring points, on the mechanism. The 

measuring accuracy is about 10 µm. Surface roughness is 

about Rms 0.2 µm. We generate input signals by DA board 

(Labview PCI-6723) and amplify 30-fold by the amplifier. 

We measure path length of 100 steps every 50 Hz. Then we 

calculate the average step width and velocity at each 

frequency. As shown in Figs. 11 and 12, we have confirmed 

that the experimental step width and velocity are consistent 

with the theoretical values up to finertia-max. We also confirmed 

that the newly developed “G” has over twice the maximum 

velocity of “C”. When frequency is more than finertia-max, the 

difference between experimental and theoretical values 

increases because of the slip. These experimental results 

indicate that we can increase the velocity if we use the slip of 

electromagnets positively as skating motion.  

 

 

 

 

 

 

 

 

 

 

 

VI. CONCLUSION AND FUTURE WORK 

We have described dynamical analysis for the 3 DOF precise 

inchworm mechanism. Experimental results show that the 

proposed analysis is effective in estimating the velocity with 

no slip condition. We have also succeeded in increasing the 

maximum velocity over 2 times compared with a conventional 

mechanism. We have also developed the high-speed 

positioning devices for chip mounting application for this 

mechanism. For future work, we plan to measure motion 

repeatability and durability. We also plan to develop the 

slip-based motion to improve the maximum velocity for long 

distance navigation. 
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Fig. 11.  Relationship between step width and frequency 

( )inertia maxf G−−−− ( )inertia maxf C−−−−

Fig. 12.  Relationship between velocity and frequency 
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