
Representations for Object Grasping and Learning from Experience

Oscar J. Rubio, Kai Huebner, and Danica Kragic

Abstract— We study two important problems in the area
of robot grasping: i) the methodology and representations for
grasp selection on known and unknown objects, and ii) learning
from experience for grasping of similar objects. The core part of
the paper is the study of different representations necessary for
implementing grasping tasks on objects of different complexity.
We show how to select a grasp satisfying force-closure, taking
into account the parameters of the robot hand and collision-
free paths. Our implementation takes also into account efficient
computation at different levels of the system regarding repre-
sentation, description and grasp hypotheses generation.

I. INTRODUCTION

A robot grasping cycle involves data representation, shape
description and grasp hypotheses generation, Fig. 1. Most
of the recent work on robotic grasping relies on 3D data
although there are approaches producing grasp hypotheses
using 2D image features, e.g. [1]. A range of state-of-the-
art methods synthesize 3D object shapes from point clouds
by using superquadrics [2] or other shape primitives such
as boxes [3]. Assuming that an arbitrary point cloud has to
be approximated, a single primitive is obviously not enough
for many objects. The more complex the shape is, the more
primitives have to be used to represent its individual parts.
Multiple methods approach this problem by a variety of
segmentation methods, [2], [3], [4].

A major issue is that for unknown objects, grasps need
to be evaluated from data a robot can extract on-line. This
is a difficult problem due to the (i) high dimensionality of
the problem, (ii) incomplete and uncertain information about
the environment and the objects to be grasped, and (iii) lack
of generalizable measures of quality for grasp planning, i.e.
(“What is a good grasp?”).

Many systems rely on object recognition and/or shape
registration. This requires a database of objects or shapes,
as for example in [5], or objects combined with grasps, [6].
To approach the recognition problem, an object has to be
described using a shape descriptor meeting some desirable
requirements: it should be primarily able to cope with real-
time and real-world requirements: it should be compact,
invariant under transformations, and fast to calculate. An
example are the Zernike descriptors, [7].

Overall, there has been a lot of work on grasp planning
on different levels: path planning [8], planning on 3D mesh
models [9] and databases [6], planning on shape primitives

This work was supported by EU through the project CogX, IST-
FP6-IP-027657; GRASP, IST-FP7-IP-215821 and Swedish Foundation
for Strategic Research. The authors are with the Computer Vision
and Active Perception Lab, Centre for Autonomous Systems, School
of Computer Science and Communication, KTH, Stockholm, Sweden.
{ojrm,khubner,danik}@kth.se.

[10], [5]. A general problem is that for any kind of single-
view 3D sensor system, a generated point cloud of an object
or a scene is not complete. Grasp selection may also benefit
from assessing the shape complexity. If complexity is high,
it is worthy to segment the object into graspable parts. The
segmentation of a model into its parts is also necessary for
task-constrained grasping of simple objects.

3D
D

at
a

R
ep

re
se

nt
at

io
n

Se
ct

io
n

II Point Cloud

Denoising cloud

Decimation &
former mesh

noisy

model
Denoising mesh

Interpolation &
decimation

Mesh

3D
Sh

ap
e

D
es

cr
ip

tio
n

Se
ct

io
n

II
I

Database
Entry

Voxelization &
Zernike

Descriptor

similar

model

simple

shape

Segmentation

3D
G

ra
sp

Se
ct

io
n

IV
H

yp
ot

he
se

s

Force Closure
Triplets

Best TripletTriplet
Reuse

Robot Hand
Configuration

Grasp Simulation

if

else

then

if

then

else if

else

then

G
ol

df
ed

er
et

al
.

(2
00

9)
[6

]
G

ra
sp

It
!

1

G
ei

de
ns

ta
m

et
al

.
(2

00
9)

[1
1]

B
ox

es
2D

2D
G

ra
sp

It
!

1

R
ic

ht
sf

el
d

et
al

.
(2

00
8)

[1
2]

Pa
rt

s
2

A
M

R
O

SE
3

L
op

ez
-D

am
ia

n
(2

00
6)

[1
3]

A
C

D
4

M
ill

er
et

al
.

