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Stability of Time-varying Control for an Underactuated Biped Robot
Based on Choice of Controlled Outputs

Ting Wang and Christine Chevallereau

Abstract— This paper studies the effect of controlled outputs
selection on the walking stability for an under-actuated planar
biped robot. The control is based on tracking reference motions
expressed as function of time. First, the reference motions are
adapted at each step in order to create an hybrid zero dynamic
system. Second, the stability of the walking gait under closed-
loop control is evaluated with the linearization of the restricted
Poincaré map of the hybrid zero dynamics. It shows that for the
same robot, and for the same reference trajectory, the stability
of the walking can be modified by some pertinent choices of
controlled outputs. Third, we find that, at the desired moment
of impact for one step, the height of swing foot is nearly zero for
all the stable walking, though the configurations of the robot
are not the desired configurations. Based on this, we propose
a new method to choose the controlled outputs to obtain the
stable walking for robot. As a result, two stable domains for
the controlled outputs selection are obtained. Furthermore, we
point out that, this kind of control law, which based on reference
motion as a function of time, can produce better convergent
property than that based on reference motion as a function of
a state of robot via pertinent choices of controlled outputs.

I. INTRODUCTION

The primary objective of this paper is to present a feedback
controller that achieve an asymptotically stable, periodic
walking gait for an under-actuated planar biped robot. The
biped studied consists of five links, connected to form two
legs with knees and a torso. It has point feet without
actuation between the feet and ground, so the ZMP heuristic
is not applicable, and thus under actuation must be explicitly
addressed in the feedback control design.

The control of this robot is based on tracking reference
motions. There are two groups of method which depend on
the differences of reference trajectory. The first one is based
on reference trajectory as function of time and the other one
is not. In the second method, for example, the method of
virtual constraints, which has been proved very successful in
designing feedback controllers for stable walking in planar
bipeds [9], [5], [13], [15]. A recent paper [7] extended it to
the case of spatial robots. In this method, a state quantity of
the biped, which is strictly monotonic (i.e., strictly increasing
or decreasing) along a typical walking gait, is used to replace
time in parameterizing a periodic motion of the biped. When
such a control has converged, the configuration of the planar
robot at the impact is the desired one but this approach
involves parameterized reference trajectories. In fact, this
parametrization method is not usual in robotics. In addition,
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it is impossible to find the strictly monotonic state for some
robots, for example, robot-semiquad [1], quadruped with a
curve gait, or biped with frontal motion [11], [8].

Based on these observations, we want to propose a tool to
analyze the stability of a control based on tracking reference
motion as function of time and to propose solution to obtain
stable walking. It has been observed that for the same robot,
and for a same known cyclic motion, a control law based
on a reference trajectory as function of the state of a robot
produces a stable walking, while a control law based on
reference motion as a function of time produces an unstable
walking [4]. In fact, for the control law based on reference
motion as a function of time, most periodic walking gaits are
unstable when the controlled outputs are selected to be the
actuated coordinates. In [7], the effect of output selection on
the zero dynamics is discussed first time, but this is based
on parameterized reference trajectory. Next, this approach
is used successfully for the control based on time-variant
reference trajectory in [14], in which a pertinent choice of
outputs is proposed, leading to stabilization without the use
of a supplemental event-based controller.

This paper focus on how to choose the control outputs
pertinently to improve the walking stability of biped, which
is extended from [14]. Poincaré method is used to analyze
the stability of limit cycles for hybrid zero dynamics. The
numerical simulation shows the effect of controlled outputs
selection on the walking stability. A new method to choose
the control outputs is proposed based on a condition of
the swing foot height at the desired moment of impact.
As a result, two stable domains for the controlled outputs
selection are obtained. We compared the control property of
this method with the method of virtual constraints [9], [5],
[13], [15]. It shows the velocity converge more quickly with
our method.

II. MODEL
A. Description of the robot

The biped considered walks in a vertical xz plane. It is
composed of a torso and two identical legs. In the simulation,
the robot Rabbit is considered [16]. Each leg is composed
of two links articulated by a knee. The knees and the hips
are one-degree-of-freedom rotational joints.

