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Abstract— The paper presents robust control systems based
on the Model-Following Control concept. There are analyzed
three control structures extended to the general n-loop case. The
parallel way in which the proposed structures are built reduces
the time the signal is propagated in the loops, which outper-
forms the well-known serial cascade structure. Additionally,
employing forward dynamical models relieves one of having
to find the compensator, unlike feedforward or IMC(Internal
Model Control)/(2DOF)IMC systems. The robustness of the
proposed structures is significantly higher than that offered by
the most commonly used control systems, i.e. the single-loop PID
control. An example of implementing the n-MFC structure for
position control of a directly driven two-joint serial manipulator
is also given in the paper.

I. INTRODUCTION

Direct use of the control process model is a well-known
and frequently employed way [1] to counteract the ad-
verse effect produced by process nonlinearity and/or time-
variability or output disturbances. One of the many solutions
from among the general Model-Based Control (MBC) group
is the Model-Following Control (MFC), which appeared in
literature in the 1990s [2]. It is a simple 2DOF (Degree-of-
Freedom) structure based on a forward plant model, which
employing initially two classic PID controllers. Its theoretical
analysis and interesting robust properties are described in
[3][4]. One of the features displayed by the structure is that
the model loop is not affected by disturbances, which not
necessarily should be regarded as an advantage. In [5] there
was presented the first modification called MFC-p (plant
feedback), which consisted in a feedback interchange. This
made it possible, amongst others, to actively employ the
both controllers to suppress disturbances. The deterioration
of MFC-p stability gave rise to the next modification con-
sisted in using a double feedback that resulted in combining
advantages offered by MFC and MFC-p without their limi-
tations at the same time. In this way a three-loop MFC-mp
(model/plant feedback) system came into being [6]. Although
the modifications described in [5][6] presented an interesting
alternative to MFC, they did not ameliorate the greatest
limitation in using these structures, namely the necessity of
simplifying the process model.

Conceptually, the MFC systems are tracking the model
output, hence it is essential that the control performance
within the model loop be as good as possible. Since the clas-
sic PID controller of moderate robustness [7] is a component
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of MFC, therefore this circumstance forces one to reduce the
model complexity. To obviate the need for it, a concept has
been presented in [8] to extend MFC to the n-loop case.
The idea makes use of gradual complexity of models, for
which finding the nonlinear manipulated variables is carried
out concurrently. In this paper the remaining two systems
MFC-p and MFC-mp are extended to the n-loop case, for
which a simple theoretical analysis has been made. Addi-
tionally, the n-MFC system has been presented as applied
to control the two-joint EDDA (Experimental Direct Drive
Arm) manipulator.

II. PROPOSED MULTI-LOOP CONTROL SYSTEMS

Three control systems are depicted in a single Fig. 1 by
employing switches s1 and s2. So for different combinations
of s1 and s2 we get: n-MFC-m (s1 = 1, s2 = 0), n-MFC-p
(s1 = 0, s2 = 1) and n-MFC-mp (s1 = 1, s2 = 1). The
structure is composed of the following blocks: Ri and Rk

are the classic PID controllers; C is a compensator needed
only for a particular case discussed further;
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Fig. 1. General block diagram for three control structures: n-MFC-m
(model feedback), n-MFC-p (plant feedback) and n-MFC-mp (model/plant
feedback).
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yn−mfc−x =
TPR1M1(1 + RkMi)(s1s2 + 1)

Mi(1 + RkP ) + MiR1M1s1(1 + RkP ) + TPR1M1s2(1 + RkMi)︸ ︷︷ ︸
Fn−mfc−x

r +

+
Mi(1 + R1M1s1)

Mi(1 + RkP ) + MiR1M1s1(1 + RkP ) + TPR1M1s2(1 + RkMi)︸ ︷︷ ︸
Sn−mfc−x

z −

− TPR1M1s2(1 + RkMi) + RkPMi(1 + R1M1s1)
Mi(1 + RkP ) + MiR1M1s1(1 + RkP ) + TPR1M1s2(1 + RkMi)︸ ︷︷ ︸

Wn−mfc−x

v (1)

P is the process to be controlled; s1 and s2 define the
type of the structure; Mi represents the process model of
gradual complexity, which may be given in the following
general way:





M1 = m1

M2 = m1,m2

...
Mi = m1,m2, ..., mi

...
Mn = m1,m2, ...,mi, ...mn

(2)

where: mi are nonlinear parts of the process model Mn.
No matter what structure is selected its general operation

principle is much the same. It consists in finding component
nonlinear manipulated variables in individual loops; the
components are then added up to give the resultant nonlinear
manipulated variable um, which after having been corrected
by uk delivered by the Rk controller, is applied directly
to the process. Hence, choosing appropriately the model
complexity Mi we can utilize the robustness exhibited by the
single-loop PID structures, which enable strongly nonlinear
processes to be controlled effectively by systems depicted in
Fig. 1.