(2
00

3)
[1

0]
Pr

im
iti

ve
s

G
ra

sp
It

!
1

1 GraspIt!: a robot grasp simulator [14]
2 Parts: Range image segmentation + pairwise

matching + merging/update
3 AMROSE: http://www.amrose.dk
4 ACD: Approximate Convex Decomposition

Fig. 1. Structure of our approach, and related approaches’ foci.

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 1566

However, the decision if an effort in terms of a segmenta-
tion or part-based decomposition is in fact worthy is often not
treated in the literature. Rarely, a set of differently granulated
decision criteria and representations is evaluated to see if
some partitioning of the object in fact is reasonable or not.

In this paper, we present a system for robot grasp selection
that copes with known and unknown objects where the focus
is not to find the most stable grasp, but a grasp that is force-
closure and feasible, i.e. collision-free and constrained by the
parameters of the robotic hand, given available sensor data.

II. 3D DATA REPRESENTATION

In our work, the input to the system is a sparse or dense 3D
point cloud. We then use a mesh representation to interpolate
and assign volume to the data. In the following subsections,
we describe: denoising, fast point cloud decimation and
interpolation, mesh building, convex hull computation and
convexity estimation.

A. Denoising

Before mesh building, we perform noise removal using
the ANN library [15]: we first calculate di as the sum of
distances to the 10 nearest neighbors for each point i. We
then obtain the number of points niso which hold di > 3 ·
mean(d) and tag them as isolated vertices to calculate the
ratio r = niso/n ∈ [0, 1]. If r < 0.99, we perform noise
removal. After building a mesh (Section II-C), we delete
faces with longest edges, since residual noisy points will
be linked by long edges to the surface of the model. For
this reason, the perimeter of all the faces of the mesh will
be calculated and those ones whose perimeter is more than
twice as long as the average will be deleted. Consequently,
if there were groups of noisy faces, they will be isolated
and removed from the model. This may cause cracks and
holes in the mesh, therefore it is advisable to perform an
interpolate-decimate step.

B. Fast Point Cloud Decimation and Interpolation

Obtaining a mesh from a point cloud is a non-trivial task:
dense data results in high-quality meshes, but needs more
time to be processed. A sparse set of points may be processed
fast, but can result in incomplete or erroneous meshes.

1) Decimation: We limit the input point cloud O to a min-
imum number of points n, and decimate large point clouds by
using a filter, preserving constant density in the output point
cloud. This increases the accuracy of the axis extraction and
benefits the grasp search as well: since all the faces in the
mesh representation will be similar sized, all the areas of the
object have similar probability of becoming grasp points. The
filtering is performed by removing neighbors of each point
using kd-tree-search, [15] in a radius

rad =
√
surfaceArea(convexHull(O))/(k · n), (1)

where n is the number of points to keep and the factor k =
2.43 was found empirically. We allow a tolerance of 5% to
the requested number of output points. In case of dense point
clouds, a random reduction is performed first to speed up the
decimation.

2) Interpolation: The above procedure ensures a good
result by decimating the most redundant points in the cloud
but it does not create new points in sparse areas. We approach
those cases taking advantage of the mesh representation by
(i) iteratively subdividing all the triangles of the mesh, until
the number of vertices exceeds a number n, (ii) iteratively
subdividing only those triangles ti with perimeter(ti) >
1.2 ·mean(perimeter(t)), and (iii) decimating the resulting
cloud to n points. To subdivide a triangle into four similar
sized triangles, we use triangle edge bisection. In the evalu-
ation section, we will motivate our choice to set n = 2000.

C. Mesh Building

The mesh building process enables the subsequent vox-
elization and the grasp search including optional segmenta-
tion as well. Being more than a pure requirement, meshing
is important since the quality of the mesh greatly affects the
estimated quality of the final grasp. We use a PowerCrust-
based algorithm [16] to acquire a tightly closed triangular
mesh for each point cloud. We stress the importance of per-
forming the manifold extraction, i.e. deleting badly oriented
triangles and ensuring that all remaining triangles are roughly
parallel to the surface.

An inappropriate meshing will cause omitting of existing
surfaces (false negatives) or adding non-existing surfaces
(false positives) in the grasp search. However, both problems
can be treated: the first can be detected by checking the
percentage of points from the point cloud included in the
mesh; in our approach, we reject meshes with a confidence
value below 90%, leaving a margin of 10% for small details
and/or outliers. The second problem can be avoided or at
least minimized after simple post-processing.