The gait is composed of single support phases separated
by impact phases. During the single support phase, the vector
q = [q1,-..,q5) (Fig. 1) describes the configuration of the
biped. The knee and hip relative angles are actuated, but the
ankle joint is not actuated. We define the vector of actuated
variables ¢, = [g2, . .., ¢5]" and unactuated variable ¢, = ¢;.
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Fig. 1. The studied biped

B. Dynamic model

The dynamic models for single support and impact (i.e.,
double support) are derived here by assuming support on leg
1. The models for support on leg 2 can be written in a similar
way. The Euler-Lagrange equations yield the dynamic model
for the robot in the single support phase as

D@M+H@®=BF=[%“]m (1)
4x4

where D(q) is the positive-definite (5 x 5) mass-inertia
matrix, H(q,q) is the (5 x 1) vector of Coriolis and gravity
terms, B is an (5 x 4) full-rank, constant matrix indicating
whether a joint is actuated or not, and w is the (4 x 1) vector
of input torques. The double support phase is assumed to be
instantaneous. During the impact, the biped’s configuration
variables do not change, but the generalized velocities un-
dergo a jump. Defining — and + denotes the moment just
before and after impact respectively. As shown in [16], this
jump is linear with respect to the joint velocity before the
impact ¢~

" =1Iq)d, 2

Considering the exchange of legs, the configuration after
impact becomes :

¢t =Eq, A3)

where E is a (5 x 5) matrix which describes the transforma-
tion of two legs.

Define state variables as © = [q, ¢, and let zT = [¢", 1]
and z~ = [¢~,¢~]’. Then a complete walking motion of the
robot can be expressed as a nonlinear system with impulse
effects, and written as

e I

where S = {(¢,4)|zsw(q) = 0, zsw(q) > 0} is the
switching surface, zgs,, s, describe coordinates of swing
foot, and u denotes the input torques.

10 =] padaas |+ 0@=| 0555 ]
and
T =Ar7) = [ gj(q*) } x”

III. CONTROL LAW
A. The output

Since the robot is equipped for m actuators, only m
outputs can be controlled. In many papers, the controlled
variables are simply the actuated variables. In fact, the choice
of the controlled variables directly affects the behavior of the
robots [7], [14]. For simplicity, we limit our analysis to the
case that the controlled variables v are linear expression of
the configuration variables. They are expressed as:

v:M{q“}_[Ml MQ][‘J“}, 5)
da da

where M is a (4 x 5) constant matrix. To obtain a simple
expression of ¢ with respect to v and q,,, we impose My be
invertible. The m outputs that must be zeroed by the control
law are :

y=uv—v(t) (6)

where v?(t) is the desired evolution of the controlled vari-
ables. The function ¢%(t) corresponding to a cyclic motion of
the robot, which has been obtained by [6]. The cyclic motion
has been defined for one cyclic step from ¢t =0 to ¢t = T.
In the control strategy this desired trajectory is restarted at
each impact. A more precise definition of the output is :

y=v—vir) = ¢8
F=1 ¢S . %
=0 z- eSS

For this cyclic motion, the reference motion v? is defined by
v!(7) = Mq®(1) = Mgy + Magj 8)

Since the reference trajectory is expressed as the function
of time, the torques depend on the state of the robot and of
time 7. To be able to consider the closed loop state as an
autonomous system, we will extend the state as X = [z, 7]/,
and the studied system can be written as:

where
ro=[{9] am=[42]. a-[5].

Considering q,, = q1 and (5), the current configuration of
the robot can be expressed as:
01x4 Gu
Mg_l [ ’

In equation (1), D and H are defined as:

D13(1x4) ] [ Hy1x1) }
 H= 1
Daz(axa) Hy(ax) (v

1
q_[—MfML (10)

D— { Di1ix1)
Ds1ax)

Then dynamic model in single support (1) is rewritten as:
{(Du—mM@*Mn%:—me*ﬁemm@

u = (D21 — Daa My~ " M)y, + Doa My ™6 + H2(q,(q'l)2)

4084



To zero the output in (6), the control input is defined as:
Kq
€

where K, > 0, K; > 0, and € > 0. Using the control (13),
the desired torques « in (12) can be calculated.

