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Abstract—This paper focuses on steering a 3D robot while
walking on a flat surface. A hybrid feedback controller designed
in [1] for stable walking along a straight line is modified so that
it is capable of adjusting the net yaw rotation of the robot over a
step in order to steer the robot along paths with mild curvature.
The controller is designed on the basis of a single pre-defined
trajectory for periodic walking along a straight line. In order
to illustrate the role of internal/external (i.e., medial/lateral)
rotation at the hip in achieving curved walking motions, the
performance of two robots, one with internal/external rotation
and one without, is compared.

I. INTRODUCTION
In a previous paper, we addressed the control of a 3D

bipedal robot with an unactuated ankle, where the ground
contact inhibited yaw motion, but pitch and roll of the stance
leg were unconstrained and unactuated [1]. The first objective
of the present paper is to present an event-based controller
that steers the robot along paths of mild curvature. A novel
feature of the solution is that steering is achieved on the
basis of a single, predefined, periodic motion corresponding
to walking along a straight line. The second objective of
the paper is to compare the turning ability of robots with a
2 degree of freedom (DOF) hip joint versus a 3 DOF hip
joint.
The ability to turn is an essential feature for stepping

around obstacles on a given surface. Honda’s ASIMO has
demonstrated the important ability to walk forward, back-
ward, right, left, up and down stairs, and on uneven ter-
rain [2]. Very few other works have addressed the issue
of a turning motion for bipedal robots, and all addressed
models with actuated feet (in particular, full actuation was
assumed). Previous techniques on bipedal turning motion
include change of the duty ratios of the two legs, allowing
the feet to slip when rotating with respect to the ground,
reduction and decoupling, and trial-and-error methods [3],
[4], [5]. The authors of [6] have developed an elegant and
rigorous setting for stable walking and steering of fully
actuated 3D robots on the basis of geometric reduction and
passivity-based control. The controlled geometric reduction
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decouples the biped’s sagittal-plane motion from the yaw and
lean modes [7]. Steering is achieved by adjusting the yaw
set point of the within-stride passivity-based controller.
We study here two 3D biped robots with passive ankles,

and seek a time-invariant feedback controller that creates an
exponentially stable, periodic walking motion, along with
the ability to steer the yaw orientation of the robot with
respect to an inertial frame, that is, the robot’s direction of
travel. The two robots are each equipped with a 2 degree
of freedom (DOF) passive ankle, a 1 DOF knee, and differ
at the hip, which in one case is a 2 DOF joint and in the
other, a 3 DOF joint: one robot’s hip allows internal/external
(i.e., medial/lateral) rotation, the other one does not. The
performance of the two robots is compared in a task that
requires steering.
The control approach presented in this paper allows us to

change the direction of motion of the robot through the net
yaw motion about the stance foot over a step. An event-based
(or stride-to-stride) feedback controller distributes set point
commands to the actuated joints in order to achieve a desired
amount of turning, as opposed to the continuous corrections
used in [6].
Section II presents the dynamic model of the biped.

Section III summarizes the principle of the within-stride
control design used to obtain periodic motion along a straight
line; a simulation for the robot with 3 DOF at the hip is
shown and it is noted that the yaw motion about the stance
foot is unstable under the within-stride controller. In Section
IV, a supplemental event-based control law to regulate the
direction of motion of the robot is presented. Simulation
results are presented for a path following task in Section
V. Section VI concludes the paper.

II. MODEL
A simplified model of a spatial bipedal robot is given here.

The legs are considered in detail, while the upper body (head,
torso and arms) is represented by a single link articulated
only at the hip. The feet are massless and unactuated.

A. Description of the robot and the walking gait
The two 3D bipedal robots discussed in this work are

depicted in Figure 1. They consist of a torso and two legs
with revolute 1 DOF knees that are independently actuated
and terminated with massless feet articulated by a 2 DOF
ankle. The two robots differ in the number of DOF at the
hip. The robot in Figure 1 (a), which was studied in [1], has
hips composed of two, one DOF, actuated, revolute joints
corresponding to motion in the sagittal and frontal planes.
The hip of the second robot depicted in Figure 1 (b) includes
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a third actuated DOF corresponding to external/internal rota-
tion. This supplementary rotation could also be added at the
ankle instead of the hip, but most humanoid robots include
a 3 DOF hip and a 2 DOF ankle. In total, the bipeds in the
single support phase have six or eight actuated DOF, and
there are two degrees of underactuation in the stance ankle
(see Figure 1).
The ankle is composed of two single DOF joints, one