D. Convex Hull Computation and Convexity Estimation

We estimate the minimum convex hull enclosing the cloud
and its volume using an implementation of the Quickhull
algorithm [17], which has shown itself as the most efficient.
Based on the mesh, we can measure the convexity of our
model. If the object is convex, the volume of the object mesh
and the volume of its convex hull are equal. Moreover, the
more concave an object O is, the lower the convexity ratio

conv = volume(O)/volume(convHull(O)) ∈ [0, 1]. (2)

We exploit this ratio to evaluate the complexity of an object:
the simpler the object shape, the closer its convexity to 1.

III. 3D SHAPE SEGMENTATION

The segmentation divides complex shapes into simpler,
independently graspable parts. We consider a body to be
complex if its convexity measure (2) is lower than 0.85.
Different object segmentation methods have been proposed
in the literature: spectral clustering [18], minimum volume
bounding box (MVBB) decomposition [3], hierarchical seg-
mentation based on primitives [19]. However, most of these
are either time-consuming or not suitable for integrating with
grasp selection. We develop a new algorithm for segmen-
tation, fulfilling the requirements to be grasp-oriented, fast,

1567

simple and robust. We use core extraction as a starting point,
add a system to carry out several cuts in the mesh using
a criterion to find out which one segments best. Although
this strategy is similar to MVBB decomposition, there are
two main differences: first, we use convex hulls instead of
boxes for the decomposition in order to get higher flexibility;
and second, our starting point is the hull enclosing the core
instead of a box surrounding the whole object.

Our algorithm works as follows:
1) Center-of-Mass Extraction: Assuming that the den-

sity in an object O is constant, we estimate the volume
integrals by tetrahedrons generated from the mesh repre-
sentation. Based on the tetrahedrons, we approximate the
center of mass of O. First, the center point of each tetra-
hedron ti is computed from the ith mesh triangle ∆i =
(v1(i),v2(i),v3(i)) by

c(ti) = (v1(i) + v2(i) + v3(i) + p)/4 (3)

where p is a random point inside the model. Secondly, we
calculate the each tetrahedron’s signed volume

V (ti) = (v1(i)− p) · ((v2(i)− p)× (v3(i)− p))/6 (4)

before averaging the distances using the signed volume of
each tetrahedron to approximate the object’s center of mass

c(O) =

n∑
i=0

V (ti)c(ti)/

n∑
i=0

V (ti) (5)

Note that for (4), we have to assure that all triangles in
the mesh are defined with the same orientation, clockwise
or counter-clockwise. The simple steps result in a good
approximation even with a very reduced number of input
points, avoiding overestimation of denser areas in the cloud.

2) Core Extraction via Spherical Mirroring: Spherical
mirroring aims at reversing the situation, in such a way that
vertices of the core become external and easily extractable.
To achieve this, all vertices of the mesh are mirrored on
a minimal bounding sphere. Thereby, vertices of the core
component are identified as residing on the convex hull of
the mirrored vertices. With c(O) the center of the sphere,
the mirrored vertices v′ are given by

v′ = v + 2 r−d(v)
d(v) (v − c(O)) , with (6)

d(v) = ‖v − c(O)‖ and r = maxv d(v) . (7)

An example for core extraction is shown in Fig. 2 (a)-(b).
3) Cut Trials: We associate core points with their corre-

sponding triangles in the mesh. Then, we apply an algorithm
based on the connectivity filter of the graphical library VTK
to cut the mesh into parts. We found that the size of the core
enclosing the hull is usually not optimal to break the mesh in
a suitable way, thus the process is repeated scaling the size
of the hull by several scales within a range between 1 and
2. The best segmentation is defined by the scale minimizing
the sum of convex hull volumes over all parts. Some models
segmented using this method are presented in Fig. 2 (c).

(a) (b) (c)

Fig. 2. Core segmentation by spherical mirroring. (a) original point cloud,
center of mass, mirroring sphere (tightly enclosing the teapot) and mirrored
points. (b) Core (solid) and points outside (dotted). (c) Some examples.

