
  

  

Abstract— This paper presents a numerical model of a 
morphing wing supporting the development of a biologically 
inspired vehicle capable of aerial and aquatic of locomotion.  
The model draws inspiration from the seabird Uria aalge, the 
common guillemot. It is implemented within a parametric study 
associated with aerial and aquatic performance, specifically 
aiming at minimizing energy of locomotion. The implications of 
varying wing geometry and kinematic parameters are 
investigated and presented in the form of nested performance 
charts. Trends within both the aquatic and aerial model are 
discussed highlighting the implications of parameter variation 
on the power requirements associated with both mediums. 
Conflicts of geometric parameter selection are contrasted 
between the aerial and aquatic model, as well as other trends 
that impact the design of concept vehicles with this capability. 
The model has been validated by implementing a heuristic 
optimization of its key parameters under conditions akin to 
those of the actual bird; optimal parameters output by the 
model correlate to the actual behaviour of the guillemot. 

I. INTRODUCTION 
DVANCES in fabrication, sensors, electronics, and 
power storage have made possible the development of 

a range of small robotic vehicles capable of aerial, terrestrial, 
and even aquatic locomotion.  Additionally, insights into 
animal locomotion have significantly improved the mobility 
and stability of these vehicles.  At this time, however, the 
challenges of robotic design for vehicles capable of 
locomotion through multiple media (e.g. air, water, land) 
have received considerably less attention in literature.  In 
particular, the design tradeoffs involved between 
transitioning from aerial to aquatic locomotion modalities 
for an autonomous robot have yet to be addressed by the 
research community.  Potential applications of such a 
vehicle include the offshore oil industry, where the vehicle 
could fly from remote rigs, subsequently diving underwater 
to inspect pipe work and joints. Another application involves 
maritime counter-terrorism operations where a boarding 
crew could launch a small robot to conduct both aerial and 
aquatic inspection/surveillance of a larger cargo ship.   The 
development of aerial/aquatic multi-modal vehicles would 
represent a generational leap in robotic utility. 
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Although no mature examples of small robots capable of 
operation in air and water exist today, many animals have 
developed multi-use mechanisms that are efficient in both 
substrates; studying the multi-modal nature of animals can 
clearly open potential avenues of research.  Optimization of 
competing design tradeoffs between locomotion mechanisms 
is a particularly ripe area for study. 

This work documents the initial stages of research to 
further our understanding of avian mechanisms enabling 
both aerial and aquatic locomotion. A detailed numerical 
model of a wing transitioning from aerial to aquatic 
locomotion is developed to reproduce the compromises 
balanced by these animals, such that the outcomes can be 
utilised in future vehicle concept designs.  A genetic 
algorithm (GA) is then implemented to balance competing 
tradeoffs based on desired performance characteristics.  
Results are validated through comparison to the natural 
(bird) system.  The evolutionary optimization tool is then 
implemented to produce designs for varying performance 
criteria for robots performing aerial/aquatic missions.  

II. AVIAN INSPIRED AERIAL/AQUATIC 
PERFORMANCE 

Imagine a vehicle that could not only fly great distances, 
but also swim under water with the same propulsion system 
by morphing the shape of the wing.  This is, in essence, what 
the auk family of seabirds accomplishes. The common 
guillemot, Uria aalge, nests in coastal areas but hunts 
several kilometres out to sea [1]. Once at the hunting ground 
the birds dive underwater, morphing their wings and utilise 
the same flapping mechanism in water as they do in air but 
with a reduced flapping frequency (9 Hz to 2.5 Hz) and 
reduced forward velocity (19.1 m/s to 1.5 m/s) [2],[3]. The 
alteration in wing shape can be seen in Fig. 1. This ability is 
currently unmatched within the engineering world and as 
such offers a challenging task in trying to understand and 
reproduce this technique.  
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simplified equations of motion can represent the system.  
For the purposes of numerical simulation, the linear 

