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Abstract— This paper describes a novel approach to surface
fitting for the creation of a 3D surface map for use by a small
articulated wall-climbing robot. Both a laser range finder and
a low-resolution camera are used to acquire data in a sparse
manner. By scanning at large intervals, such as every 5-10◦,
and then fusing the data, it is shown that it is possible to
fit planar surfaces at an accuracy comparable to dense range
scanning. Infinite planes are fit to lines extracted from the range
scans and then the image corners and lines are used to provide
polygon boundaries on these planes. This method is faster and
more flexible, both in acquiring data and in computing the
planar features and less memory is required. This method
also works well in feature poor environments where stereo
vision can struggle and does not need to process the feature
correspondences in the typical fashion which also saves time.
This surface fitting approach is demonstrated using a real data
set and results show promise in providing quick yet accurate
3D planar surfaces which could be integrated into SLAM and
motion planning frameworks.

I. INTRODUCTION

In the field of mobile robotics one of the main research
areas is that of mapping and navigation. A robot must
develop some understanding of the environment it is placed
in for it to be able to undertake its designated functions.
Mapping is the process of building such an understanding
of the immediate surroundings of a robot and is linked
in with other aspects such as navigation, and localization.
This combination lead to the necessary development of
Simultaneous Localization and Mapping (SLAM) methods
[1], where the main focus has been in the area of 2D SLAM.
This is the easier problem and has been sufficient for most
robotic systems. However in recent years there has been more
interest in extending existing methods and developing new
approaches to mapping, navigation and localization in 3D.

While many of these newer methods have shown success
in 3D environments, most are mere extensions of the 2D
case. Some are 3D maps built on top of 2D SLAM engines
[2], whilst those implementations of full 3D SLAM are
generally limited to ground constrained robots using wheels
or tracks [3]. The exception to this has been in the areas of
underwater or aerial vehicles [4]. In the vast majority of these
3D cases the environments of interest are large and the aim
is to maintain consistent maps over large distances and long
trips. In contrast there have been few attempts at true 3D
SLAM for indoor robots. 2D SLAM is usually considered
sufficient, with 3D mapping overlayed if needed.

Our robot (shown in Fig. 1) operates in indoor environ-
ments but is not constrained to the ground. It uses suction
cups to climb walls and is able to walk on any suitable flat
surface. Section II provides further details. It moves in 3D

and so needs a full 3D SLAM implementation containing
planar surfaces to allow this. The robot scans surfaces while
it is attached to them so the ranges of interest are typically
less than 500mm. As our robot walks on the surfaces rather
than just mapping their location, the need for a highly
accurate 3D surface mapping system becomes apparent.

Our robot is small and payload limited. All hardware
must be supported by the suction cups and thus sensing and
processing hardware is limited. This leads to a secondary
consideration that the algorithm be lightweight and aimed at
operating on a minimum of computational resources. This
would allow our method to be generalized for use in other
miniature robots with similar constraints.

This paper describes a method for mapping suitable planar
surfaces to be later used in the aforementioned situation.
Section II describes the target robot and sensor system. An
overview of our mapping approach is given in Section III
with details of the plane fitting and polygon bounding in
Sections IV and V. The results of this approach are shown
in Section VI.

II. HARDWARE

A. Robot Hardware

The target robot for our 3D mapping work is a small cus-
tom built wall-crawling robot, shown in Fig. 1. It is currently
under construction and is based on our first prototype robot,
shown in Fig. 2, which did not possess any sensing hardware.
The new version has two feet, each with a suction cup for
attaching to walls or any other suitable flat surface. The robot
is a 7 degree of freedom (DOF), entirely self contained,
bipedal robot. It has been designed to maximize the ability to
access confined spaces. It can negotiate environments such
as air ducts, pipelines and industrial plant with inclined and
vertical surfaces.

