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Abstract— The aim of this paper is to perform the navigation
of an underwater robot equipped with a sensor using the electric
sense. The robot navigates in an unbounded environment in
presence of spheres. This sensor is inspired of some species of
electric fish. A model of this sensor composed of n spherical
electrodes is established. The variations of the current due to
the presence of the sphere is related to the model of Rasnow
[3]. Unscented Kalman Filter is used to localize the robot with
respect to the sphere and to estimate the size of the sphere.
We show that bio-inspired motions improve the detection of
the spheres. We illustrate the efficiency of the method in two
cases: a two electrodes sensor and a four electrodes sensor.

I. INTRODUCTION

Lissmann and Machin [1] have demonstrated that weakly
electric fishes use their electric organ discharges (EODs)
to detect object with electric properties different from the
surrounding medium. Near the fish an object with a higher
conductivity than the medium brings locally more current
on the skin whereas an object with less conductivity than
the medium brings locally less current on the skin. The
dependence is not only on the conductivity value but also on
shape, dimension and distance from the skin. For a simple
object like the sphere, B. Rasnow [3] gave the relation
between the signal perturbation, i.e. the variation of the
measured current , and the three parameters: the conductivity,
the radius and the distance from the skin. The first problem
in active electrolocation is to solve the ambiguity between
these parameters. For instance, given a conductivity value,
the same signal perturbation can come from both a bigger
sphere that is situated far from the skin and from a smaller
sphere that is close to the skin. Solberg and Al [4] have
demonstrated the feasability of the detection of the sphere
by the electric sense. Nevertheless they assume a value
of conductivity and a value of the radius to perform the
detection. Here we suppose we don’t know the radius and the
position of the sphere. Assuming a perfect conductive sphere
or a perfect insulating sphere we perform the estimation of
not only the position but also the radius of the sphere. This
informations can be used to navigate with the electric sense.
To realize this estimation we were inspired on some specific
movements of the electric fish. Not only the electric sense but
also the movement is important to perform the estimation. In
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fact Lannoo and Al [2] have reported the existence of specific
movements for the electric fish in assessing a prey. Here we
demonstrate the feasibility of the sphere recognition by the
navigation and the electric sense. Our model of perception
is bioinspired from the weakly electric fish. The sensor is
composed of n spherical electrodes of fixed potential values.
Each object when it is polarized by the sensor creates a
perturbation that is added to the initial potential values of
the electrodes. We define the model of the sensor as the
poly-spherical model. In the first part of this paper we
present the poly-spherical model in a presence of a sphere.
In the second part we present a method for the estimation
of the parameters of the sphere. This method is based on
the unscented Kalman filter. In the third part we illustrate
the quality of the estimation with two examples: for a two
electrodes sensor and for a four electrodes sensor. In each
case we test the specific movements and we demonstrate the
improvement of the estimation with these movements.

II. ANALYTICAL MODEL

As in the work of Rasnow [3], the model of electric
sense is restricted to the resistive effects offered by the
environments to the currents generated by the polarizations
of the fish body. In these conditions, the principle of the
electrolocation can be reproduced and modeled by consider-
ing the fish on the sensor copying it as a set of conducting
annular electrodes aligned on a rigid slender body.

A. The poly-spherical model in a presence of a sphere

The geometry of the sensor allows one to approximate it
with a good accuracy by a set of spherical electrodes aligned
on the rigid body axis according to what we call a poly-
spherical model. We illustrate in the Fig. 1 such a model in
the presence of a spherical object. The sensor is composed
of n spherical electrodes with an emitter and n−1 receivers
at given potential values.

Fig. 1. The poly-spherical model in a presence of a sphere.

We derive our formalism from the equation of continuity:−→
∇ .

−→
j + ∂ρ

∂ t = 0where
−→
j is the density current vector and ρ is
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the volume charge density. The condition of stationarity leads
to:

−→
∇ .

−→
j = 0. The Ohm’s law

−→
j = γ−→E leads to γ

−→
∇ .