in the sagittal plane and the other in the frontal plane. We
consider flat-footed walking, and in order to ensure that the
ZMP condition is met, namely the ground reaction forces
remain with the convex hull of the foot [8], [9], we impose
that the torque in the stance ankle be zero1. Because the foot
is assumed to be massless, during the swing phase, the foot’s
orientation can be freely chosen and therefore the swing
ankle joint is not included in the model, which simplifies
the model.
The gait considered in this study consists of two alter-

nating phases of motion: single support and double support.
Walking takes place on a flat surface. The double support
phase is instantaneous and occurs when the swing leg im-
pacts the ground on a flat foot. The swing and stance legs
exchange their roles at each impact.
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Fig. 1. Two 3D bipeds with massless feet, shown in support on leg-1. The
massless swing foot is not included in the model. The stance ankle torques
are zero. The robot on the right includes an extra degree of freedom at the
hip corresponding to internal/external (i.e., medial/lateral) rotation.

The robot is represented as a tree structure. The stance
foot, which is fixed on the ground, is the base of the tree.
A set of generalized coordinates q = [q1, . . . , qn]

′ is shown
in Figure 1 with n = 8 or n = 10. The coordinates (q1, q2)
are unactuated (due to the assumption of zero torque in the
stance ankle), while (q3, . . . , qn) are independently actuated.
The position of the robot with respect to an inertial

frame is defined by adding the four variables xe =
[q′, xst, yst, zst, q0,st]

′, where xst, yst and zst are the Carte-
sian coordinates of the stance foot, and q0,st defines the
rotation along the z-axis of the stance leg. These variables
are constant during each single support phase.
1This is equivalent to passive, point foot walking, with the constraint of

no yaw motion, as in [1]. The robot requires yaw torque to prevent the yaw
motion at the supporting foot. For practical implementation, the foot must
have finite area to generate this yaw torque by friction. This torque is not
explicitly controlled but is indispensable for steering control

B. Dynamic model
The Euler-Lagrange equations yield the dynamic model

for the robot in the single support phase as

D(q)q̈ +H(q, q̇) = B u =

[
02×(n−2)

I(n−2)×(n−2)

]
u, (1)

where D(q) is the positive-definite (n× n) mass-inertia
matrix, H(q, q̇) is the (n× 1) vector of Coriolis and gravity
terms, B is an (n× (n− 2)) full-rank, constant matrix
indicating whether a joint is actuated or not, and u is the
((n− 2)× 1) vector of input torques. The double support
phase is assumed to be instantaneous. However, it actually
consists of two distinct subphases: the impact, during which
a rigid impact takes place between the swing foot and the
ground, and coordinate relabeling. Analogously to [1], the
overall impact model can be written as

x+
e = Δe

x(x
−

e ) and q̇+ = Δq̇(q
−, q̇−). (2)

III. PERIODIC WALKING
A. Virtual constraints
How to define a stable walking gait along a straight line is

summarized in this section. The method of virtual constraints
has been applied in [1] to stabilize the motion of the 3D
robot presented in Figure 1 (a). The virtual constraints can be
understood as a parametrization of the desired configuration
of the robot throughout a step; in particular, they define the
joint path in the configuration space of the robot, but not a
joint trajectory. The temporal evolution of the robot is free
and determined via the evolution of the zero dynamics.
The method of virtual constraints can also be applied to

the robot presented in Figure 1 (b). We assume that a periodic
solution of the model, corresponding to walking in a straight
line, has been determined, for example, using the method
presented in [1]. The objective of the control law is that the
robot’s trajectories converge to this nominal periodic motion.
One holonomic constraint per actuator is proposed in the
form of an output that, when zeroed by a feedback controller,
enforces the constraint. The outputs are

y = qc − hd
c(θ), (3)

where
qc = Cq (4)

C is a constant ((n− 2)× n) matrix that defines the n− 2
linear combinations of the joint variables that are controlled
using the n − 2 actuators, the quantity θ = θ(q) is strictly
monotonic (i.e., strictly increasing or decreasing) along a
typical walking gait , and hd

c(θ) parametrizes the desired
evolution of the controlled variables as a function of θ.
Assuming that a reference periodic motion q∗(θ) is known
for the configuration vector q, then hd

c(θ) = Cq∗(θ).
Let qu = [q1, θ]

′ denote the unactuated joints, and qc
denote the controlled joints. A linear relation exists between
qc, qu and q,

q = T

[
qu
qc

]
, (5)
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where we assume that the controlled variables, chosen via C
in (4), are such that T is an (n× n) invertible matrix.