4) Cut Refinement: After segmentation, the different parts
are studied and catalogued as graspable or non-graspable.
We define two requirements for graspable parts as (i) being
larger than 1/100 of the size of the whole object, and
(ii) having some curvature, since flat regions are not suitable
for grasping. The non-graspable parts in a segmentation are
iteratively merged with their closest neighbor.

IV. 3D GRASP HYPOTHESES GENERATION

Obtaining a 3D grasp hypothesis for a given object is
the primary purpose of a grasping system. The two major
policies to acquire are either (i) the search for and selection
of best candidate for a new object, or (ii) the adaptation of
a learned grasp on a similar or familiar object.

A. Generation of Force-Closure Triplets

The search for force-closure property is aimed at collecting
a list of triplet candidates, where each triplet representing the
the fingertip positions of a three-fingered robotic hand should
reach on the object’s surface to result in a stable grasp. We
base our search on the method described in [20], adapting
the idea from four-fingered hands to three-fingered hands.
We acquire a set of N contact triplets using Algorithm 1.

We highlight that the probability of selecting a grasp with
stability higher than the average human grasp quality is very

Algorithm 1: Triplet-from-Mesh Computation.

input : Set of triangle mesh M = {(∆1, ...,∆m}, their outwards
normals n(∆i) and the friction coefficient µ.

output: Set of triplets {T1(M), ..., TN (M)}
begin

for n← 1 to N do
finger 1Choose random ∆r and center as 1. contact point:

f1 ← (v1(r) + v2(r) + v3(r))/3 : r = rand(1,m)

finger 2Sample a ray r1 departing from f1 and deviating
from the negative surface normal of ∆r , using the
friction cone angle as standard deviation:
r1 ← rotate(−n(∆r), α) :
α = normrnd(0, tan−1(µ))
Find the intersections of r1 with the mesh M :
{i1, ..., il} ← intersect(r1,M)
If there is more than one such point, we choose one at
which the surface is penetrated outwards:
f2 ← if (l = 1) then i1 else chooseOutwards(i1, ..., il)

thumbSample a ray r2 perpendicular to the line
given by f1, f2 with origin at the middle point:
r2 ←⊥ (f1f2)
Find the intersections of r2 with the mesh M :
{i1, ..., il} ← intersect(r2,M)
If there is more than one such point, we choose one at
which the surface is penetrated outwards:
f0 ← if (l = 1) then i1 else chooseOutwards(i1, ..., il)

tripletTn(M)← (f0, f1, f2)

1568

high after N = 100 randomly generated grasps, from [21].
Since that study was done with few objects corresponding
to primitives shapes, thus different from our input data, we
extend our search to N = 400 grasps and stop at the first
sample exceeding a quality threshold. If none of the grasps
exceeds this threshold, the best one is taken. We choose
the number of triplets to be generated on each part to be
proportional to its relative size.

Taking advantage of the mesh representation which pro-
vides faces in a mesh and their corresponding normals, it
is possible to evaluate the quality of a grasp created from
a given triplet. Since contact points and their normals are
thus given, we can easily approximate the friction cones,
estimate the convex hull of the Grasp Wrench Space and
obtain a quality measure.

B. Reuse of Triplets
When dealing with similar shaped objects, we want to

reuse the stored grasp hypotheses. This is realized by find-
ing the affine transformation that resizes and reorients the
original model M to match the current object O, allowing
for the same with its corresponding triplet. The information
we need is the original triplet, T (M) = (fM,0, fM,1, fM,2),
the center-of-mass (c), the volume (V) and the main axes of
inertia (A) of both M and O. Since we obtain high quality
meshes after interpolation-decimation, Principal Component
Analysis (PCA) is suitable for the latter.

C. Hand Configuration
The next step is to translate a triplet of contact points

(f0, f1, f2) into a robotic hand configuration, which in our
case is the Barrett hand [22]. The hand has 10 degrees of
freedom: 6 for the pose of the wrist, 1 for the spread angle
of the fingers and 3 for the proximal joint angles. The choice
of the triplet points according to the method described in IV-
A permits obtaining an optimal configuration of the Barrett
hand after Algorithm 2.