i = R M (E)

B. The Zero dynamics

The zero dynamics [10] is defined to describe the behavior
of the system when the outputs are assumed to be zero. There
are two objectives of introducing the zero dynamics. Firstly,
we want to study the effect of the uncontrolled variable g,
on the property of the closed-loop system with a perfect
control law. Our second objective is to analyze the stability
of walking in a reduced space. If the output is zero then using
(6) and the first line of (12), the zero dynamics is defined
by:

{ v(t) = v'(r)
(D11 — D1oMy ™" My)Gy = —D1o My "6%(7) — Hi(q, 4)
(14)
The zero dynamics can also be expressed with the vari-
ables g, and g,. Using the equation (8), we have:

Mgy + Mzqa = v = Mgl + Mg (15)
Since M5 is invertible, there exists:
qa(T) = g3 + My ' My (¢ — qu)
(D11 — Dy1aMy™ ' My)Gy, = —Dro(My ™' MyGd  (16)

This equation clearly shows that the behavior of the robot
will be affected by the value of M2_1M1. In fact, according
to the definition of the controlled outputs v in (5), the
introduction of M permits to take into account the tracking
error of the uncontrolled variable g,. In the following we
impose that My = I;«4, which is a identity matrix. When
M; = [0,0,0,0), the controlled variables are simply the
actuated variables ¢, (see (5)).

We can clearly see that the dynamic properties of the
swing phase zero dynamics depend on the particular choice
of the reference motion v4(7) or ¢¢(7). For the same de-
sired periodic motion, the choice of the controlled variables
directly affects the zero dynamics in (16). It will be proved
with the simulation results in section V-A.

C. The Hybrid Zero dynamics

According to [16, Chap. 5], while the feedback control
law (12) and (13) have created a zero dynamics of the stance
phase dynamics, it has not created a hybrid zero dynamics,
that is, the zero dynamics considering the impact model
(2). If the control law could be modified so as to create a
hybrid zero dynamics, then the study of the swing phase zero
dynamics (14) and the impact model would be sufficient to
determine the stability of the complete system of the robot,
thereby leading to a reduced-dimension stability test [12].

The reference motions are modified stride to stride so that
they are compatible with the initial state of the robot at the

beginning of each step [7]. The new output for the feedback
control design is

Yo =v(7) — v (1) = ve(T, i, 5i)- (17)

This output consists of the previous output (6), and a
correction term v, that depends on (6) evaluated at the
beginning of the step, specifically, y; = v(0) — v%(0) and
7 = 9(0) — ©%(0). The values of y; and ¥; are updated at
the beginning of each step (or at impact) and held constant
throughout the step. The function v, is taken to be a three-
times continuously differentiable function of 7 such that

UC(Ov Yi, yl) = Y

0e(0,9i,9:) = Ui (18)
. — T

UC(T7yi7yi) = Oa T 9

With v, designed in this way, the initial errors of the output
and its derivative are smoothly joined to the original virtual
constraint at the middle of the step, and v, doesn’t introduce
any discontinuity on the desired trajectory. In particular, for
any initial error, the initial reference motion v? is exactly
satisfied by the second part of the step : 7 > %

Under the new control law defined by (17), the behavior
of the robot is completely defined by the impact map and
the swing phase zero dynamics (14), where v? is replaced
by v + v, since My = Iy 4, this equation becomes :

{ v(1) = vH(T) + ve(T, Y, Ui)
(D11 — D1aMy)iy = —D12(8% + ) — Hi(q, ) (19)
The zero dynamics manifold is defined by Z =
{(1,4,49)|lyc(¢) = 0, y.(¢) = 0}, this manifold can be
parametrized by a vector of dimension 3: (7, ¢y, ¢, ). When
the reference trajectory is a function of the state variable
[16], the zero dynamics manifold is of dimension 2, in our
case, the supplementary variable 7 must be considered. By
introducing v., the resulted walking motion can remain in
the manifold Z in the presence of impact phase.

IV. STABILITY ANALYSIS

The stability analysis of walking can be done with the
Poincaré method. Since with the chosen control law, the state
of the robot remains on the zero dynamics manifold, the
stability analysis can be done in a reduced space.