B. The control law
For a given vector of constraints (3), a feedback controller

in the single support phase that drives or maintains the
state of the robot on the constraint surface corresponding
to qc = hd

c(θ) can be determined [10]. The control law is
such that, on the periodic orbit, the virtual constraints (3)
are identically satisfied and the state of the robot belongs
to Z = {(q, q̇)|y(q) = 0, ẏ(q) = 0}. However, off the
periodic orbit, even if the virtual constraints are satisfied at
the end of given step, they will not in general be satisfied
at the beginning of the next step, and hence the surface Z

is not invariant under the hybrid dynamic model (1) and
(2). Consequently, the simulation of the complete model is
required in order to predict the evolution of the robot.
Following [1], the virtual constraints are modified stride

to stride so that they are compatible with the initial state of
the robot at the beginning of each step, thereby recovering
invariance and creating a hybrid zero dynamics. The new
output for the feedback control design is

yc = h(q, yi, ẏi) = qc − hd
c(θ)− hm(θ, yi, ẏi). (6)

This output consists of the previous output (3), and a
correction term hm that depends on (3) evaluated at the
beginning of the step, specifically, yi = qc,i − hd

c(θi) and
ẏi = q̇c,i −

∂hd
c (θ)
∂θ

θ̇i, where the subscript “i” denotes the
initial value for the current step. The values of yi, ẏi are
updated at the beginning of each step. The function hm is
taken as:⎧⎪⎨

⎪⎩
hm(θi, yi, ẏi) = yi

∂hm

∂θ
(θi) = ẏi

θ̇i

hm(θ, yi, ẏi) ≡ 0,
θi+θf

2 ≤ θ ≤ θf .

(7)

With hm designed in this way, the output and its derivative
are smoothly joined to the original virtual constraint by the
middle of the step. In particular, for any initial error, the
initial virtual constraint hd

c is exactly satisfied for θ ≥
θi+θf

2
(see Figure 4).

C. Stability test
The next objective is to determine the behavior of the

robot under the virtual constraints. This task is simplified by
noting that enforcing the virtual constraints, y = 0, results
in qc = hd

c(θ) + hm(θi, yi, ẏi) and reduces the dimension of
the dynamics.
Using (5), the dynamic model in single support (1) can be

rewritten as

T ′D(q)T

[
q̈u
q̈c

]
+T ′H(q, q̇) =

[
02×(n−2)

I(n−2)×(n−2)

]
u. (8)

The first two rows of the right hand side of this equation are
zero, yielding

D11(q)q̈u +D12(q)q̈c +H1(q, q̇) = 02×1, (9)

where D11 is the (2×2) upper left sub-matrix of T ′D(q)T ,
D12 is the (2× (n−2)) upper right sub-matrix of T ′D(q)T
and H1(q, q̇) consists of the first two rows of T ′H(q, q̇).
Next, the expression for qc when the constraint is satisfied,

qc = hd
c(θ)+hm(θi, yi, ẏi), is used. Substituting this relation

into (9), the dynamic model of the single support phase
is now reduced to a 2-DOF, autonomous system, which is
called the zero dynamics [10].