Algorithm 2: Triplet-to-Barrett Hand Adaptation.

input : Triplet T = (f0, f1, f2).
output: Hand configuration (p,o) (pose), (Θ, e) (spread, extension).
begin

Compute the normal vector of T :
nT ← (f1 − f0)× (f2 − f0).
After finding the circle (c, r) passing through f0, f1, f2 on the
plane described by T , acquire the hand configuration:
(Θ, e)← (0.5 ·] f1cf2, r).
There are two possible configurations:
(p, o)1 ← (c + (−0.953 · e+ 128.8) · nT ,−nT).
(p, o)2 ← (c− (−0.953 · e+ 128.8) · nT ,nT).
Choose the one holding that the palm is further from the model
(and outside):
(p,o)← (p, o)i :
dist(pi,model) > dist(pj ,model), dist(pi,model) > 0.

Note that for the Barrett hand, a change in a proximal
link implies a change in the corresponding distal link as well.
Therefore, we use the linear estimation from [11] to compute
p, causing little loss in precision compared to calculating the
actual inverse kinematics for the hand.

V. SYSTEM EVALUATION

As a suitable dataset to evaluate the algorithms described
in this paper, we apply all models from the Princeton Shape
Benchmark (PSB) [23]. Similar to [6], we rescale all 1,815
point-clouds and consider them as graspable toys to get a
complete overview of the system’s performance. To provide
a reference for the efficiency, all processes are performed on
a 2GHz dual-core processor laptop, running Ubuntu 9.04.

A. Point Cloud Interpolation-Decimation

The time used in the reduction of large point clouds clearly
depends on the number of points n that we want to keep
(see Fig. 3 left). The higher n, the more selective we delete
and the lower the number of points we remove in each
step. We found only one algorithm, the k-means by Huang
[24], to result in similar performance. However, the time k-
means needs to reduce to more than 1000 points is over 100
seconds. The time spent in the interpolation by using the
mesh representation is negligible (� 0.1s) as it is done by
simple triangle edge bisection.

B. Mesh Building

In Fig. 3 center, the time spent to mesh point clouds
of different sizes is plotted. We found out that decimated
point clouds with more than 3000 points do not result in
better depicted meshes, thus we only present the range from
600 to 3000 points in Fig. 3. As point cloud reduction and
meshing take longer time as the number of points increases,
we determine the minimum necessary size ensuring good
meshing. By considering that the confidence of well meshed
models does not improve when increasing the number of
points, we empirically found 2000 points to be an optimum
value for the PSB object models. Meeting this value in Fig. 3
center, we can infer that reduction and meshing of a point
cloud can be done in around 1.7 seconds.

C. Shape Descriptors

A comparative study of descriptors, e.g. Fourier descrip-
tors, curvature scale space descriptors, Zernike and grid
descriptors, [25], encourages the use of Zernike moments.
We evaluate the Zernike descriptors through an object clas-
sification experiment on the PSB. Following [7], we use
precision-recall diagrams (see Fig. 3 right) to find a good
combination (Nvoxels, OZernike) ∈ N × N for retrieving
the shape of a model. We use the diagrams to measure the
ability of different combinations to separate sets of objects
belonging to a shape class given only one object from a class.
The quality measure we use for each class C is the integral
of the normalized precision-recall diagram averaged over the
members of C, PC

o . The better the descriptors represent the
models of a class, the closer this value to 1.

We selected 6 different classes from the PSB. The purpose
of each experiment was to separate 2 or 3 sets of models
composed of between 20 and 50 elements (each set), using
4 different voxelizations Nvoxels ∈ {48, 64, 128, 256} and
21 different Zernike orders OZernike ∈ {5,..., 25}.

1569

ru
nt

im
e

[s
ec

]

0.2

0.4

600 3000

desired output [points]

mean

std dev ru
nt

im
e

[s
ec

]

1

2

600 3000

input [points]

mean

std dev

pr
ec

is
io

n

recall [%]

P
guns
o = 0.948

P heads
o = 0.923

P chess
o = 0.851

Fig. 3. Performance of point cloud filter (Left) and mesh building (Center).
Right: Precision-recall diagram of three classes (guns, heads, chess) from
the PSB. In this example, we use Nvoxels = 256, OZernike = 25.