Fig. 1. Climbing Robot Mk2 Model - Target System.
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The robot carries two low resolution cameras and two laser
range finders (LRF) mounted in pairs, one camera and one
LRF per foot. During operation the robot secures itself via
one foot, while the other foot is used to make observations
of the environment. The free foot, with the camera and LRF
mounted, can rotate to achieve any pose and orientation
within its workspace to scan the environment. The final joint
of the robot rotates to tilt the sensors through an angle θ and
provide a 3D scan. This action is demonstrated in Fig. 3.

B. Sensors

The chosen sensors must be small and light weight and
so a Hokuyo URG04-LX LRF and a CMUCam3 camera
were chosen. The LRF has a range of 4m with a resolution
of 1mm and a quoted accuracy of ±10mm. It scans in 2D
through 240◦ in steps of 0.36◦. The CMUCam3 is a low-
resolution CMOS RGB camera module. The resolution used
was 176x287 pixels.

The Laser Range Finder was calibrated to determine the
centering offset. The camera was calibrated to determine the
intrinsic parameters using a standard checkerboard pattern
[5]. The parameters found were the Focal Length (fu,fv) and
the Principal Point (u0,v0) which form the standard camera
intrinsic parameter matrix K. The extrinsic calibration be-
tween laser and camera coordinate frames was performed
manually.

III. MAPPING METHOD OVERVIEW

This section describes our approach to the fitting of planar
surfaces. These surfaces can be used later to create a 3D map
of a robot’s immediate environment or they can be integrated
within a SLAM framework. The general approach taken in
the literature involves dense range images from either a 3D
laser range finder [6][7] or a stereo vision system [8][9].
Their range images were segmented through either region
growing or edge based methods and then planes were fit to
each segmented point cloud. This requires dense scanning
and the segmentation can be expensive and slow.

Our proposed approach differs in that the fusion of sparse
laser and image data is used to generate the planar surfaces
from a minimal number of scans. While the idea of using
both range and vision information to produce better 3D maps
is not a new one, our approach is novel. The simplest fusion
approach involves applying texture to the 3D map from the

Fig. 2. Climbing Robot Mk1 - Original Prototype.

range data, but this is purely for visualization. Both [10] and
[11] used vision to interpolate between range scans. They
used dense scanning and high resolution images to provide
accurate and detailed models but were computationally ex-
pensive and only produced point clouds. Vision has been also
used to aid in segmentation [12] and to add additional range
points to occluded areas in the laser range image [8][13].

A. Approach

In our method, at each pose a series of scans are acquired
by tilting the sensor suite. Lines are extracted from the 2D
laser range scans and these are used to fit infinite planes. Cor-
ners and lines are extracted from the camera image and these
are used as polygon boundaries on the infinite plane. This
allows for very sparse and fast scanning of the environment
as very few scans are needed to map the major planes in the
scene. Scans could be taken every 5◦ − 10◦ as opposed to
other methods requiring a tilt angular resolution of about 1◦.
The only similar idea was hinted at by [14] however their
system was primarily aimed at motion estimation in large
outdoor environments and their 3D reconstruction shows no
resemblance to our work. Our method also aims to minimize
the memory and processing requirements. This is achieved
through the low frequency of scans and other data reduction
techniques and approximations.

B. Feature Data Association

The foundation of our mapping approach are the features
extracted from the laser and camera data to which the
surfaces are fit. Once these features have been extracted,
a method is needed for grouping together the features that
appear to have been generated by the same surface. This
is an important step to ensure that the plane fitting and
bounding processes are accurate. This feature grouping is
a data association problem and is unique to our approach, as
opposed to other standard methods in the literature.

Each laser scan is segmented to extract the linear seg-
ments. Segments generated by a particular plane will be
coplanar, taking into account the noise and uncertainties
in the system and sensor. Two lines are coplanar if they
intersect, meaning the shortest distance between them is
less than some threshold defined by the noise. This general
method involves matching segment pairs from different laser

Fig. 3. Scanning Motion for Data Acquisition.
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scans. However this will not work with the simplified scan-
ning method used as it produces parallel scan lines. Instead
the line segments are mapped onto the camera images and
segments that are physically close and have similar texture
are used to produce the initial candidate plane groupings.