D11(qu)

[
q̈1
θ̈

]
+H1(qu, q̇u)+

D12(qu)
(
(
∂ hd

c

∂ θ
+ ∂ hm

∂ θ
)θ̈ + (

∂2hd
c

∂ θ2 + ∂2hm

∂ θ2 )θ̇2
)
= 02×1,

(10)
The stability of a fixed-point x∗ can now be tested

numerically using a restricted Poincaré map defined with
any Poincaré section transversal to the periodic orbit. In
this study, the Poincaré section will be defined by S =
{(q, q̇) | θ =

θi+θf
2 }, where θi and θf are the initial and

final values of θ on the periodic orbit, respectively. In S∩Z ,
the state of the robot can be represented using only three
independent variables, xz = [q1, q̇1, θ̇]

′.
The restricted Poincaré map P z : S ∩ Z → S ∩ Z

induces a discrete-time system xz
k+1 = P z(xz

k). From [11],
the linearization of P z about a fixed-point xz∗ determines
the exponential stability of the full-order closed-loop robot
model. Define δxz

k = xz
k −xz∗. The Poincaré map linearized

about a fixed-point xz∗ = (q∗1(
θi+θf

2 ), q̇∗1(
θi+θf

2 ), θ̇∗(
θi+θf

2 ))
gives rise to a linearized system,

δxz
k+1 = Azδxz

k, (11)

where the (3 × 3) square matrix Az is the Jacobian of the
Poincaré map. A fixed-point of the restricted Poincaré map
is locally exponentially stable, if, and only if, the eigenvalues
of Az have magnitude strictly less than one [10, Chap. 4].

D. An example of stable walking
For the model presented in Figure 1 (a), a stable walking

gait is presented in [1]. For the model presented in Figure
1 (b), a periodic reference motion q∗ is presented in the
stick diagram of Figure 2. The outputs are chosen as yi =
qi+2 − q∗i+2(θ) + ai(q1 − q∗1(θ)) for i=1,8, with a1 = a2 =
a4 = a5 = a7 = a8 = 0, a3 = 1.7 and a6 = 1.2. A
stable gait is obtained, with the eigenvalues of Az being
λ1 = 0.5950, λ2,3 = 0.2921± 0.6259i.
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Fig. 2. The stick diagram for robot presented in 1 (b) and the periodic
reference motion studied.
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- To illustrate the orbit’s local exponential stability, the
3D biped’s model in closed-loop is simulated with the initial
state perturbed from the fixed-point x∗. An initial error of
−0.5◦ is introduced on each joint and a velocity error of
+2◦s−1 is introduced on each joint velocity. All the variables
q converge to their desired cyclic motion.
Figure 3 shows the evolution of values of the three

independent variables describing the evolution of the robot
on the restricted Poincaré section S ∩ Z . These variables
clearly converge to the periodic motion. The lower-right
figure shows the evolution of q0,st, which represents the
orientation of the stance foot in an absolute frame, and hence
the direction of motion of the robot. For a walking motion
along the x-axis, the nominal value of q0,st on the periodic
orbit is ±4.e−5 rad. It can be seen that due to the transients
induced by the initial errors, even if the initial value of q0,st
is the nominal value, the direction of motion of the robot
will be different from zero. From a practical point of view,
it is important to be able to control the direction of motion
of the robot; the stability of the gait is not enough.
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Fig. 3. The evolution of the three independent variables describing the
evolution of the robot on the restricted Poincaré section S ∩ Z , with the
initial condition perturbed from x∗. The fourth graphic shows the evolution
of q0,st, which represents the yaw orientation of the stance foot in an
absolute frame.

IV. CONTROL OF THE DIRECTION OF MOTION

A. Preliminaries
In order to be able to control the direction of the robot,

we will consider an extended set of configuration variables,
qe = [q′, q0,st]

′, obtained by appending the robot’s direction
of motion to the previous model. The control of this extended
system can be studied as in Sec. III. The extended restricted
Poincaré map is studied using the four independent vari-
ables xe = [q1, q̇1, θ̇, q0,st]

′. The corresponding linearized
extended restricted Poincaré map is written as

δxe
k+1 = Aeδxe

k, (12)

where Ae is a (4× 4) matrix.
The equations of motion of the robot during single support

are independent of q0,st; moreover, q0,st is constant2 as

2This is because we have assumed no yaw rotation at the stance foot.

it evolves only during the impact phase (2)3. In [12], it
is shown that the impact surfaces are invariant under the
rotation around the z-axis of the absolute frame, and the
impact maps are equivariant under this rotation

x+
e + q0,ste0 = Δe

x(x
−

e + q0,ste0), (13)

where e0 = [0, ..., 0, 1]′ is the unity vector corresponding
to the configuration variable q0,st. As a consequence, the
linearized extended restricted Poincaré map has the same
property