The experiments revealed a good behavior of the Zernike
orders, obtaining an average PC

o value around 0.9. The
results suggest that complex shapes are better retrieved when
using detailed voxelizations, Nvoxels = 256, while simple
objects got better results with simpler voxelizations, e.g.
Nvoxels ∈ {48, 64}. Nevertheless, the loss in PC

o for making
the opposite choice is less than 0.05. The optimal range of
Zernike order was observed as OZernike ∈ {10, 11, 12}.
Since it is thus not possible to get the optimum for both
simple and complex shapes at the same time, and detailed
voxelizations and high Zernike orders demand more calcula-
tions, it was decided to use Nvoxels = 64 and OZernike = 12
(49 coefficients). The time spent to perform both processes
with this configuration is 0.5 seconds.

D. Segmentation

The segmentation is the slowest process in our system.
Though the mesh is calculated before-hand and core extrac-
tion is performed only once, the decomposition is repeated
several times to find a variety of segmentations and choose
the best one. We consider that testing 10 different scales of
the core is sufficient to get a good segmentation in most of
the cases. Obviously, including more scales could lead to a
better result, but at the cost of computation time.

The lower the number of points to be handled, the faster
the segmentation. This puts more emphasis on the cloud
decimation described in II-B, limiting the time spent not only
for meshing, but even more for segmentation. We found that
the average number of segmented parts over the PSB in two
test cases (a: <2000 points, b: ≥2000 points) is similar (a:
2.61, b: 3.34). Nevertheless, the convexity gain (the merit
value corresponding to the difference between the convexity
measures (2) of the original model and its decomposition)
is much higher in the case of large point clouds (a: 0.12, b:
0.26). We associate this observation to the fact that simple
objects are represented by lower number of points in the
PSB database. Thus, the improvement reached through the
segmentation in these models is lower. However, there is a
clear difference in computation time (a: 2.93s, b: 6.38s).

E. Grasp Stability Estimation

Four main definitions of grasp quality are implemented
according to [14]. Out of those we take a measure of grasp
quality (epsL1) that implies we are using a pessimistic
criterion and considering one unit force distributed over all
grasp points. We assume the friction coefficient µ to be 1,

corresponding to a rubber coated hand grasping an object
made of metal, glass, plastic or wood.

The percentage of force-closure among all 400 grasps
found on each object is typically in the range of 75-80%.
The average time for generating a triplet, evaluating its grasp
quality and configure the Barrett Hand is 1, 2.8 and 0.2
milliseconds, respectively. This results in 1.6 seconds in the
worst case, when we evaluate all candidate triplets. The
epsL1 value of the best grasp is typically within the range
of 0.12 to 0.16. Our acceptance threshold is set to 0.15.

VI. USING EXPERIENCE IN AN OBJECT-GRASP
DATABASE

An important aspect of our our work is to enable decisions
if some process on the object data is reasonable or not.
For example, if the object is convex, there is no need for
segmentation. Our approach is based on a database in which
each entry for an object O is composed of three fields:

D(O), a description of an object O; we will use its Zernike
descriptor (Sec. V-C), the volume of its mesh, its
main axes and center-of-mass (Sec. IV-B).

T (O), a triplet (Sec. IV-A) leading to a grasp on O.
Q(O), a measure of grasp quality (Sec. IV-A and V-E)

connected to the triplet T (O).

Given an object description D(O), the system can search for
similar models in the database using the shape descriptor. If
a similar model O∗ is found, the stored triplet T (O∗) can be
adapted to the new object size and orientation. Otherwise,
a collection of triplets {T (O)} will be created according to
the morphology of O and the first T (O) with quality Q(O)
exceeding an acceptance threshold will be selected.

Finally, a corresponding entry will be added into the local
database. Optionally, the configuration of the robotic (Bar-
rett) hand is computed to align the fingertips with the triplet.
As the number of grasp requests grows, the local database
becomes more complete and the likelihood of finding similar
models stored increases. Since re-using a triplet takes less
time than searching for force-closure-feasible triplets on the
object surface, the average response time is reduced. We note
that our database is hand-independent, since we do not store
hand configurations, but triplets of contact points. The time
spent to find a similar object in the database and adapt its
triplet is negligible (< 0.1 seconds).

In Tab. I, we show the average runtime of the major
processes, considering 3 basic cases: (1) known objects, (2)
unknown, simple objects, and (3) unknown, complex objects.