The image corner and line features are pre filtered to
remove false features generated by texture that do not
correspond to physical edges. The remaining features are
then matched to the plane groups by using the laser line
segments on each image as seed regions. The image features
surrounding each segment are matched to that segment
providing they meet certain conditions such as similarity of
texture/colour. This could be considered to be similar to a
region growing approach but using a set of sparse features.

IV. PLANE FITTING
Plane fitting is the first half of the surface mapping ap-

proach. The input laser range data is segmented into straight
lines in a 2D line segmentation process [15]. Image edges
can also be used to complement this segmentation process
by projecting the line segments on each image. This can be
used for either pre splitting or post pruning of the segments
to provide more robust segmentation. Each linear segment
consists of a set of points that support that line. After taking
at least two laser scans at different tilt angles θ, it is possible
to start fitting planes. It is assumed that the surface generating
the line segments is planar. While this will not always be
the case, by using only good line segments a number of
possible non-planar surfaces will be immediately ignored.
A third line segment from further scanning will verify the
planar assumption as it should be coplanar.

For each line segment, the supporting points are trans-
formed from the local laser coordinate frame into 3D points
pw (with covariance Σw) in the world coordinate frame
using the kinematics of Fig. 3. A plane is fit to the set of
points from at least 2 such matched segments using Principal
Components Analysis (PCA) using the plane model in (1).
The parameters are a normal vector n which is perpendicular
to the plane and d which is the orthogonal distance to the
origin, ie the distance along the normal vector direction.

n · p− d = 0 (1)

PCA generates an orthonormal basis for a set of data
points such that the greatest variance lies in the direction
of the first Principal Component (PC), the second PC then
accounts for as much of the remaining variance as possible
and so on. PCA can be used to provide an orthogonal
plane fit, with the normal vector n being the third Principal
Component vector found. This should have by far the least
variance, assuming the data was generated by a plane. PCA
involves finding the eigenvectors of the covariance ΣP of
some data P , in the order of highest to lowest eigenvalues.

After using PCA to find n, the only remaining plane
parameter required is d. This is found by substituting n and
pcog into (1) and rearranging as shown in (2). The centre of
gravity point pcog lies on the plane [6] and is the mean of
the data points.

d = n · pcog pcog =

∑m
i pi

m
(2)

The three principal components produced form an or-
thonormal basis of a new coordinate frame aligned to the
fitted plane. It can therefore be used as a rotation matrix R
to transform the input points pw into the plane coordinate
frame to give points pp as in (3).

pp = R[pw − pcog] Σp = RΣwR
T (3)

A. Uncertainty Analysis

In order to find the covariance of the plane parameters
in (1), an ordinary least squares fit is applied using (4-5).
It is possible to derive the covariance of the least square
parameters β0, β1, β2 and then use these to calculate the
covariances of n and d. The least square fit shown below is
not orthogonal and thus is not identical to the PCA fit, nor is
it an optimal fit. It is however possible to first transform the
data points into a new coordinate frame defined by the PCA
orthonormal basis whose origin is at the centre of gravity
point. In this new coordinate frame the least square fit aligns
with the PCA fit. The desired covariance can then be found,
converted to n,d coordinates and then transformed back into
the original coordinate frame. This approach is an extension
of that used in [6].

The least squares regression equation for plane fitting can
be defined as (4).

Ax +By + Cz +D = 0 (4)

By rearranging as a function for z and changing the
parameters to β0, β1, β2, an amenable form is achieved as
in (5).

z = β0x + β1y + β2

β0 =
A

−C
β1 =

B

−C
β2 =

D

−C
(5)

With the plane equation in this form, the x,y, z values
are substituted for the coordinates of each point pw and the
equation is converted into matrix form consisting of N rows,
one for each of the N points. This can be simplified and
rearranged for β as in (6), where M is a matrix containing
N rows of the x,y values.