Different Poincaré section can be considered. Usually, for
biped, the Poincaré section is defined just before the impact.
This choice implies that the perturbation of the state that
are introduced for the calculation of the Jacobian of the
Poincaré map is such that the two legs touch the ground.
As a consequence the determination of the perturbation is
not obvious. To avoid this, we will consider the Poincaré
section at 7 = 0.757, at this instant the swing leg tip does
not touch the ground and since 7 = 0.75T > % the value of
the controlled variable are not affected by v..

A restricted Poincaré map is defined from S, N Z to
Sr N Z, where Z = {(7,¢,¢)|yc(q) = 0, gc(q) = 0} and

'In our specific application, we used a four order polynomial for 0 <

r
%; continuity of position, velocity and acceleration is ensured at 7 = %
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Sr = {(1,4,¢)|r = 0.75T} is the Poincaré section. The
key point is that since in Z the state of the robot can be
parametrized by three independents variables, in S, N Z,
the state of the robot can be represented using only two
independent variables, =% = [g,,(0.75T"), ¢,,(0.75T)]’, where
g, denotes the unactuated joint.

The known cyclic motion ¢%(7) gives a fixed point 2* =
(q.%(0.75T), ¢2(0.75T)) for the proposed control law for
any value of M;.

The restricted Poincaré map P* : S, NZ — S; NZ
induces a discrete-time system zj,, = P*(z}). From [12],
for ¢ sufficiently small in (13), the linearization of P*
about a fixed-point determines exponential stability of the
full order closed-loop robot model. Define 0z}, = zj — z**,
the Poincaré map linearized about the fixed-point z** gives
rise to a linearized system,

Sai,, = A*6x;, (20)

where the (2 x 2) square matrix A* is the Jacobian of the
Poincaré map [14].

A fixed-point of the restricted Poincaré map is locally
exponentially stable, if, and only if, the eigenvalues of A*
have magnitude strictly less than one [16, Chap. 4].

V. EXAMPLES

Using optimization techniques developed in [6], an op-
timal cyclic motion has been defined for the robot Rabbit
described in section II-A. The corresponding stick-diagram
of the walking gait and the joint profiles of each angle have
been presented in [14]. To investigate the influence of the
choice of the controlled outputs (via the matrix M) on the
stability of the control law for a particular desired cyclic
motion, v?¥(7), ¥¢(7) and i%(7) have to be known. Since ¢?
are known, according to (8), the desired reference motion
are defined by :

vi(r) = Mq*(r)
() = Mq(T)
i(r) = Mq*(r)
A. Stability Analysis with Different Choices of M,

It is shown that the hybrid zero dynamics depends on the
choice of the output (19). We will explore the effect of M;
on the stability of the control law.

To study the stability of this control law around the
periodic motion, we need to compute the eigenvalues of A*
in (20), which are noted as \; 2. Generally, it is possible to
use an optimization technique to find a vector M; such that
the maximal norm eigenvalues of A® is less than one, as:

2n

maz |A2| < 1, (22)

Here we use an exploration technique to illustrate the effect
of the choice of the output. We fix arbitrary three components
of M, to zero and max |\ 2| are drawn as function of the
fourth component of M;. The results are shown in Fig. 2,
where the red points note that maz |[A; 2| < 1. In order to
find these stable points, we search more precisely of M (),
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Fig. 2.  max |A1,2| versus Mi(j),j = 1,2,3,4, when the other three
components of M7 are zero.

j = 1,2,3,4 near the mazx |A; 2] = 1. We can find three
main results from Fig. 2.

1) When M; get into some domains, the eigenvalues of
A? can change to infinity, as a result, the swing foot can’t
touch the ground, but when M; get out of it, the eigenvalues
of A# diminish instantaneously, as shown in M; (1) of Fig. 2.
We observed that these domains are due to the singularity of
the controller.

Proof: If we want to calculate the required torques w in
(12), we must obtain ¢, using the first line of (12), which
can be rewritten as:

. —Dui — Hi(q,q)

u = 23)
1 D11 — Do M,y (
If there exist values of M7 such that:

Dy — Do My =0, (24)

the controller is singularity.