−→
E +−→

∇γ .−→E = 0 where
−→
E is the applied field. Considering that the

conductivity of the domain in which the sensor is immersed
is piece-wise constant (i.e. the fluid and the object are
modeled as two Ohmic conducting homogeneous materials),
we have in the fluid domain:

−→
∇ γ =

−→
0 , and consequently:−→

∇ .
−→
E = 0. Where we recognize the local form of the Gauss

law in the case where all the electric charges are situated on
the boundaries of the two Ohmic media (the electrodes and
the sphere). Suppose now that on each electrode i we have
the charge qi the potential of an electrode is simply deduced
from the relation:

Vi =
1

4πε

n

∑
j=1

q j

Li, j
(1)

with the distance between the electrodes i and the electrodes
j is given as Li, j = δi, jR+ j−1

n−1 L, δi, j the Kronecker delta
which value is 1 for i = j and 0 for i ∕= j, R the radius of
an electrode, L the length of the sensor and ε the electric
permittivity of the surrounding medium. We suppose implic-
itly that the electrodes are separated with the same distance.
Now suppose that a sphere is appearing in the environment.
The potential perturbation δV due to this sphere is according
to the Rasnow model [3] :

δV = χa3
−→
E .−→r
∥r∥3 (2)

where a is the radius of the sphere, γs is the conductivity of
the sphere, γ is the conductivity of the medium, χ = γs−γ

γs+2γ
the contrast factor which value is 1 for a perfect conductive
sphere and -0.5 for a perfect insulating sphere. We assume
here that the applied field

−→
E is constant across the sphere.

−→r is the position vector that comes from the center of the
sphere to a point M where the perturbation is created. In the
presence of the sphere one can write :

Vi =
1

4πε

n

∑
j=1

q j

Li, j
+δVi (3)

where δVi is the perturbation due to the sphere created on
the surface of the electrode i. The applied field

−→
E comes

from the n electrodes :

−→
E =

n

∑
j=1

q j
−→r j

4πε∥r j∥3

where −→r j is the position vector that comes from the center
of the electrode j to the center of the sphere. Using now the
integral form of the Gauss law:

∫
∂Si

−→
E .

−→
ds = qi

ε
where Si is the surface of the electrode i and combining with
the Ohm’s law the integral form of the Gauss law becomes:
∫

∂Si

−→
j i
γ
−→
ds = qi

ε . Assuming now that the electrodes are per-
fectly spherical and not too close to polarize themselves,
the density current vector

−→
j i becomes constant over the

surface of an electrode i. Thus we can write: Ii
γ = qi

ε where
Ii is the total current entering an electrode i. With all these

considerations one can link the potential of the electrodes to
the current entering the electrodes:

Ve =
1

4πγ RIe (4)

where R is the matrix of resistivity (of dimensions n× n),
Ie = [I, In]T 1 with I is the current vector of receivers, In
the current of the emitter, Ve = [V,Vn]T , V is the potential
vector of receivers and Vn the potential of the emitter. We
impose potential difference between emitter and receptors U
(Ui =Vi −Vn) and we express U in function of Ve :

U = PVe. (5)

with P =
[
I(n−1),−1(n−1,1)

]
, where −1(n−1,1) is a column of

n− 1 terms equal to −1. To respect the current neutrality
I1 + ...In = 0, we express Ie in function of I : Ie = PT I. We
express U in function of I :

U =
1

4πγ PRPT I (6)

The matrix R is composed by the contribution of each object
R = A+S where A is the sensor self influence and S is the
sphere influence.

The elements Ai, j of the matrix A are calculated as:

Ai, j =
1

∣i− j∣
n−1 L+δi, jR

(7)

and the elements Si, j of the matrix S are calculated as:

Si, j =−a3χ
ξiξ j +η2

(√
ξ 2

i +η2

)3(√
ξ 2

j +η2
)3

(8)

where i = 1..n, and j = 1..n and
{

ξl = (−dcos(θ)+ L
2 −

l−1
n−1 L), l = i or j

η = dsin(θ) (9)

where d the distance between the center of the sensor and
the center of the sphere, θ the angle between the axis of
the sensor and the direction joining the center of the sensor
and the center of the sphere (see Fig.1). Note that, these
parameters are related to the body mobile frame and do not
require to introduce any absolute extraneous frame. From (6),
the current intensity vector I in the presence of the sphere
can be expressed as:

I = 4πγ
(
PRPT )−1 U (10)

In the next sections, The measured current I will be used
to locate and recognize the sphere.

B. The sensor’s range

In this section, the goal is to determine the distance at
which the sensor detects the sphere in an unbounded envi-
ronment. The Fig. 2 shows the two characteristics distances:
the axial and the lateral range. We compare the range of two
kinds of sensors, a dipole (n= 2 electrodes) and a quadripole

1Notation T means transposition
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Fig. 2. Definition of axial and lateral range.