Z = Mβ β = [MMT ]−1MTZ (6)

The covariance of the plane parameters β = [β0 β1 β2]T

can be calculated from the input covariances of each input
point. This is done using (7) where Σ is a matrix with the
input covariance matrices of each point along its diagonal.
F is the jacobian of the three β parameters with respect to
each input point’s x,y,z coordinates.

Σβ = FΣFT (7)

The jacobian F can be found by taking the partial
derivatives of (6). This requires the inverse to be found

1541



symbolically rather than numerically. It is now possible
to explicitly write equations for β0, β1, β2 in terms of the
input points xi, yi, zi. The partial derivatives required for the
Jacobian F can then be found and the covariance calculated,
which can used to find the covariance of n,d.

B. Covariance transformation

The input data points are transformed into the Coordinate
Frame defined by the PCA axes with pcog being the origin
using (3). In this new coordinate frame, the plane will lie
along the X,Y axes as expected because this coordinate
frame is the plane itself. Therefore the plane parameters are
exactly n = [0 0 1]T and d = 0 but these are not of interest
as PCA has already provided these values in the original
coordinate frame. For the same reasons the parameters β
from (5) also all equal 0. But it is possible to calculate
the covariance matrix Σβ as outlined above and use this to
determine the covariance matrix Σn and variance σd.

As the data points are centred about the mean pcog in the
plane coordinate frame, many of the sum terms in the partial
derivatives for β equate exactly to 0 thus simplifying the
equations considerably. So by finding the partial derivatives
of β, the jacobian components Fi can be found as in (8).

Fi =


β0

xi

β0

yi

β0

zi
β1

xi

β1

yi

β1

zi
β2

xi

β2

yi

β2

zi

 =


zi∑
i x

2
i

0 xi∑
i x

2
i

0 zi∑
i y

2
i

yi∑
i y

2
i

0 0 1
N

 (8)

Now that the covariance matrix Σβ has been found it can
be used to find the covariance matrix Σn and variance σd,
still in the plane coordinate frame. The transformation from
β to n and d is derived and their partial derivatives are used
to transform the uncertainty. Using (5) with C = −1, the
general plane parameters are A,B,C,D. The normal vector
n is found by normalising the vector [A B C]T and d is
found by normalising D using the same factor. The jacobian
of the transformation is used to find the covariance matrix
Σn as in (9) and likewise the variance σ2

d is shown in (10).

Σn = FnΣβF
T
n =

σ2
β0

σ2
β01

0

σ2
β01

σ2
β1

0

0 0 0

 (9)

σ2
d = FdΣβF

T
d = σ2

β2
(10)

These are the sought after uncertainty information for the
plane parameters. All that remains is to transform them back
into the original coordinate frame using (3).

V. PLANE POLYGON BOUNDING

Unlike other mapping approaches, the sparse nature of
the range scanning does not supply enough information to
determine the polygon boundaries of the infinite planes fit in
Section IV. Instead our method uses image features extracted
from the cameras to estimate them. The extracted image
corners act as the primary basis for the boundary of the
plane and the image lines provide information as to the
connectedness of the corners. A modified version of [16]

was used, based on canny edge detection to detect lines and
then curvature to detect corners.

The simplest plane fit involves two laser lines and one
camera image. In this case the polygon is bounded by the
extracted corners. However by adding a second or third
image it is possible to improve the accuracy of the boundary
and also expand the boundary if the camera field of view
is limited/occluded. Corners from new images need to be
incrementally matched and fused with the current boundary
corner estimates.

A. Camera CF to World CF

Prior to matching and fusing corners, the camera pixel
location pi=[u v 1] must be transformed into world coordi-
nates. This is only possible up to a scale factor Z.