During the swing phase, D11 and D15 are almost constant.
At the desired impact moment T4, there are Dq; ~ 24.2445,
Dqy =~ [13.4347,3.6283,0.5375,0.0410]. When M; =
[M1(1),0,0,0], (24) is satisfied for M;(1) = 1.8046. As
shown in Mj(1) of Fig. 2, there is a jump of max |\ 2]
near this value. Using the same method, we can deduce that
when M; = [0,6.6821,0,0], M; = [0,0,45.1060,0]" and
M; =10,0,0,592.7751]’, the controller will be singular too.

2) For some M7, there exists a minimum max | A1 2| which
leads to stable walking.

3) The max | A1 2| is very sensitive to some change of M.
When M; is modified a little, the stable walking gait may
become unstable.

Here points 2) and 3) show that it is possible but difficult
to choose M leading to stable walking. In order to further
illustrate that, we choose different values of M; to test
stability. Each component of M; is sampled between —10
and 10 with a step of 2.5 to build 9% vectors M;. For each
vector M, the effective eigenvalues of the Poincaré map,
mazx |)\172 , is calculated. Except some cases in which the
swing foot can’t touch the ground because of the singularity
of the controller, there are only 19 stable cases and 5363
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unstable cases. The vectors M; leading to stable walking
are scattered and there is no obvious condition of stability
can be determined. Is there a method to help in the choice
of M;? In the next subsection, we will try to find a way of
settling this problem.

B. A Method for Pertinent Choice of M,

For all cases corresponding to different M; which were
presented in the previous paragraph, we choose some walk-
ing characteristics to observe whether there exists difference
between the stable and unstable cases. They are:

« position of CoM (Center of Mass) at the desired impact

moment 7%,
« kinetic energy just before impact and after impact (see
(2] and [3]),

e errors of uncontrolled variable g, during the swing

phase and at impact moment,

o height of swing foot Z,,, at T

We have not observed any special relations between the
effective eigenvalues of the Poincaré map max |A1 2| and the
first three walking characteristics, but we found Z;,, =~ 0 at
T4 for all stable cases, that is, max |A1,2] <1, see Fig. 3.

To calculate Z,,, at T, we use the equation (16) to write:

o(T?) = oY(T7), (25)

and we suppose that there exists an error Ag, on the
underactuated variable of biped ¢, Ag, = q¢u(T) — ¢.%(T).
Considering (25), (10) and My = I;4, there is:

q(T%) = ¢ (T?) + MrAq, (26)

where Mz = [1,—M;]’. We can compute Z,,(T¢) without
simulation of the biped walking. We suppose Ag, = 1072,
which is adequate to estimate the real Agq, in the walking
simulation. Then we get Z,, (T'?) for all the case of M, (j) €
[—10,10], j = 1,2, 3,4, which was presented in the previous
subsection. The result is shown in Fig. 3 (we only present
the cases of max [A1 2| < 50 ), where the red points denote
max |A1,2| < 1, that is, the stable cases.

mamsTALg |

Fig. 3. The height of the swing foot at the end of the step Zsy, (T'¢) with
respect to the effective eigenvalues of the Poincaré map, maz |A1,2].

Based on Fig. 3, we conjecture that:

A necessary condition for stable walking is Zs,, (T) ~ 0.

This condition implies that the swing foot still can touch
ground at 7% with an error of the unactuated variable. If
there is an error on the impact moment, T # T there

N o =10
—
~ -20
=5 o
20 -40
° 4 -
0 -60
' 20 40 60 0 -60 -40 -20
M;(3) My (3)

Fig. 4. The stable domain of M (2) and M1 (3) for two groups of solution,
which is described with contour line max |A1,2| =1

will exist not only the error of configuration and velocity
of unactuated variable Agq,, Aq,,, but also that of controlled
variables Av, Av. These errors can lead to unstable walking.
The necessary condition Zs,,(T9) ~ 0 avoids the error on
the impact moment, so the errors Av and Av are avoided.
Next is how to choose M; with this necessary condition.
According to (26), Z,, can be written with Taylor series:

Zew(@(TY) = Zaw(qX(T?) + alqu + bAg,>  (27)

where a - %‘%T‘i)) My

and b =
q

%MT’%;I;(TLI))MT. Since the function of Zg, (q(T?))
is highly nonlinear, here we considered the first two terms
of the Taylor series, not only the first one.