δxe
k+1 + q0,ste0 = Ae(δxe

k + q0,ste0), (14)

where e0 is defined here as e0 = [0, 0, 0, 1]′.
Thus the fourth column of Ae is [0, 0, 0, 1]′, and the

additional eigenvalue is λ4 = 1. This is a property of the
model of the robot and is independent of the choice of the
controlled output. It follows that the direction of motion
cannot be controlled by the strategy proposed in Sec. III.
A second conclusion of (14) is that an infinite number of

fixed points exist: if xe∗ is a fixed point (for us, xe∗ denotes
the fixed point corresponding to a robot motion aligned the
axis x), xe∗ + q0,ste0 is also a fixed point. Thus an infinite
number of periodic walking gaits exist, one for each direction
of motion. If a control strategy can be devised such that the
robot converges to a motion with a desired direction of travel,
xe∗ + qd0e0, then the direction of the robot can be steered by
changing qd0 .

B. Control of the robot’s direction
An event-based controller [13] is integrated with the

continuous, stance phase controller to regulate the direction
of travel q0,st. Let β be a vector of parameters that affect the
desired reference trajectory. The parameters will be modified
at θ =

θi+θf
2 , where they will be updated on the basis of

the state of the extended hybrid zero dynamics in order to
achieve convergence to a desired fixed point xe∗ + qd0e0.
Here our main objective is to control q0,st, which evolves
at impact only. Thus a natural modification of the periodic
reference trajectory is to change the impact configuration. In
order to provide more degrees of freedom and to accelerate
the convergence, a modification of the desired velocity at the
end of the single support phase is also considered.
The output in (6) is augmented with an additional term

hs(θ, β) depending on β = [β1, β2], yielding

y = qc − hd
c(θ) − hm(θ, yi, ẏi)− hs(θ, β), (15)

with ⎧⎨
⎩

hs(θf , β) = β1

∂hs

∂θ
(θf , β) = β2

hs(θ, β) ≡ 0, θ ≤
θi+θf

2 .

(16)

In spite of the term hs, the control law of Sec. III will still
create a hybrid zero dynamics. This is because the parameters

3After impact, the parametrization of the robot is modified in order to
take into account that the first joint of the robot corresponds to the stance
leg. In this relabeling, the variables xe undergo a jump. Thus the jump of
q0,st is a direct function of the impact configuration.
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in hm are updated at the beginning of the step, while the
updates to β in hs are done at θ =

θi+θf
2 and because hs

modifies the reference trajectory only between θ =
θi+θf

2
and the impact. The modification of the reference path is
illustrated in Figure 4.
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Fig. 4. The initial reference path hd
c(θ) is modified via hm to create

an invariant surface and by hs to steer the robot. The restricted Poincaré
section S ∩ Z is chosen in order to preserve the initial fixed point xz∗ =

(q∗
1
(
θi+θf

2
), q̇∗

1
(
θi+θf

2
), θ̇∗(

θi+θf
2

)) in the presence of the modifications
hm and hs.

The Poincaré map can now be viewed as a nonlinear
control system with inputs βk, xe

k+1 = P (xe
k, βk), where βk

is the value of β during the second part of step k. Linearizing
this nonlinear system about any fixed point xe∗ + qd0e4
(since this model does not depend on q0,st) and the nominal
parameter value β∗ = 0(2n−4)×1 leads to

δxe
k+1 = Aeδxe

k + Fδβk, (17)

where δxe
k = xe

k − (xe∗ + qd0e0), δβk = βk − β∗, and F is
the Jacobian of P with respect to β. Designing a feedback
law

δβk = −Kδxe
k (18)

such that the eigenvalues of (Ae − FK) have magnitude
strictly less than one will exponentially stabilize the fixed
point xe∗ + qd0e0.
When the ((2n− 4)× 4) gain matrix K is calculated via

a DLQR technique, the eigenvalues become λ1 = 0.6421,
λ2,3 = −0.2491± 0.0732i, and λ4 = 0.0371.
To illustrate the effect of this modification of the control

strategy on the robot’s behavior, the 3D biped’s model in
closed-loop is simulated with the initial state perturbed from
the fixed-point xe∗. An initial error of −0.5◦ is introduced
on each joint and a velocity error of +2◦s−1 is introduced
on each joint velocity. The initial yaw angle of the stance
foot is 3◦ with a desired average direction of motion of 0◦.
Figure 5 shows the center of mass and the position of the

feet on the ground. The direction of the walking motion is
controlled, and the robot evolves along a path parallel to the
x-axis, but an offset of the robot’s motion with respect to its
initial position can be seen in the y-direction.

