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Abstract— The open-loop flexible modes identification of a
high-speed and high-accuracy pick-and-place parallel robot is
carried out based on two approaches: an ARMAX model and
a subspace identification technique. Models of piezoelectric
dynamics and disturbances can be obtained for many distinct
operation conditions, allowing, in a future work, the conception
of robust control laws.

I. INTRODUCTION

Industrial handling and assembly applications require re-

duction of cycle time and increase of the process quality [8].

Due to their speed, precision and stiffness, parallel robots

are a good alternative for fast and accurate pick-and-place

operations, performing notably well in sectors like food,

pharmaceutical and electronical assembly [10].

A parallel robot is a closed-loop kinematic chain mech-

anism whose end-effector is linked to the base by several

independent kinematic chains [2]. Its motor actuators can

be fixed to its base, a characteristic that tends to diminish

the robot moving masses, enhancing the structure dynamical

performances [5].

The Par2 prototype given in Fig. 1 is an innovative

two degrees-of-freedom parallel robot destinated to cycle

time reduction in high-speed, high-precision pick-and-place

industrial operations. It was conceived as a joint effort of the

Montpellier Laboratory of Informatics, Robotics, and Micro-

electronics (LIRMM) and the spanish foundation Fatronik.

Due to its high stiffness and low weight, Par2 was able to

accomplish already accelerations above 40G (without load at

the end-effector)[6][7].

At the operation cycle stop points, as a consequence of

the high acceleration levels of the end-effector trajectory,

the flexible modes of the arms are excited, leading to

undesirable vibrations. These vibrations, sensed by means

of three orthogonally oriented accelerometers placed on the

end-effector, contribute to an increase in the operation cycle

time, once they augment the time the end-effector disposes

to reach a certain precision during the positioning task.

As a solution for the vibration attenuation, piezoelectric

patches wrapped around the robot arms are intended to

be used for implementing active control [8]. For control

purposes, a good model of the dynamical behavior from

the piezoelectric input voltages to the accelerometers is
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Fig. 1. Parallel Robot - Par2

important. This model will be called here a flexible model

of the robot, in opposition to the robot rigid model, which

concerns the dynamical behavior from the motor drives to

the motor encoders. In [6] a nonlinear dual mode adaptive

controller was used for the rigid model and in [7] the

use of piezoelectric patches as an alternative for vibrations

suppression in Par2 was suggested.

This paper presents the results accomplished up to now in

respect to the flexible model obtention, paving the way for

the following step, namely the elaboration of the vibration

attenuating control law. A well consolidated way of obtaining

a dynamical model is by means of the theory of system

identification [1]. Two different approaches are compared: an

ARMAX model and a method based on subspace identifica-

tion. Besides identifying the piezoelectric dynamical model,

also identifications of the remaining vibrations (system dis-

turbances at the stop points) due to different trajectories were

performed. Considering the potential enrichment these mod-

els can afford to the flexible model, further improvements

for the control law can be expected. All identifications were

carried on for many distinct operation conditions where the

robot shall be controlled, urging the use of robust control

techniques [4].

II. FUNDAMENTALS OF IDENTIFICATION

System identification deals with the problem of building

mathematical models of dynamical systems based on ob-

served data from the system [1].

Depending on the adopted criteria, there are many possibil-

ities for models classification. A criterion that is meaningful

in the context of this work is to differentiate between

parametric and non-parametric models.

Non-parametric models, like an impulse response or a

frequency response diagram, are so called because of the

lack of a parametrically structured mapping determining an
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Fig. 2. ARMAX model

univocal relation between input and output signals. They

are just a sequence of values, from which the dynamic

characteristics of the system can be appreciated.

On the other hand, parametric models are based on an

algebraic closed form, establishing a parametrically con-

structed relation between inputs and outputs. Parametric

models obtention imposes some a priori knowledge about the

structure that is being pursued. As examples of parametric

models we could mention the ARMAX (Auto-Regressive,

Moving Average with eXogenous inputs) class of models and

the models obtained from subspace identification techniques,

both explained a bit further in the following.