forward velocity of the foil is assumed to be constant. The 
assumption is therefore made that the wing is only 
undergoing angular accelerations due to the pitch and 
flapping motions. Therefore there is no linear acceleration 
experienced by the wing and all inertial components come 
from rotational rather than translational motions. Coriolis 
and centripetal term and the damping matrix were judged to 
be negligible for the system model. Finally, the wing is 
assumed neutrally buoyant which subsequently allows the 
gravitational terms to be disregarded.  The simplified 
equation of motion about the wing fixed axes xyz can 
therefore be represented by: 

xyzhydroymotorxyzxyzI −+= ττα _       (17) 

where τmotor_y is the motor torque required for the pitching 
motion and τhydro-xyz is the hydrodynamic torque contribution, 
with the same being true for the roll motion about the body 
fixed XYZ axes: 

XYZhydroXmotorXYZXYZI −+= ττα _
       (18) 

where τmotor_X is the torque required for flapping motion 
and τhydro-XYZ is  the hydrodynamic torque about XYZ axes. 

Knowing the torques experienced due to the roll motion 
and pitch motion of the foil, and the angular velocities of 
both motions, an indication of the power to drive each 
motion can be formed: 

( ) ( ) ( )tttP ωτ ⋅=             (19) 
Subsequently a time averaged power requirement XP  and 

yP  can be deduced for specific geometric arrangements for 
both the flap and pitch motion. Combining these provides an 
indication of the total power required by the system: 

yXf PPP +=              (20) 
This can therefore be calculated for any combination of 

geometric and kinematic parameters. 

B. Aerial operations 
During flight, the vehicle must overcome external forces 

in order to maintain steady horizontal flight. By determining 
these, the overall power requirement for flight can be 
calculated. These forces can be broken down into three 
distinct forms of drag that the vehicle is subjected to [11].  

The first component is induced drag. The value of induced 
drag can be calculated by using the following:  

22

222
bU

gmk
dragInduced

air

induced

πρ
=         (21) 

where kinduced is the induced drag factor, m is the mass of 
the vehicle (kg), g is the gravitational constant, U is the air 
velocity (m/s), ρair is the density of air (kg/m3) and b is the 
wingspan (m).  

The second component is that associated with the profile 
drag of the aerofoil, made up of skin friction and pressure 
drag. Profile drag is approximated by the following, where S 
is the wing area (m2) and CD-Pro is the profile drag 
coefficient: 

oDair CSUdragofile Pr
221Pr −= ρ        (22) 

The final form of drag experienced is that of parasitic 
drag. This refers to the drag associated with the non-thrust 
producing parts of an airborne system, i.e. the fuselage in an 
aircraft [13]. This can be calculated using the following, 
where Sb is the frontal area of the body (m2) and CD-Bod is the 
body drag coefficient: 

BodDbair CUSdragParasitic −= 221 ρ      (22) 
Utilising the fact that power is the product of force and 

velocity, multiplying each by the mean airspeed allows the 
power associated with each drag force to be calculated.  

2222 bUgkmP airInd πρ=          (23) 

oDairo CSUP Pr
3

Pr 21 −= ρ           (24) 

ParDbairPar CUSP −= 321 ρ          (25) 

ParoIndSum PPPP ++= Pr          (26) 
For any given wing arrangement, the air velocity that 

gives the minimum power per unit time, can be found by 
differentiating Psum with respect to velocity. Once this value 
is known, the equivalent total power at this velocity can 
subsequently be determined with various geometric wing 
arrangements. The implications of varying geometric 
parameters are discussed in the following section. 

IV. MULTI-MODAL PARAMETRIC STUDY OF WING 
DESIGN 

A. Multi-Modal Wing Parameters 
The implications of variations in both geometric and 

kinematic parameters associated with the foil are 
investigated with the aim of elucidating trends that can aid in 
subsequent vehicle designs. These parameters can be found 
within table 1. The aim is to minimize the cost of the 
mission by minimizing power requirements. Drawing from 
equations 20 and 26 allows this to be quantified for both 
aquatic and aerial operations. 