(n = 4 electrodes). We evaluated the current measure noise
in the test bench 2 at Ib = 10−6 A. We assume that the
maximum range is obtained when the current ∥I∥ is in the
same order than Ib. The length of the sensors is L = 0.2m
and the distance between two successive electrodes is L

n−1 .
Radius of the electrodes is R = 0.01m. The potential at the
emitter is 2 V and at the receivers is 0 V .
We place a sphere at different locations around the sensor
in an 0.4m×0.4m area. For each position, we calculate the
norm of the currents expressed us: Is = ∥I− I∞∥, where I∞
(respectively I) is the current vector in an unbounded envi-
ronment without the sphere (respectively with the sphere).

Fig. 3. The iso-current Is for the dipole.

Fig. 4. The iso-current Is for the quadripole.

2Test bench can not be presented, we are waiting for patent.

In the Fig. 3 and Fig. 4, the curves display the current Is
for aconductive sphere whit a radius a= 0.01m. In the Fig. 3,
we observe clearly a ”blind area” in the middle of the sensor.
This characteristic exist if Li, j >> a i.e. bigger sphere can
be “seen” by the dipole. We do not find this characteristic
for the four electrodes sensor (see Fig. 4).

Fig. 5. The range of the sensor for several values of the sphere radius .

Fig. 5 shows the lateral and the axial range of the dipole
and the quadripole for several values of a conductive sphere
radius a = [0.01,0.03,0.05,0.10] m. The two sensors have
similar axial range. The lateral and the axial ranges of the
quadripole are also similar. A sphere of radius a < 0.05m is
better detected laterally by the quadripole than by the dipole.
A sphere of radius a ≤ 0.01m can not be detect laterally by
the dipole.

Fig. 6. The indistinguishable sphere positions.

The sensor is designed with symmetrical right-left shape.
With this design it is impossible to distinguish the side where
the object is [10] as shown in Fig. 6. Moreover, the dipole
can not make the difference between all the positions of the
sphere for the same iso-current (see Fig.3). To raise these
problems, more informations is needed, we can obtain it
by motions. We propose to use some specific bio-inspired
motions.

III. ELECTROLOCATION AND RECOGNITION OF THE

SPHERE

The calculation of the sphere parameters using the current
mesure is an inverse problem. Inverse problems may be
difficult or impossible to solve. For example, using the dipole
we have only one measure witch is not enough to identify
the sphere parameters, a solution is to use the observers. We
propose to use the Unscented Kalman Filter to estimate the
sphere parameters. The sphere parameters are:

∙ The sphere position: the distance d and the angle θ .
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∙ The sphere radius a.
∙ The sphere class: conductive or insulating, is given by

contrast factor χ .

A. The motion model of the sensor

In case of a real fish, the motion is ruled by its swimming
dynamics. In our simplified case, the rigid sensor mimicking
the fish is modeled as a single non-holonomic axle which
motions parallel to the y axis are forced to zero (see Fig.1).
While being very simple, these kinematics reproduce the
fact that a fish cannot swim along the lateral dimensions of
its body. In these conditions, the sensor motion is simply
parameterized by the linear velocity V and the angular
velocity ω (see Fig. 1). The sphere is assumed to be fixed
and located with respect to the sensor furthermore sphere
radius a is constant. V and ω define the input control vector
u = [V,ω]T .

Based on Fig. 1, the motion model can be written:
⎧
⎨

⎩

ḋ = −V cos(θ)
θ̇ = ω + V sin(θ)

d
ȧ = 0

(11)

This model can also be written under a discrete first order
form: ⎧

⎨

⎩

dk+1 = dk −V kcos(θ k)∆t

θ k+1 = θ k +(ωk + V ksin(θ k)
dk )∆t

ak+1 = ak
(12)

Where k denote the time step and ∆t is the sampling
period. The state vector is xk = (dk,θ k,ak)T and the control
input vector is uk = (V k,ωk)T . The evolution model 12 can
be written as: xk+1 = f (xk,uk) and the measure model (10)
as: yk = Ik = g(xk,χ)