Once a model is obtained, it is indispensable to validate

it somehow, before its use in the elaboration of a control

law. Between different model validation strategies, like cross-

validation, whiteness test [1], a very common practice in the

field of structural vibration control is to validate the model

comparing the adequacy of a non-parametric model with the

to-be-validated parametric one, the comparison being made

in some desired frequency range [3].

A. ARMAX Model Identification

ARMAX models are very common in engineering practice

[11], and can be described by Eq. (1), where the actual output

y(t) depends on the past outputs y(t − k) (Auto-Regressive

terms), past control inputs u(t−k) (eXogenous inputs terms)

and past and actual white noise inputs e(t), e(t−k) (Moving

Average terms).

y(t) =−a1y(t −1)− . . .−anay(t −na)+

b1u(t −1)+ . . .+ bnbu(t −nb)+

e(t)+ c1e(t −1)+ . . .+ cnce(t −nc)

(1)

This equation can be represented by the block diagram in

Fig. 2, where the polynomials A, B and C are given according

to Eqs. (2) and (3).







A(q) = 1+ a1q−1 + . . .+ anaq−na

B(q) = b1q−1 + . . .+ bnbq−nb

C(q) = 1+ c1q−1 + . . .+ cncq−nc

(2)

A(q)y(t) = B(q)u(t)+C(q)e(t) (3)

We can observe that the polynomial A is used to estimate

concomitantly both control input and noise dynamics, the

distinction of each being made by means of polynomials B

and C.

B. Subspace Identification

Subspace identification methods use as basic information

only the experimental input-output data vector. Optional

entries are the expected system order and some pondera-

tion matrices that influence the identified stochastic signals

characteristics and the state-space base representation of the

system.

Consider the system in the state-space representation given

by eq. (4), where x(t), u(t) and y(t) are respectively the state,

input and output vectors and w(t) and v(t) are the process

and measurement noises.

{

x(t + 1) = Assx(t)+ Bssu(t)+ w(t)
y(t) = Cssx(t)+ Dssu(t)+ v(t)

(4)

The simplified sequencial steps of a subspace identification

method can be summarized as follows.

Basically, a state vector sequence can be estimated by

means of an orthogonal projection of the row space of a

certain block Hankel matrix of data into the row space of

other data block Hankel matrices. This projection is proved

to be related to the extended observability matrix of the

system. By means of a singular value decomposition (SVD)

of this projection matrix, the order of the system can be

estimated, taking in consideration the most representative

Hankel singular values. Once the observability matrix in

some base representation and the order of the system are

known, it is a direct step to obtain the system matrices Ass,

Bss, Css and Dss using a least-squares method. These, together

with the information of the state vector sequence allows one

to estimate the properties of the process and measurement

noises [9][1].

In some less technical terms, once the input-output data

vectors are known, it is possible to have a very good

estimation of the model, even without the specification of

desired structures, which is a requirement in the ARMAX

case, where the choice of orders for the polynomials A, B

and C is a necessity.

III. IDENTIFIED MODELS

The pick-and-place trajectories, constrained to the xz

plane, evolve between stop positions Pos1 (x=0.35, z=-0.925)

and Pos2 (x=-0.35, z=-0.925), designated in Fig. 3. These

displacements are promoted by the active arms (arms directly

connected to the motors, Fig. 1) while the passive ones were

conceived to prevent perpendicular motions.

As already mentioned, two different kinds of dynamics

were identified: piezoelectric dynamics Gu and disturbance

dynamics Gw (residual vibrations immediately after arriving

at the stop points). With the knowledge of Gu and Gw, the

objective is to build up a complete identified model, as can be

seen in Fig. 4, which will be later used for control purposes.

The models were obtained for different operation con-

ditions comprising variations of transported loads (either

6176



X

Z

X

Z

Pos 2 Pos 1

Fig. 3. Stop positions

without load or with 1 kg load at the end-effector), end

trajectory positions (stop positions Pos1 and Pos2), trajectory

accelerations (only for disturbance models, accelerations of

10G, 20G and 30G) and selection of piezo-actuated arms

(only for piezoelectric models). The end-effector is illustrated

in Fig. 5, where the piezo-actuated arms are labelled with

letters A and P, given accordingly to the active or passive

characteristic of the arm.