B. Aquatic Parametric Study 
The implications on power requirements of varying 

kinematic parameters for an individual geometric 
arrangement are presented in Fig. 6.  

It was found that the optimum pitch angle for a specific 
geometric arrangement varies depending on the kinematic 
parameters. From a future design perspective, this highlights 
the need for adjustable pitch for flapping foils operating with 
under constrained kinematics. 

Although not graphically shown here, it was found that at 
a fixed flapping frequency greater thrust is generated by the 
flapping foils at lower speeds highlighting the need to 
carefully select kinematic parameters, tuned for specific 
operating conditions. Further more, increasing the flapping 
frequency was seen to decrease the sensitivity of the 
maximum pitch amplitude required to generate high thrust. 
In each case increasing the maximum roll amplitude φ0, up 
to the maximum constrained value of 45°, results in an 
increase in the thrust generated. The associated power 
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requirements, which have been constrained based on 
solutions that produce positive thrust, can be seen to 
increase with increases in φ0, f and Uf. 

Initial simulations investigating the trends in geometric 
variations identified that the semi-span length had greater 
implications on thrust generation and power requirements 
during flapping motion than chord length; the foil was 
therefore fixed at an aspect ratio of 8, to allow further trends 
to be elucidated between wing-span, b and retraction angle, 
β. The resulting power requirements are presented in Fig. 7, 
where the forward velocity, Uf and flapping frequency f 
have been set at 1.0 m/s and 1.5 Hz respectively.  

Further trends have been elucidated from the implications 
of varying the semi-span length and retraction angle. The 
sensitivity of the thrust production to maximum pitch 
amplitude decreases as the semi-span increases. This trend 
also remains when the foil is subjected to retraction angles 
up to the maximum 45°. 

As the retraction angle increases, the foils thrust 
generating ability decreases, but also results in a reduction in 
the power, however it was found that the reduction in thrust 
generation is less than the reduction in power. This trend 
increases with semi-span. At a semi-span of 0.3, a retraction 
angle of 45° results in a 72% decrease in thrust, with a 76% 
reduction in power requirement. At a semi-span of 0.5, a 
retraction angle of 45° results in a 70% decrease in thrust 
compared to a 76% reduction in power requirement. This 
highlights the benefit of introducing a large retraction angle 
in future concept designs. 

C. Aerial Parametric Study 
The implications of variations in vehicle geometry are all 

investigated in order to establish overall trends within the 
aerial model. The overall findings are presented in Fig. 8. 

Conversely to the aquatic model, the power requirement, 
Psum decreases as the span length is increased. As the square 
of the span length is in the denominator of the formula, the 

larger the span the lower this term will be, hence resulting in 
a benefit from a large wing span. 

The opposite is true for the chord length, which when 
increased results in an increase in power requirement. This 
indicates a long narrow wing would be most beneficial in 
reducing the cost of transport. 

The vehicle hull size, Øh, which results in the frontal area, 
Sb, effects the overall power requirements but only slightly, 
identifying the lack of dominance of equation (25) on the 
overall power requirements. However, of much greater 
importance is the overall mass of the vehicle. Increasing the 
mass from 0.5 kg to 1.5kg results in a large increase in 
power required, again explained by the dominance of 
equation (23) on the overall power requirements, where the 
mass term appears in the numerator, raised to the power of 
two. Conversely to the span, an increase in mass results in a 
quadratic increase in power requirements provided all other 
parameters remain the same. 