TABLE I
AVERAGE RUNTIME OF THE DIFFERENT SUBTASKS ON PSB MODELS.

Input model: [sec] case (1) case (2) case (3)
Denoising & Interp-Decim. 2.95+N • • •
Meshing 1.3 • • •
Voxel. & Zernike 0.45 • • •
Segmentation 6.4 •
Triplet Search 1.6 • •
Total [sec] 4.7+N 6.3+N 12.7+N
with N = 10−6 * number of points [sec].

1570

The input cloud is firstly randomly decimated to 10000
points (if it exceeds this size) in order to limit N . The table
does not include processes with runtime � 0.1 seconds:
search in the database, adding entries or reuse of a triplet.
As it can be seen, there is a big difference in timing between
cases (1) and (2) with respect to case (3).

VII. DISCUSSION AND CONCLUSION

We have proposed a grasping framework capable of
dealing with known and unknown objects considering the
acquisition of a good 3D point cloud, the choice of an
appropriate 3D shape representation and the management of
the experience as the key aspects. The creation and update of
a grasp database in order to gain experience is an important
part of the system. The idea of building a grasp database
is not new: the Columbia Grasp Database (CGDB) [6] is
a most recent and attractive repository of grasps over a set
of 3D models. Nevertheless, there are three main difference
between the CGDB and the grasp database presented here:

Extension: While the CGDB covers a set of 7,256
models (the 1,814 models from the Princeton Shape Bench-
mark [23] cloned at four different scales), the database
proposed here is constructed according to local experience.
Only the models that have been processed and grasped by
the system will be included in the database. Obviously, when
searching for similar models, this results in a much shorter
response time, noticeable saving in memory space, and links
to strategies of active learning (and active forgetting).

Specific nature: When an object is grasped once, it is
likely that the same object or a similar one will be requested
to be grasped again (e.g. a book). The first time a specific
grasp will be generated for that specific object. The next
times this object will be re-grasped using the same grasp
again, and those objects which are similar will be grasped by
adapting the original triplet. In the worst case, if an adapted
grasp does not work on a new object, a new specific grasp
will be generated for that object and a corresponding new
entry will be added to the database.

Independence of object size: The grasp is not directly
reused, the original triplet is adapted to the size (and to the
orientation) of the new object instead. Next, the grasp is
generated from the adapted triplet.

Regarding future work, there are several ideas to be
explored. In this paper, we took into account the constraints
given by the hand and the objects, but left out the constraints
given by the task (e.g. hand-over, pouring, tool use); this
could be included in the grasp hypothesis search. Secondly,
in the presented framework we considered that the objects
were pre-segmented from the scene. Our current work in
stereo based segmentation will be integrated with the system
for better point-cloud generation. Then, a path planning al-
gorithm could be added to avoid collisions with the obstacles
when approaching the object.

ACKNOWLEDGMENTS

This work was supported by EU IST-FP6-IP-027657
PACO-PLUS, EU IST-FP7-IP GRASP and Swedish Foun-
dation for Strategic Research (SSF).

REFERENCES

[1] J. Bohg and D. Kragic, “Learning Grasping Points with Shape Con-
text,” Robotics and Autonomous Systems, vol. 58, pp. 362–377, 2010.

[2] C. Goldfeder, P. K. Allen, C. Lackner, and R. Pelossof, “Grasp
Planning Via Decomposition Trees,” in IEEE International Conference
on Robotics and Automation, 2007, pp. 4679–4684.

[3] K. Huebner, S. Ruthotto, and D. Kragic, “Minimum Volume Bounding
Box Decomposition for Shape Approximation in Robot Grasping,” in
IEEE Int’l Conf. on Robotics and Automation, 2008, pp. 1628–1633.

[4] L. Chevalier, F. Jaillet, and A. Baskurt, “Segmentation and Su-
perquadric Modeling of 3D Objects,” Journal of Winter School of
Computer Graphics, WSCG’03, 2003.

[5] K. Huebner, K. Welke, M. Przybylski, N. Vahrenkamp, T. Asfour,
D. Kragic, and R. Dillmann, “Grasping Known Objects with Hu-
manoid Robots: A Box-based Approach,” in International Conference
on Advanced Robotics, 2009.