Fig. 4. Complete identified model

Fig. 5. Piezoelectric Actuated Arms

As the objective here is to present the methodology uti-

lized for identification, one example of a disturbance model,

as well as one from a piezoelectric model, will be given in the

sequel. The sampling rate was 2kHz in all the experiments.

A. Disturbance Model

Identification of the residual vibrations after arrival at the

stop points were made for the aforementioned operation

conditions. Here, in Fig. 6, we present as an example the

results obtained for a complete cycle identification of a 30G

trajectory without load at the stop point Pos2 (starting and

ending in Pos2, passing by Pos1). The accelerations are

measured by three orthogonally oriented accelerometers (X,

Y and Z).
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Fig. 6. Robot Accelerations - 30G - Without Load
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Fig. 7. Robot Accelerations - 30G - Without Load - Pos 2

In approximately 0.5 seconds the end-effector reaches

Pos2 again. From that moment on, the disturbance identifica-

tion procedure takes place. Vibrations are more expressive in

the Y direction (perpendicular to the plan of displacement),

which can be verified in Fig. 7.

Fig. 8 shows the frequency spectrum for the three ac-

celerometers, where once again we can see the predominance

of the response at accelerometer Y, with a well characterized

resonance frequency at about 26.7Hz.
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The instant the end-effector abruptly arrives at the stop

point, some modes of the robot arm are excited, generating

what we call the disturbance of our system. In order to

identify these vibrations, the following metaphor is used.

Suppose the end-effector is at rest at the stop point and

we hit the effector with a hammer, transmitting a signal

that is very rich in frequencies and short in time, similar to

an impulse. Which from these frequencies would excite the

robot arms? This question is answered by the identification

of the impulse response of the system. Once we know the

dynamical behaviour of the disturbance represented as a

time-series, we can determine the filter that generates this

oscillatory pattern from an impulse.

This proposal was accomplished using two different sim-

plifications of the ARMAX model: an Auto-Regressive AR

model and an Auto-Regressive Moving Average ARMA

model, both convenient for time-series identification [1].

The results obtained using these two models are compared,

in Fig. 9, with the non-parametric model, in this case, a
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Fig. 10. Pole-Zero Open Loop AR Model Reduction
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Fig. 11. Complete and Reduced Order AR Model

periodogram of the disturbance time-series. Both parametric

models are represented as 16th order systems. We can see

that in this experiment the extra zeros from the best 16 th

order ARMA model did not contribute to the improvement

of the model quality. In the matter of fact the AR model was

more successful in finding the main resonance frequency of

the disturbance at about 26.6Hz.

A reduction of the AR model is undertaken by eliminating

the high-frequency modes, diminishing to four the order

of the system. Fig. 10 shows the pole-zero plot from the

complete and reduced AR models. The reduced system

modes are encompassed in the dashed ellipse. In Fig. 11

we can see that the reduced model preserves the quality of

the identification around the main frequency at 26.6Hz. The

reduced AR model equation is given by (5).

GW =
0.0005

(z2
−1.992z+ 0.9986)(z2

−1.963z+ 0.9729)
(5)
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B. Piezoelectric Model

Considering the high oscillations sensed after arriving at

the stop points, the Y direction accelerometer was chosen to

illustrate an example of piezoelectric dynamics identification.

The selected operation conditions were: stop point Pos2,

end-effector without charge and piezo-actuator A1 (Fig. 5).

The procedure can be similarly recreated for all mentioned

operation conditions, and it was experimentally verified that

the piezo-actuator A1 excites very properly the flexible mode

close to the first mode of the disturbance vibration in the Y

direction.

The input control signal varies from -10V to 10V, being

amplified to operate linearly from 0V to 400V on the piezo-

actuators. Different kinds of input signals were experimented,

the best results comming from a chirp signal with frequency

ranging from 0 to 100Hz during 20 seconds. The Y acceler-

ation outputs were registered at the sampling rate of 2kHz.