V. CONTROL OF THE ROBOT’S PATH
A. Method
A common objective of a walking robot is to reach a given

location from an initial point. For example, in a home, the

Fig. 5. The evolution of the projection the robot’s center of mass of the
robot on the ground is shown by the red line, and the position of the feet
on the ground is shown by the green circles.

robot may need to move from one room to another by passing
through a door. This requires more precise control than just
orientation, as the robot’s path must pass through the door.
Figure 6 introduces parameters that will be used to describe
the desired motion of the robot in order to regulate its path:
the initial pose of the robot is di, q0i and the desired pose
is d = 0, q0 = 0, the distance along x is not prescribed.

door

y

x

d

q
i

0i

Fig. 6. The robot begins its motion at a pose defined by di, q0i. di is the
distance along the y-axis of the middle of the two ankles at impact. The
robot’s task is to asymptotically join the path defined by d = 0, q0 = 0 as
x increases.

In human walking, it has been observed that, in the major-
ity of turning methods, a person behaves like a nonholonomic
vehicle: when the goal is far, a lateral step is not used to
achieve lateral displacement, rather continuous modification
of walking direction (i.e., orientation) is used to produce
smooth lateral displacement [14]. Thus it is natural to use the
orientation of the robot in order to control its motion along
a desired path. A high-level supervisory controller can be
integrated into the overall controller to resolve this problem.
From one step to the next, the evolution of the pose of the
robot will be modeled as

dk+1 = dk + l sin(q0k)

q0k+1 = q0k + δq0,

which assumes that the step length l and step width are
constant.
The change of orientation δq0 will be implemented

through a change of the desired fixed point xe∗ + qd0e0. To
avoid slipping, collision with the ground, or other physical
constraints, δq0 must not be too large. Hence, at step k, the
desired fixed point is chosen as xe∗ + (q0k + δq0)e0, where

δq0 =

⎧⎨
⎩

−Qsat (−q0k − κdk) < −Qsat

Qsat (−q0k − κdk) > Qsat

−q0k − κdk otherwise.

, (19)

κ is a control gain, and Qsat is a saturation that must be
chosen appropriately.

1246



B. Example of the robot with 3 DOF at the hip
For the previous control law and reference trajectory, with

κ = 0.6, Qsat = 6◦, and for an initial pose q0i = 0◦ and
di = −0.275m, the behavior of the robot is illustrated by
the following figures. Figure 7(a) shows the evolution of q0,st
on the extended restricted Poincaré section. These variables
clearly converge to the desired value and the direction of
motion is controlled. Figure 8 (a) shows the center of mass
position and the position of the feet on the ground. The robot
rejoins smoothly the desired path.

C. Example of the robot with 2 DOF at the hip
Now the results are shown for the same task for the robot

presented in Figure 1 (a). Even though the model does not
include external/internal rotation at the hip, coupling between
the rotations in the sagittal and frontal planes can yield a net
rotation about the vertical axis from one step to the next;
thus control of the direction of the robot is still possible,
though the achieved rate of turning is reduced. For the
periodic reference trajectory described in [1] and for κ = 0.2,
Qsat = 5◦, we obtain the behavior of the robot illustrated
in Figure 7 (b) and Figure 8 (b). The robot rejoins smoothly
the desired path, but the achievable rate of turning is very
limited, resulting in a considerably longer distance along the
x-axis in order to complete the turn. Clearly, the robot is less
maneuverable than the robot with a 3 DOF hip. Since the net
yaw rotation is obtained through a large modification of the
trajectory, this change also implies a change in the step length
and width, and since the steering control strategy is based
on (19) which assumes they are constant, poor performance
is obtained. It is also interesting to note that the amount of
frontal plane sway of the CoM is higher in the robot without
external/internal rotation at the hip.

(a) (b)

Fig. 7. The evolution of q0,st on the extended restricted Poincaré section.
The desired value (q0k + δq0) evolves smoothly and is shown in green
solid line.