[6] C. Goldfeder, M. Ciocarlie, H. Dang, and P. K. Allen, “The Columbia
Grasp Database,” in IEEE International Conference on Robotics and
Automation, 2009, pp. 3343–3349.

[7] M. Novotni and R. Klein, “3D Zernike Descriptors for Content Based
Shape Retrieval,” in ACM Symposium on Solid and Physical Modeling,
2003, pp. 216–225.

[8] R. Diankov, S. Srinivasa, D. Ferguson, and J. Kuffner, “Manipulation
Planning with Caging Grasps,” in IEEE International Conference on
Humanoid Robots, 2008, pp. 285–292.

[9] S. El-Khoury and A. Sahbani, “On Computing Robust N-Finger Force-
Closure Grasps of 3D Objects,” in IEEE International Conference on
Robotics and Automation, 2009, pp. 2480–2486.

[10] A. T. Miller, S. Knoop, H. I. Christensen, and P. K. Allen, “Auto-
matic Grasp Planning Using Shape Primitives,” in IEEE International
Conference on Robotics and Automation, 2003, pp. 1824–1829.

[11] S. Geidenstam, K. Huebner, D. Banksell, and D. Kragic, “Learning of
2D Grasping Strategies from Box-based 3D Object Approximations,”
in Proceedings of Robotics: Science and Systems, 2009, pp. 9–16.

[12] M. Richtsfeld and M. Zillich, “Grasping Unknown Objects Based on 2
1/2 D Range Data,” in IEEE International Conference on Automation
Science and Engineering, 2008, pp. 691–696.

[13] E. Lopez-Damian, “Grasp Planning for Object Manipulation by an
Autonomous Robot,” Ph.D. dissertation, Laboratoire d’Analyse et
d’Architecture des Syst̀emes du CNRS, 2006.

[14] A. Miller and P. Allen, “Graspit! A Versatile Simulator for Robotic
Grasping,” Robotics and Automation, vol. 11 (4), pp. 110–122, 2004.

[15] S. Ary, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y.
Wu, “Algorithm for Approximate Nearest Neighbor Searching Fixed
Dimensions,” Journal of the ACM, vol. 45, no. 6, pp. 891–923, 1998.

[16] L. Giaccari, “MyRobustCrust – Surface Reconstruction from Scat-
tered Point Clouds,” [URL] http://www.mathworks.com/matlabcentral/
fileexchange/22185, January 2010.

[17] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The Quickhull
Algorithm for Convex Hulls,” in ACM Transactions on Mathematical
Software, vol. 22, 1995, pp. 469–483.

[18] R. Liu and H. Zhang, “Segmentation of 3D Meshes through Spectral
Clustering,” in Computer Graphics and Applications, 12th Pacific
Conference, 2004, pp. 298–305.

[19] M. Attene, B. Falcidieno, and M. Spagnuolo, “Hierarchical Mesh
Segmentation based on Fitting Primitives,” The Visual Computer,
vol. 22, no. 3, pp. 181–193, 2006.

[20] C. Borst, M. Fischer, and G. Hirzinger, “A Fast and Robust Grasp
Planner for Arbitrary 3D objects,” in IEEE International Conference
on Robotics and Automation, vol. 3, 1999, pp. 1890–1896.

[21] ——, “Grasping the Dice by Dicing the Grasp,” in IEEE/RSJ Int’l
Conference on Intelligent Robots and Systems, 2003, pp. 3692–3697.

[22] W. T. Townsend, “The BarrettHand Grasper – Programmably Flexible
Part Handling and Assembly,” Industrial Robot: An International
Journal, vol. 27, no. 3, pp. 181–188, 2000.

[23] P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser, “The Princeton
Shape Benchmark,” in International Conference on Shape Modeling
and Applications, 2004, pp. 167–178.

[24] Z. Huang, “Extensions to the k-Means Algorithm for Clustering Large
Data Sets with Categorical Values,” Data Mining and Knowledge
Discovery, vol. 2, no. 3, pp. 283–304, 1998.

[25] D. Zhang and G. Lu, “Content-Based Shape Retrieval Using Different
Shape Descriptors: A Comparative Study,” in IEEE International
Conference on Multimedia and Expo, 2001, pp. 1139–1142.

1571