The first step is to convert from image coordinates to nor-
malized camera coordinates pcn using (11). The uncertainty
Σpcn is also calculated.

pcn =

xnyn
1

 =

xc/zcyc/zc
1

 = K−1

uv
1

 = K−1pi (11)

It is then required to convert this normalized point from
the camera coordinate frame to the world coordinate frame.
Essentially pcn represents a line in 3D space passing through
the camera center pc=[0 0 0]T and with a direction vector
given by pcn. To convert this line to world coordinates,
the two components need to be separately transformed.
This gives the 3D line equation (12) in world coordinates
with direction vector v and passing through p0 in world
coordinates. The covariances Σv and Σp0 are also found.

p = p0 + Zv Z ∈ R (12)

B. Line - Plane Intersection

As the converted camera pixel represents a line in 3D
space, further information is needed to determine the scale
factor Z and thus the unique point in 3D that was imaged by
the camera. If the parameters of the surface that contains the
imaged point are known then it is possible to calculate the
3D location of that intersection point. The plane parameters
found in Section IV can be used by combining (12) with (1)
and it is then possible to estimate the scale factor Z and thus
the unique point pw of the image corner using (13).

Z =
d− n · p0

n · v
(13)

The uncertainty of v and p0 can be propagated into Z
using the Jacobian Matrix J and the input covariance matrix
Σ containing the covariances Σv , Σn, σd and σp0 along its
diagonal.

σ2
z = JzΣJ

T
z Jz =

[
∂Z

∂v

∂Z

∂n

∂Z

∂d

∂Z

∂p0

]
(14)

To calculate the final position of the image pixel in world
coordinates the value of Z found in (13) is used to find pw

as in (15) and the covariance Σpw can be found using (16).
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pw = p0 + Zv (15)

Σpw = Σp0 + vσ2
zv

T + Z2Σ2
v (16)

C. Corner Fusion

New detected corners need to be matched to determine
which existing boundary corner to merge with. This is done
by projecting the new corner onto the current polygon bound-
ary and using a nearest neighbor search. If the distance is
smaller than a threshold, the corners are considered matched
and will be merged. The fusion of new corners is based on
the standard Kalman Filter equations to provide the optimal
linear estimate. A motion model is not needed as the plane
is stationary. The state variables xk with covariance matrix
Pk are the boundary corner locations on the infinite plane
they have been assigned to. The measurements zk are the
new corner locations pw with covariance Σw from (15-16)
after having been projected onto the plane using (3).

VI. RESULTS

This approach was tested with the scene shown in Fig.
4. There are eight planar surfaces that are of interest for
demonstrating our method. Seven scans were taken at tilt
angles θ of 0-30◦ below horizontal with a step of 5◦.

Infinite planes were fit to the eight surfaces as in Section
IV. The resulting estimated parameters n and d are shown in
Table I along with their known values. The plane parameter
estimates for nest show good agreement with the ground
truth, however for some planes there is a large error in the
d parameter. This is due to systematic LRF range errors
which are not accounted for. This also leads to errors in
the n parameter. The least squares plane fitting assumed that
the range error was gaussian so the covariance of n,d is
underestimated. Because of this bias, the polygon boundary
results shown below will use the ground truth values of
n,d. This will allow the accuracy of this approach to be
demonstrated independently of this range bias. Surface 7 is

Fig. 4. Test Scene. Surfaces of interest highlighted.

TABLE I
PCA PLANE FITTING RESULTS.

Planar nest ntrue dest dtrue
Surface normal vector normal vector mm mm
1 Wall [-0.01 -0.02 0.99] [0 0 1] 579 550
2 Book Front [0.05 -0.01 0.99] [0 0 1] 543 507
3 Foam Top [-0.03 -0.62 0.79] [0 -0.56 0.83] 372 353
4 Balsa Wood [-0.03 -0.02 0.99] [0 0 1] 576 545
5 Box Front [-0.47 -0.01 0.88] [-0.43 0 0.91] 203 197
6 Box Side [-0.90 0.03 -.43] [-0.91 0 -.43] -290 -283
7 Box Top - [0 1 0] - 80
8 Black Paper [-0.02 0.99 -0.02] [0 1 0] -21 0

not fit as only one laser scan intersected it. With the current
method it was not possible to fit an infinite plane.