The input voltage and output acceleration values used for

the identification can be seen in Fig. 12, after being filtered

through a five order butterworth filter with 100 Hz cut-off

frequency.
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Fig. 12. Input (Piezo A1) - Output (Accel Y)

Fig. 13 shows a comparative between two ARMAX mod-

els, a N4SID model (Numerical algorithm for Subspace

state space system IDentification) and the non-parametric

validation data. We can notice that a model of order 32

was required for a good identification using ARMAX, while

using N4SID with order 20 very good results were obtained.

Besides the smaller order employed for finding a good

model, another advantage of N4SID consists in having

less set-up parameters, as mentioned in section II-B. The

ARMAX model structure demands as entry parameters the

quadruplet (na,nb,nc,nk), where the elements correspond to

the number of poles, number of zeros associated to the

control input, number of zeros associated to the noise and

number of delay instants to be considered. The parameters

attributed for the ARMAX identification were (32,32,26,0).

Figs. 14 and 15 show that even small variations in these

parameters can totally compromise the quality of the models.
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Fig. 13. Piezo A1 - Accel Y - Without Load - Models
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Fig. 14. Piezo A1 - Accel Y - Without Load - Models ARMAX (I)
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Fig. 15. Piezo A1 - Accel Y - Without Load - Models ARMAX (II)

In a similar way, variations were made around the unique

entry parameter for the N4SID subspace identification tech-

nique. We can observe from Fig. 16 that good models were
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obtained. For the 18th order model the correspondence to the

non-parametric data was a little bit inferior, and for the 22 th

order only very small improvements were found.
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Fig. 16. Piezo A1 - Accel Y - Without Load - Models N4SID

In the same way the disturbance identified model was

reduced, a reduction for the 20 th order N4SID model was

performed. Eliminating the high frequency poles and zeros,

we obtained a reduced 8th order N4SID model, which was

then filtered with a second order butterworth filter, with cut-

off frequency at 100Hz, in order to minimize the dynamics

ocurring out of the desired bandwidth of 100Hz, according

to Fig. 17. This model, identified in terms of state-space

matrices, is represented in (6) as a transfer function.
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Fig. 17. Piezo A1 - Accel Y - Without Load - Reduced N4SID Model

GU =

−0.055(z−1.003)(z−1.15)(z2
−1.993z+1.002)

(z+1)2(z2
−1.947z+0.985)(z2

−1.914z+0.989)

(z2
−1.985z+0.993)(z2

−1.561z+0.641)
(z2

−1.947z+0.988)(z2
−1.901z+0.976)(z2

−1.586z+0.97)
(6)

IV. CONCLUSION AND FUTURE WORKS

In this article, the identification of disturbance and piezo-

electric dynamics for the parallel robot Par2 were carried

on, based on two different strategies, namely ARMAX

models and the N4SID subspace identification technique.

The disturbance, considered as the vibration after the arrival

of the end-effector at the stop points, is more intense in the Y

direction, motivating therefore the selection of this direction

as the one to be considered for the identified examples. The

results obtained can be applied in a similar way to differ-

ent operation conditions as charge, stop positions, different

trajectories and selected piezo-actuators.

For the disturbance identification an AR model performed

better than an ARMA model of the same order. The AR

model was reduced to give a final disturbance model of

order 4. In the case of the piezoelectric dynamics, the N4SID

technique was able to identify a model of order 20 with

a quality close to the 32th order model obtained using the

ARMAX stucture. Besides this advantage, the N4SID model

has less set-up parameters than the ARMAX one. A redution

of the N4SID model was performed, the resulting model

filtered and a final order of 10 was obtained.

Now we have a model for the system and in the following

we are going to test different control strategies on Par2. The

idea is to control the piezoelectrical input voltages using the

identified models to suppress the vibrations sensed by the

accelerometers. The controllers to be designed, initially H2

and H∞ controllers [4], shall be robust against variations in

the operation conditions. Extensions to multivariable models,

coupling different piezo-actuators and the three accelerome-

ters will also be tackled.
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