An analysis of three MFC systems shown in Fig. 1 for the
simplest configuration i = 1 has been carried out in [4]. In
this case, a further system arises for the switch combination
(s1 = 0, s2 = 0), namely the known 2DOF IMC structure,
along with three different two-loop MFC systems. There-
fore, a compensator C determined most commonly through
minimization of a functional [1] is used here, instead of the
controller R1.

To carry out a simple analysis in the frequency domain
the proposed systems are described above in terms of their
transfer functions with the switches s1 and s2 taken into
account.

III. PROPERTIES OF THE MFC STRUCTURES

Properties exhibited by n-MFC systems are compared
always with those offered by the classic single-loop PID
structure. It is pertinent to ask why the comparison is not
made with the 2DOF IMC control. Although the n-MFC
systems resemble 2DOF IMC in structure, they have much
more in common with the single-loop PID control in respect

of synthesis. Additionally, it seems to be interesting to
compare the n-MFC structures to that single-loop one most
frequently encountered in industry [9].

A. Reference tracking and disturbance suppression

Equation (1) gives the transfer function of the structure
Fig. 1, i.e. a universal description of three control systems
n-MFC-m, n-MFC-p and n-MFC-mp depending on how
the switches s1 and s2 are set. Equation (1) comprises
three parts: Fn−mfc−x - defining tracking the reference r,
Sn−mfc−x - defining suppression of system disturbances
z and Wn−mfc−x - defining suppression of output-related
disturbances v. For the simplest case described in [4] the
transfer function Ti=1=1 and reduces all three systems to
the classic form, i.e. based on a single model M . Should
the multi-loop solution be employed, the transfer function T
takes the form:

Ti≥2 =
Mi

n∏
i=2

(1 + RiMi−1)

M1

n∏
i=2

(1 + RiMi)
(3)

Equation (1) is fairly complicated, and drawing inferences
from its form about reference tracking or disturbance sup-
pression is quite difficult. For this reason a simple analysis
has been carried out in the frequency domain. Fig. 2, Fig. 3
and Fig. 4 presents frequency responses that illustrate the
quality of reference r tracking, and suppression of sys-
tem/output disturbances in the case of all n-MFC structures
and the classic single-loop PID one. For the cases shown in
Fig. 2 and Fig. 3 a substantial improvement compared to the
single-loop control may be observed. On the other hand, an
impaired suppression of output disturbances (Fig. 4) for the
proposed systems also deserves mention. The reason is that
the controller Rk significantly increases the resultant gain in
the process loop, which implies an increase in amplification
of output disturbances. This is an obvious drawback of n-
MFC, which limits the usefulness of these systems if they
are strongly noise affected.

The double negative feedback existing in the n-MFC-mp
system has an interesting repercussion for the relation exist-
ing between the process output y and the reference r value
in steady-state. Furnishing a general proof of this statement
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Fig. 2. Reference tracking performance offered by the proposed n-MFC
systems and the single-loop PID control.
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Fig. 3. Suppression performance of system disturbances z offered by the
proposed n-MFC systems and the single-loop PID control.

is quite troublesome due to complicated formulas involved.
However, the relation between y and r in steady-state may
be easily found under certain simplifying assumptions. Let
the control system of Fig. 1 (s1 = 1, s2 = 1) be stable, and
the controllers Ri and Rk contain integration terms, hence:
limt→∞ e1(t) = limt→∞ ek(t) = 0, where: e1 = r− y1− y.
Assuming the reference r is a unit step, we have for the
steady state y1 = y = y′, whence y′ = r

2 . As follows,
the output in the steady state is equal to half the reference
signal. This circumstance does not present any disadvantage,
however it should be taken into account when choosing
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Fig. 4. Suppression performance of output disturbances v offered by the
proposed n-MFC systems and the single-loop PID control.

the reference magnitude. The phenomenon was corroborated
by simulation experiments, and its results are displayed in
Fig. 2. For Fn−mfc−mp a suppression of low and medium
frequencies at −6dB, which corresponds to the half of the
reference, may be observed there. These feature has been
reflected in Fig. 1. The reference is dependant on the control
structure in the following way: (1 + s1s2)r.

B. Robustness and Stability

The notion of sensitivity is applicable to situations, where
parameter perturbations are of minor nature, i.e. where the
system stability is not impaired. As an example the ”ageing”
of processes [10] may be given here. However, the effect
is much more detrimental if changes occur in the process
structure caused by plant nonlinearity, time-variability or by
conscious or unconscious disregarding of plant dynamics
components while designing the control system. Hence,
beside the relative sensitivity also the notion of robustness
is defined, as the ability to preserve the system stability if
some of plant dynamics components are omitted at the stage
of controller synthesis.