VI. CONCLUSIONS
Steering has been studied for two 3D bipedal robots with

passive ankles. One robot included internal/external (i.e.,
medial/lateral) rotation at the hip, while the other did not.
The method of virtual constraints was used to design a time-
invariant, within-stride feedback controller that stabilized
all but the yaw motion of each robot. A supplemental
event-based (or stride-to-stride) feedback controller was then
designed that stabilized the yaw motion. By adjusting the
set point of the event-based controller, it was possible to
steer the direction of the robot, and even to direct the

(a)

(b)

Fig. 8. The evolution of the projection of the center of mass of the robot
on the ground is shown by the red line, and the positions of the feet on the
ground are shown as green circles. For the same task and the same control
methodology, the behavior of the robot with a 3 DOF at the hip shown
in (a) and for a 2 DOF hip in (b). Theses figures show clearly that the
internal/external rotation of the hip improves the robot’s maneuverability.

motion of its center of mass along a given path. This was
achieved without designing a specific solution of the model
for turning. Instead, the event-based controller modified on-
line the final impact configuration and velocity of a path for
walking in a straight line. The results presented here can be
extended to the case of a robot with an actuated ankle.

REFERENCES
[1] C. Chevallereau, J. Grizzle, and C. Shih, “Asymptotically stable walk-

ing of a five-link underactuated 3d bipedal robot,” IEEE Transactions
on Robotics, vol. 25, no. 1, pp. 37–50, Fevrier 2009.

[2] Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, and
K. Fulimura, “The intelligent asimo system overview and integration,”
in IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2002, pp. 2478–2483.

[3] S. Kazuo, K. Tsuchiya, and K. Tsujita, “The intelligent asimo sys-
tem overview and integration,” in IEEE International Conference on
Robotics and Automation, 2004, pp. 3043–3048.

[4] K. Miura, S. Nakaoka, M. Morisawa, H. K., and S. Kajita, “A friction
based twirl for biped robots,” in IEEE-RAS International Conference
on Humanoid Robots, 2008, pp. 279–284.

[5] M. Yagi and V. Lumelsky, “Synthesis of turning pattern trajectories
for a biped robot in a scene with obstacles,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2000, pp. 1161–1166.

[6] R. Gregg and M. Spong, “Reduction-based control of three-
dimensional bipedal walking robots,” International Journal of Robotics
Research, vol. 29, no. 6, pp. 680–702, 2010.

[7] A. D. Ames, R. Sinnet, and E. Wendel, “Three-dimensional kneed
bipedal walking: A hybrid geometric approach,” in HSCC, ser. LNCS,
P. Tabuada and R. Majumdar, Eds., vol. 5469. Springer Verlag, 2009,
pp. 16–30.

[8] A. Goswami, “Postural stability of biped robots and the foot-rotation
indicator (FRI) point,” International Journal of Robotics Research,
vol. 18, no. 6, pp. 523–533, June 1999.

[9] M. Vukobratovic, B. Borovac, D. Surla, and D. Stokic, Biped Loco-
motion. Berlin: Springer-Verlag, 1990.

[10] E. Westervelt, J. Grizzle, C. Chevallereau, J. Choi, and B. Morris,
Feedback Control of Dynamic Bipedal Robot Locomotion, ser. Control
and Automation. Boca Raton: CRC Press, June 2007.

[11] B. Morris and J. Grizzle, “Hybrid invariant manifolds in systems with
impulse effects with application to periodic locomotion in bipedal
robots,” IEEE Transaction on Automatic Control, vol. 54, no. 8, pp.
1751 – 1764, August 2009.

[12] M. Spong and F. Bullo, “Controlled symmetries and passive walking,,”
IEEE Transactions on Automatic Control, vol. 50, no. 7, pp. 1025–
1031, July 2005.

[13] J. W. Grizzle, “Remarks on event-based stabilization of periodic orbits
in systems with impulse effects,” in Second International Symposium
on Communications, Control and Signal Processing, 2006.

[14] G. Arechavaleta, J. Laumond, H. Hitcheur, and A. Berthoz, “On
the nonholonomic nature of human locomotion,” Autonomous Robots,
vol. 25, no. 1-2, pp. 25–35, 2008.

1247