If a and b satisfy :

a=b=0 (28)

Zsw(q(T%)) is close to zero for any Ag,,.

Two constraint equations exist in (28) for four components
of M3, so only two components can be chosen. The condition
(28) leads to two groups of solution of M, because the
equation b = 0 is a second order equation as function of
M. For each group of solution, M;(1) and M;(4) are
deduced from M;(2) and M;(3). Then we search different
M;1(2) and M;(3) to analyze the stability of the system ,
we can obtain large stable domain of M; for each group of
solution, as shown in Fig. 4, it is described with contour line
mazx |A1,2| = 1. The system is always stable as long as M
is chosen in these domains.

C. Compare with The Method of Virtual Constraints

Here we will compare our method with the method of
virtual constraints, which has been proved effectively in
designing feedback controllers for stable walking in planar
bipeds [9], [5], [13], [15]. It is worth mentioning that
experimental tests based on the method of virtual constraints
has been carried out successfully with Rabbit by the research
team of J. Grizzle [16]. Here the compare of two method is
based on the same model of the robot, the same desired
trajectory and the same method of stability analysis. It is
shown that stability of an orbit is independent of the choice
of the output, as long as the constraints yield a nonsingular
controller [16, Chap. 6]. As a result, the control properties
can not be modified in this way. On the contrary, it can be
improved by a good choice of controlled outputs with our
method.
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In general, the effective eigenvalues of the Poincaré map is
the smaller the better for the stability, so we can choose M
according to the desired property. For example, we choose
M, = [1.9121, -4, —3,—1.4090] from the second solution
of Fig. 4, the result of stability analysis is maz |\ 2| =
0.2392. Then the planar biped’s model in closed-loop is
simulated with this M7 and the method of virtual constraints.
The initial errors 0.01rad and 0.1rad/s are introduced on
each joint and it’s velocity respectively. As shown in Fig. 5,
for the method of virtual constraints, the configuration of the
robot at the impact is the desired one but the velocity con-
verge more slowly. With our method, the velocity converge
to zero after walking four steps, and the control input u also
follows the desired torque after these four steps. The torques
of the swing leg (see Fig. 1) are shown in Fig. 6.

—~ T
b= *
< * - - the method of output selection
E 004l O the method of virtual constraints | |
3 *
<°f 0.02} 1
- *
or o [a] a # = & ® = & ®
—0.02 . . . . .
o 1 2 4 5 6 7 9 10
step number
—~
2 £
T oasf ,
< # - the method of output selection
- a the method of virtual constraints
=
0.1%¢ B
3 ks
= o
4 0.05 a 1
= o .
or * * g ® ® ® E
-0.05 .
o 1 2 9 10

4 5 6 7
step number

Fig. 5. The difference of the real values and desired values of ¢, at the
end of each step.

m)

the real torque
= = = the disired torque

o 0.5 1 1.5 3 3.5 4

tithe (sf°

the real torque
= = = the disired torque

o 0.5 1 1.5 tiﬁ]e (st 3 3.5 4

Fig. 6. The torques of the swing leg, where u(3) notes the torque of torso
and u(4) notes the torque of knee.

As stated above, the stability of walking can be improved
by pertinent choice of controlled outputs, furthermore, it
is possible to produce better convergent property than the
previous method for this planar bipedal model.

VI. CONCLUSIONS

In this paper, a simple planar bipedal model has been
studied, with the objective of developing a time-variant feed-

back control law that induces asymptotically stable walking,
without relying on the use of large feet. We showed that the
property of zero dynamics of the walking model is affected
by the choice of the controlled outputs. In addition, based on
the numerical results, we conjectured a necessary condition
for stable walking is that the height of the swing foot at the
desired impact moment is close to zero. With this necessary
condition, two large stable domains are obtained. Finally, the
simulation results proved the validity and superiority of this
method.
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