The plant variability may be modeled in several ways [11]
as a multiplicative uncertainty, an additive uncertainty or a
product uncertainty. All of them can be related to both the
plant input and the plant output. Assuming ∆p represents
parameters change of the actual process P , the multiplicative
output-related model of uncertainty, called also the relative
error, is defined by: P = [1 + ∆p]P̃ . To carry out the
robustness analysis of the n-MFC systems, use has been
made of the condition valid for the classic PID system, owing
to the possibility to reduce the multi-loop structures to a
single-loop one:

|∆p|pid <

∣∣∣∣∣
1 + RP̃

RP̃

∣∣∣∣∣ (4)

In [4] the allowable process perturbations ∆p for the single
model loop case (i=1) for three structures 1-MFC-m, 1-
MFC-p and 1-MFC-mp have been determined:

|∆p|1−mfc−x <

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(1 + RkP̃ )
R1P̃︸ ︷︷ ︸

1−mfc−m

(1 + R1P̃ )

︸ ︷︷ ︸
1−mfc−p

+(1 + RkP̃ )

︸ ︷︷ ︸
1−mfc−mp

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(5)

The greater the magnitude of the right-hand side of the in-
equality (4) or (5) is, the higher the robustness of the control
system will be. As may be noted, the robustness of the single-
loop structure is the higher, the smaller is the magnitude |R|
is, (4). This means that the robustness to plant perturbations
is achieved at the expense of quality of tracking the reference
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Fig. 6. Reduction of n-loops to the classic PID structure.

signal or of suppression of disturbances. This adverse effect
does not occur in n-MFC systems. The numerator of the
inequality (5) contains the transfer function of the corrective
controller Rk. By increasing the magnitude of |Rk| we also
increase the allowable process perturbations, thus improving
tracking and suppression properties of the system [3].

It still remains to examine the model loops designed to
generate the global nonlinear manipulated variable um. This
objective has been met by utilizing the robustness of a single
feedback loop. Each of the models Mi by assumption is
burdened (Fig. 5) by uncertainty ∆i, which is attributable to
the static/dynamic nonlinearity or inaccuracy of modeling.

To utilize the ready to use condition for the PID system
(4) for the purpose of robustness analysis, the output of the
i-th model yi has been rearranged to get:

yi|i≥2
=

R2Mi

1 + RiMi

n∏
i=3

(1 + RiMi−1)

n∏
i=3

(1 + Ri−1Mi−1)
y1

︸ ︷︷ ︸
r′

(6)

To determine the robustness condition for the model loops,
the structure Fig. 6 may be helpful, which leads eventually,
in view of (4), to the sought inequality:

|∆i| <
∣∣∣∣∣
1 + RiM̃i

R2M̃i

∣∣∣∣∣ (7)

Fig. 7 displays results of stability tests carried out for a
process that will be used in the subsequent discussion. The
curves obtained give an account of allowable perturbations
for the classic PID system and the n-MFC systems under
consideration as a function of frequency. Additionally, the
robustness of n-MFC systems can be improved by utilizing
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Fig. 7. Robustness to process parameters variations offered by the proposed
n-MFC systems and the single-loop PID control.

an appropriate number of model loops, which linearize in a
simple way the process that is difficult to control.

IV. EXPERIMENTAL VERIFICATION

To demonstrate implementation of the multi-loop control
systems considered above in actual practice, the n-MFC-m
structure has been employed (s1 = 1, s2 = 0) for position
control of the two-joint EDDA (Experimental Direct Drive
Arm) manipulator. The EDDA manipulator (Fig. 8) is an
open kinematic chain, in which effects produced by dynamic
couplings or static moments become highlighted due to the
lack of transmission gear [12]. By this means a complex
MIMO (Multiple Input Multiple Output) plant has been
developed, best suited to test new concepts of robust control.
Test results are given for three control structures, namely the
classic PID, 1-MFC-m (classic MFC) and 2-MFC-m.

The manipulator represents a control plant strongly non-
linear both statically and dynamically [13]. Conceptually, it
is also a time-variant system, because the prime task of any
manipulation is to transfer objects from point A to point B.
Here process parameters vary not only with the operating
point, but also are time-dependent.

Fig. 8. EDDA (Experimental Direct Drive Arm).
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To simplify the mathematical description let us assume
that we have to do with a ”pure” kinematic chain. Without
going into details the forward model of the robot manipulator
is defined by the following equation [14]:

q̈ = M−1(q)[τ − C(q, q̇)−B(q, q̇)−G(q)− F (q̇)] (8)

where: M(q) - manipulator inertia matrix, C(q, q̇) - matrix
of Coriolis forces, B(q, q̇) - matrix of centrifugal forces,
G(q) vector of gravitational forces and F (q̇) - vector of
friction force.