B. The observer

One class of observer is based on the Kalman filter [5],
[9], [6]. In case of nonlinear systems the Extended Kalman
Filter (EKF) can be used. It requires to linearize the model
of measures as well as that of motion. To avoid such a costly
analytical linearization of the two models, the Unscented
Kalman Filter (UKF) will be used [7]. In this case the
linearization of the model is implicit and numerically defined
via several ”sigma points” i.e. based on Gaussian random
variable. The correction and the definition of the sigma-
points are based on covariance matrix Pk. In the following,
the discrete model of evolution (12) is used. The covariance
matrix Pk attached to the state variable xk defines the preci-
sion associated to the state. A small covariance implies that
the variable is precisely known, a large covariance implies
that the state is not precisely known. The evolution of the
covariance matrix is defined by the UKF algorithm. Two
main elements affect the behavior of the Kalman filter: the
covariance matrix associated to the model of evolution Qm
which defines if this model is well known or not and the
covariance matrix of measure noise Qs. The principle of
the UKF is summarized in the following algorithm using
recursive equations [9]:

∙ step k: the observed state is x̂k.
∙ 2N+1 sigma points are defined (x ∈ ℜN).

⎧
⎨

⎩

χk
0 = x̂k

χk
i = x̂k +

√
(N +κ)(Pk +Qm)

χk
i+N = x̂k −

√
(N +κ)(Pk +Qm)

(13)

where i = 1, ...,N and κ is the scale factor which can be
chosen (in our case κ=1).

∙ The sigma points are weighted: W0 = 2κ , Wi = 1 for
i = 1, ...,N

∙ State prediction: using the evolution model (12):

χi,k+1∣k = f (χk
i ,u

k), i = 0, ...,2N

x̂k+1∣k =
1

2(κ+N)

2N
∑

i=0

(
Wiχi,k+1∣k

)

∆i,χ ,x̂ = χi,k+1∣k − x̂k+1∣k, i = 0, ...,2N

Pk+1∣k =
1

2(κ+N)

2N
∑

i=0

(
Wi

[
∆i,χ ,x̂

][
∆i,χ ,x̂

]T
)

(14)

∙ Measure prediction: using the mesure model (10):

yi,k+1∣k = g(χi,k+1∣k), i = 0, ...,2N

ŷk+1∣k =
1

2(κ+N)

2N
∑

i=0

(
Wiyi,k+1∣k

)

∆i,y,ŷ = yi,k+1∣k − ŷk+1∣k, i = 0, ...,2N

Pyy =
1

2(κ+N)

2N
∑

i=0

(
Wi [∆i,y,ŷ] [∆i,y,ŷ]

T
)
+Qs

Pxy =
1

2(κ+N)

2N
∑

i=0

(
Wi

[
∆i,χ ,x̂

]
[∆i,y,ŷ]

T
)

(15)

∙ Gain of the correction: Kk+1 = PxyP−1
yy

∙ Correction:
x̂k+1 = x̂k+1∣k +Kk+1

(
y− ŷk+1∣k

)

Pk+1 = Pk+1∣k −KkPyyKT
k

IV. ELECTROLOCATION OF A SPHERICAL OBJECT

We assume that there is only one conducting sphere in
the navigation environment of the sensor. The sphere radius
is 5cm. If there are several spheres, we assume that every
sphere is sufficiently far from the others so that the sensor
will not detect two spheres at the same time.

A. The observer initialization

Before the sphere detection, the sensor moves in an
unbounded environment. If the sensor detects a sphere, it will
be at the limit of detection area at front of the sensor Fig. 7.
The detection area is defined based on the range study Fig 4.
At this instant, the observer starts and the contrast χ will be
evaluated. If the current decreases, the sphere is declared to
be insulating: χ =−0.5. Conversely, if the current increases
the sphere is conductive: χ = 1. We give an arbitrary initial
value of the sphere radius â1 ∈ [0.01,0.1](m). The initial
distance d̂1 is given based on the range study Fig.5. The
system (11) is not observable [1] if the angle θ̂ is in the
neighborhood of 0(rad). To avoid this singularity, the initial
value of the angle θ 1 = π

4 .
The initial covariance matrix P1 is given according to sen-

sor range study as: P1 = diag
[
0.12,0.52,0.052

]
The initial

value of standard variation of the radius is 0.05. According to
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Fig. 5, we chose 0.1 as the initial value of standard variation
of the distance.

In the simulations of this study, the matrix Qm is chosen
as following: Qm = diag[0.012,0.012,0]

The covariance matrix of measure noise Qs = I2
b ∗

In−1×n−1, where In−1×n−1 is the identity matrix, n is the
number of electrodes.

Fig. 7. Possible sphere positions at the detection instant.