V. INITIAL MODEL VALIDATION AND APPLICATION 
Due to the novelty of the requirement for operations in air 

and water it is difficult to validate the numerical model with 
current vehicle designs. However, the biological examples 
from which inspiration is taken can be used for initial 
validation purposes. To do this the typical behaviour of the  

TABLE 1 
PARAMETERS AND OUTPUTS 

Variables Outputs Geometric Kinematic 

Span length, b Max roll amplitude, φ0 Aquatic thrust, T 

Chord length, c Max pitch amplitude, θ0 
Aquatic flapping foil 
power requirements, Pf

Retraction angle, β Flapping frequency, f Overall aerial power 
requirements, Psum

Vehicle mass, m Aquatic forward velocity, Uf  

Hull diameter, Øh   

Vehicle frontal area, Sb   
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Fig 6: Nested performance chart with contours representing power 
required (W), by a foil with a fixed 0.4m semi-span and 0.1m chord 
length. Continuous nested axes represent max roll, φ0 and pitch 
amplitudes, θ0. Discretized axes represent aquatic forward velocity, Uf 
and flapping frequency, f 

Fig 7: Nested performance chart with contours representing power 
required (W), by a foil at a fixed Uf  = 1.0 m/s and f = 1.5Hz. 
Continuous nested axes represent max roll, φ0 and pitch amplitudes, 
θ0. Discretized axes represent semi-span length, b/2, and retraction 
angle, β. 
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Fig. 8. Nested performance chart with contours representing minimum 
power (W) required by a wing based on specific minimum power velocities. 
Continuous nested axes represent span, b and chord, c. Discretized axes 
represent mass, m and vehicle hull diameter, Øh. 
 
common guillemot is utilised in a mission based 
investigation. 

Knowing the typical ranges of common guillemots in both 
substrates, the aerial and aquatic models can be combined to 
determine the total energy cost of the mission. A mission 
based on [1] and [12] is detailed in table 2. 

The same mission was then used in the optimization 
process, under suitable geometric and kinematic constraints. 
It can be seen that the GA suggests an optimal wing span 
approximately equal (≈ 10% larger) to that of the guillemot 
for equivalent missions providing initial validation of the 
numerical model. The cost function of the GA is based on 
the specific power requirements of the aerial and aquatic 
phases, with the overall energy cost then calculated by 
multiplying the power requirements by the time length in 
which each mission phase would be completed.  

Several hypothetical missions, such as marine counter-
terrorism operations, oil platform deployment and littoral 
search and rescue missions have also been considered. A 
summary of the results for these various missions are 
presented in table 2 along with the comparison with the 
common guillemot. The optimal wing span to use can be 
seen to vary based on the specific mission criterion relating 
to aerial and aquatic ranges and velocities. Future work aims 
to elucidate trends from the kinematic conditions suggested 
by the model for varying mission criterion. 

VI. CONCLUSIONS 
The initial conclusions that can be elucidated from the 

study for aerial/aquatic locomotion are: 

• Under-constrained vehicle kinematics are vital in roll 
and pitch motion. 

• Major conflicts exist in wing span selection due to 
converse implications on power requirements of both 
aerial and aquatic modes of locomotion. 

• Retraction angle β has a beneficial effect on overall 
performance considering the thrust generation versus 
power requirements. 

• Minimising overall vehicle mass of great importance 
in reducing aerial power requirements. 

• Simulated guillemot mission provides initial 
validation of presented numerical model. 

Future work will investigate further mission specific 
implications on parameter selections and validate the current 
findings through experimental work. The presented model 
shall be used as an initial design tool in this process, leading 
towards a specific mission based vehicle design.  
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TABLE 2 
VARIOUS MISSION CRITERIONS ALONG WITH OPTIMAL WING GEOMETRY 

Mission Aerial Range (km) Aerial Velocity (m/s) Aquatic Range (km) Aquatic Velocity (m/s) Wing span (m) 
Common Guillemot [1] [3] 2 20 0.5 1.5 0.71 

Simulated Guillemot 2 20 0.5 1.5 0.79 
Counter-Terrorism 1 12.5 500 1 0.83 

Oil platform Deployment 0.5 20 1 1.5 0.78 
Search and Rescue 1 25 500 1 0.53 
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