Each of components (8) is nonlinear and taking account
of them in the model contributes significantly to the model
comprehensiveness. Hence, (8) may be presented in the
form of gradual complexity defined in (2) with some of its
components being abandoned:

M1 − > q̈ = M−1(q)[τ ]
M2 − > q̈ = M−1(q)[τ − C(q, q̇)]
M3 − > q̈ = M−1(q)[τ − C(q, q̇)−B(q, q̇)] (9)

...

Mn − > q̈ = M−1(q)[τ − C(q, q̇)−B(q, q̇)− ...]

By this means the models M1...Mn may be utilized
directly to implement the proposed control systems n-MFC.
The classic PID control has been tested first. The tests have
been carried out for the second joint of the manipulator
only, with the first joint being at a standstill (the simplest
case). Even in such a situation the controller parameterization
requires a compromise because of static nonlinearities. For
the position ±πi {where : i = 0, 1, ..., n} no energy supply
to the system is required to track the reference in contrast
to the position ±(π

2 + πi), where the greatest amount of
energy is needed to compensate the effect produced by the
acceleration of gravity g. So, the process can exhibit self-
regulation or not for different configurations.

For the classic structure the controller has been parame-
terized for the position 0 (self-regulation), therefore a signif-
icant control error may be noticed in position pi/2 (lack of
self-regulation). Unfortunately, as it turned out, the control
stability could not be provided for the entire working area of
the joint Fig. 9 (e.g. if the position is changed 0 − > 3

2π),
which makes the classic PID structure unsuitable to control
the chosen process.

Next, the two-loop 1-MFC-m system has been imple-
mented. Employing the complete manipulator model (8) in
the first MFC loop turned out to be impossible. Too com-
plicated nonlinear relationships to be found in the dynamic
model precluded one from obtaining a satisfying control
performance in the model loop of 1-MFC-m. So, the model
(8) has been simplified to the form M1:

q̈ = M−1(q)[τ − F (q̇)] (10)

Based on the above model the two-loop 1-MFC-m struc-
ture has been implemented for a MIMO system. Fig. 10 and

Fig. 9. Loss of stability while changing the operating point (PID control).

Fig. 10. Results of the position control experiment for the first joint (1-
MFC-m control).

Fig. 11. Results of the position control experiment for the second joint
(1-MFC-m control).

Fig. 12. Results of the position control experiment for the first joint (2-
MFC-m control).
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Fig. 13. Results of the position control experiment for the second joint
(2-MFC-m control).

Fig. 11 illustrate the obtained control performance for the
joint 1 and 2 respectively. Fig. 11 also shows the effect
produced by dynamic couplings occurring at the instant the
neighboring joint accelerates. Also in this case the obtained
control performance leaves much to be desired because of
the steady-state error. However, this control technique makes
it possible to keep the system stability if the operating point
is changed, i.e. for an arbitrarily chosen set-point.

The drastically reduced model M1 disregarding, amongst
others, the effect of gravitation, when applied to the 1-
MFC-m structure, has presented a too great simplification
for the corrective controller Rk to cope with. To utilize the
full mathematical model to determine nonlinear manipulated
variables, the three-loop 2-MFC-m structure has been used,
for which the M1 model has been of the form (10), and
M2 has presented a full description of the manipulator dy-
namics (8). By this means two components of the nonlinear
manipulated variable have been generated in two model
loops, namely u1 associated with the manipulator inertia and
viscous friction and u2 associated with centrifugal/Coriolis
velocities and gravitation.

As may be noticed in Fig. 12 and Fig. 13, the control
performance has been considerably improved. On the one
hand, the system stability has been provided for the whole
working area, and on the other hand the steady-state error
has been eliminated. This objective has been met by utilizing
the natural robustness exhibited by PID control, which en-
ables one to control effectively complex dynamic processes
owing to the proposed structures (Fig. 1) and gradual model
representation (2).

V. CONCLUSIONS

Three generalized systems of the MFC family, which
feature interesting robustness properties have been presented
in the paper. Utilizing the forward model in the control
structures makes it possible to implement n-MFC for a
variety of processes. In addition, the presented systems are
characterized by constant parameters, which renders the
controller tuning easy to perform.

Although the two-loop 1-MFC-x structure is sufficient for
practical applications in the majority of cases (1-MFC-m in
temperature control [15], 1-MFC-p in steam boiler control

[16], 1-MFC-mp in position/force control [6]) the paper
shows the way of increasing the number of model loops
in order to improve the control performance. The two-joint
experimental manipulator has served as a control plant. It
is apparent that using the Newton/Euler or Euler/Lagrange
method the inverse manipulator equation can be arrived at,
which may be utilized directly for control employing, for
example, a feedforward system. Here the model has been
reduced to the forward form only to test the properties of
the systems under discussion.
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