B. Simulations results and discussion

The observer estimates the sphere parameters: the distance
d̂, the angle θ̂ and the sphere radius â. The control law uses
the estimated state. In the following example, the sphere is
conductive and its real radius is a = 0.05m.
To recognize the sphere parameters, the sensor realize the
following bio-inspired motions [2]:

∙ back and forth: The input control vector is uk =
[V k,ωk]T = [V0cos(ΩV k∆t),0]T .

∙ back and forth with yawing: The input control vector is
uk = [V k,ωk]T = [V0cos(ΩV k∆t),ω0cos(Ωω k∆t)]T ,

Where Ω is the pulsation, V0 is the amplitude of the linear
velocity and ω0 is the is the amplitude of the angular velocity.

Fig. 8. Angle estimation errors using the bioinspired movement (B and
B) with quadripole.

Fig.8 shows the estimation error of the angle using the
quadripole. For the two bio-inspired motions, the angle
estimation error converge toward zero. The convergence is
faster for the back and forth with yawing than without. In
order to show the contribution of this bio-inspired motion

The bio- number error error error
ispired of elec- mean of mean of mean of
motion trodes n d (%) θ (%) a (%)

A n=2 5.90 35.61 6.34
n=4 3.30 12.56 6.07

B n=2 2.55 10.11 5.21
n=4 1.70 8.75 3.47

C n=2 2.18 12.01 4.67
n=4 1.24 3.29 2.08

D n=2 2.12 6.83 3.41
n=4 1.02 0.82 2.01

TABLE I

SIMULATION RESULTS FOR THE MOTIONS

in the sphere recognition, we realize four tests described in
Fig.9 using the two sensors: the dipole and the quadripole.

∙ Motion A: back and forth at front of the sphere.
∙ Motion B: back and forth at front of the sphere with

yawing.
∙ Motion C: back and forth at side of the sphere.
∙ Motion D: back and forth at side of the sphere with

yawing.

Fig. 9. Tested motions.

Table I lists the obtained results using the bio-inspired
movements. The error mean is the mean error for all the
duration of the simulation (here k = 1..1000). With the
motion (A), the observer can estimate the radius, the distance
but the error mean of the angle is relatively important
(35.61%). With the motion (B), we observe a remarkable
improvement of the observer estimation performances for
the angle (the estimation error). The yawing moves away the
angle θ from the singular value (0 rad). When the sensor
moves at side of the sphere (motions (C) and (D)), we obtain
better results with yawing for quadripole. If we compare
the results obtained for the motions (B) and (C) with the
dipole, we observe that the estimation errors are closed. This
two motions have the same effect on the angle θ moves
away the angle from the singular value. The best estimations
performance are obtained with the bio-inspired motion (D)
using the quadrupole.
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V. ELECTROLOCATION AND ORBITING AROUND THE

SPHERE

An example of navigation with the electric sens in pres-
ence of a sphere is given in Fig.10. We realize the following
scenario:

∙ The quadripole moves in its environment until the
detection of the sphere.

∙ Contrast evaluation χ and observer initialization (sec-
tion IV-A).

∙ Specific motion back and forth with yawing and esti-
mation of the sphere parameters d̂, θ̂ and â.

∙ When the observer converge, the quadripole orbiting
around the sphere with a constance distance R0 Fig.10.

In this simulation, the sphere is conductive and its real radius
is a = 0.05(m).

Fig. 10. Trajectory of electrolocation and orbiting around the sphere.
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Fig. 11. Orbiting around the sphere using the quadripole with the motion
(B).

Fig.11 shows the real and the estimated sphere parame-
ters and Fig.12 shows the estimation errors of the sphere
parameters. During the first forth, the standard deviation are
over than the evolution model noise Qm. So, the quadripole
do again an other back and forth with yawing. At the end
of this second forth, the estimation errors are less than the
the evolution model noise Qm. The sphere parameters are
known, then the quadripole orbiting around the sphere.
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Fig. 12. Estimation errors.

VI. CONCLUSIONS

In this paper, we propose bio-inspired motions to improve
the localization and the recognition of sphere by the electric
sense using the Unscented Kalman filter. Two sensors model
are used: the dipole and the quadripole. Based on the range
study, the quadripole is preferred than the dipole. According
to the simulations results, the using of the bio-inspired
motions improves the estimation of the sphere parameters.
With the quadripole, the observer gives better results. This
results give us the possibility to improve the underwater
navigation with the electric sense by using the optimal
combination between the sensor specifications and the bio-
inspired motions.
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