Surface 3 (Foam) is used to demonstrate the fusion of
boundaries from multiple images. The individual boundaries
are shown in Fig. 5(left) with the true boundary shown in
gray. Individually each boundary may not cover the entire
surface or may do so inaccurately. By merging boundary in-
formation from multiple images, both the accuracy and field
of view improves to better encompass the entire boundary
of the surface. The merged corners and the plane polygon
boundary are shown in Fig. 5(right).

This process was repeated for all eight surfaces being
tested and the resulting 3D surfaces can be seen in Fig.
6(right) as compared with an image of the scene Fig. 6(left).
This image is used for comparison only as the reconstructed
3D surfaces result from the fusion of multiple images and
so the perspective is not identical. It can be seen that
these surfaces provide a good representation of the actual
scene. Surface 7 (Box Top) is missing, as mentioned earlier.
However this surface shares some image lines with surface
5 and 6 which could be used as extra lines in the plane
fitting process. It should also be noted that this is only one
3D scan. The surfaces will be merged with those from other
scans to improve their accuracy so it is not vital that the
representation is perfect from such a single 3D scan.

For each polygon, the boundaries showed reasonable

Fig. 5. Surface 3) Foam. (left) Individual polygon boundaries. (right)
Merged polygon boundary. True plane boundary in shaded gray.

1543



Fig. 6. 3D scene results: (left) 20◦ camera image. (right) 3D polygons.

agreement with the known true boundaries however some
error in location is observed. To quantify this error, for each
corner the error was found absolutely (mm) and as a ratio to
its standard deviation. The Root Mean Square Error (RMSE)
for these two error metrics is shown in Table II. While the
RMSE(mm) error is reasonable, the covariances are clearly
underestimated as shown by RMSE(σ).

The results show that this method is capable of producing
good surface maps for each 3D scan, but with some limita-
tions. The accuracy is significantly influenced by biases in
the LRF range measurements caused by surface properties
such as the material and angle of incidence of the beam.
These can be hard to correct for in general. The sensor
intrinsic and extrinsic calibrations are a possible cause of
the bias in the polygon boundaries. These both lead to
the covariances being underestimated as the plane fitting
and boundary fusion assumed only gaussian errors. This
could be improved by better modeling of the LRF error
sources, improved calibration and by the use of non-gaussian
estimators. More experiments are being developed to further
test and refine this methodology on a variety of surfaces.

VII. CONCLUSIONS

This paper has successfully demonstrated a novel method
for fitting planar surfaces to 3D sensor data. The approach
involved the fusion of sparse range and image scans of indoor
environments to fit polygon boundaries onto planar surfaces.
By extracting line segments from the 2D range scans and

TABLE II
BOUNDARY CORNER LOCATION ERROR.

Plane RMSE (mm) RMSE (σ)
1 Wall - -
2 Book Front 17.7 7.8
3 Foam Top 14.8 5.2
4 Balsa Wood 9.5 3.4
5 Box Front 15.0 2.7
6 Box Side 14.1 3.4
7 Box Top - -
8 Black Paper 12.3 3.3

fitting an infinite plane, it was shown to be possible to
determine the points of intersection of an image corner to
determine the 3D position and covariance of that image point.

A sample scene containing eight planes was used to
demonstrate this method and it was shown to provide a good
estimate of the plane boundaries. The major source of error
appeared to be sensor calibration and LRF range biases.
Better sensor modeling and calibration will likely provide
good gains in accuracy and reduce most of the bias seen in
the results. The field of view of the camera was narrow and
a wider lens would provide for better boundary estimates.

This method shows promise in providing accurate yet fast
3D planar surfaces which could act as features in a 3D
SLAM implementation. This would allow our climbing robot
to successfully navigate its environment autonomously.
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