
  

 

Abstract— An important topic in the field of Multi Robot 
Systems focuses on motion coordination and synchronization 
for formation keeping. Although several works have addressed 
such problem, little attention has been devoted to study the 
computational complexity within the framework of large-scale 
systems. This paper presents our current work on how to 
achieve high computational performance for systems composed 
by a large number of robots that must fulfill with a marching 
and formation task. A scalable Multi-Processor Parallel 
Architecture is introduced with the purpose of achieving 
scalability, i.e., computation time of O(log2n) for a n-robots 
system. Our architecture has been tested onto a multi-processor 
system and validated against several simulations testing.  
 

Index Terms — Cooperative robotics, Distributed systems, 
Multi-robot systems, Newton-Euler formulations, Strictly 
parallel computation, Formation keeping, Convoying. 

I. INTRODUCTION 
ulti-robot systems (MRS) are an active field that offers 
rich application domains and research topics. A 

variety of techniques have been proposed in order to 
approach the problems of cooperation and coordination in 
different kinds of applications [1], such as exploration and 
mapping or search and rescue. The field of MRS is 
nowadays quite extended, ranging from swarm robotics, 
where a high number of usually homogeneous units are 
involved, to systems composed by few sophisticated robots 
with different capabilities. 

Multi-robot cooperation applications can be roughly 
divided in two classes: tight or loose. Tight cooperation 
requires a continuous coordination between the robots, e.g. 
box pushing and formation keeping, whereas loose 
cooperation requires coordination at the beginning of the 
mission for planning a division of labour, e.g. exploration 
and mapping.  

This paper focuses on the first kind of applications, 
concretely in formation marching that require robots to 
form-up and move in a specific pattern. We first approach 
the problem from a formation control perspective, and then 
we introduce a novel methodology for improving existing 
formation control methods from a performance point of 
view.  

A. Related Work  
In behavior and schema-based models [2],[3],[4], robots 

act according to a set of predefined behavior patterns, 
activated in response to the task to perform and their 

perception of the environment (including the actions that 
team-mates are performing). Such techniques have the 
advantage of being fully distributed and relatively easy to 
implement. Nonetheless, since formation is a consequence of 
the individual behaviors, the behavior of the formation is 
difficult to forecast and analyze mathematically. 

Virtual fields, such as potential fields [5], [7], social fields 
[8], and navigation functions [6], maintain the formation as a 
result of the combined attraction/repulsion forces between 
agents and the environment. Such forces draw a virtual 
vector field over the scenario, and robots move along field 
lines according to the task. These methods have the 
disadvantages that, in order to compute the “forces” acting 
on an individual, the status of all the team-mates must be 
known, leading to the need of intense all-to-all 
communications between the team members (centralized). 

Recently, spring/dump models [9]-[11] have been 
proposed to overcome the rigidity of the original virtual 
structures approaches [12], [13]. In such models, the robots 
are connected using virtual joints that allow the structure to 
be temporarily modified by external forces (e.g. useful for 
obstacle avoidance), providing a good elasticity and 
allowing the formation to squeeze in order to pass through a 
narrow passage. Spring/dump models have the main 
advantage that can take into account the dynamics and 
kinematics of the individual robots. However, for a large-
scale system, i.e. n>>, the computational complexity of this 
method constrains the system to be unsuitable for real-time 
purposes. 

B. Contribution  
In this work, we focus the attention on large-scale Follow-

The-Leader formation (see Fig. 1).  
 

 
 
Fig.  1. Follow-The-Leader formation based on the motion presented in 
serially articulated multibody systems (see Fig. 2). 
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In terms of formation control, our formulation is similar to 
the spring/dump model, in which position relationship 
between the robots is modeled as virtual joints, and each 
robot is represented as a rigid body that is virtually 
connected with another. The formation is then considered as 
a chain of connected bodies, and the motion control of each 
robot is treated as a multibody problem resolved collectively 
and in a distributed way based on the Newton Euler 
formalism of coupled rigid body dynamics (see Fig. 2). This 
method has the advantage that takes into account the 
dynamics and kinematics constraints of the robots, and is 
also suited for teams of heterogeneous robots. 

On the other hand, we have approached the computational 
complexity related to the solution of the formation control 
assignment. The most computationally efficient, and perhaps 
conventional scheme to describe the problem of motion in 
serially coupled multibodies, relies on the application of 
Newton-Euler’s set of Equations of Motion (EoM) with an 
O(n) serial complexity (for n bodies) [14]. This method is 
typically used for robotics applications and general 
multibody dynamics formalisms. Unfortunately, most of the 
existing O(n) algorithms are strictly sequential with bounded 
parallelism, i.e., performance decreases lineally as n 
increases, and subsequently the scalability of the O(n) 
solutions restrict the system applicability to small-scale 
scenarios [15],[16]. 

In this work we take the advances in relation to the 
scalability of Newtonian formulations [17] and previous 
work presented in [18], in order to re-formulate the classic 
O(n) serial solution of dynamic’s EoM into a representation 
that allow an easy parallelization structure for computing 
and communicating the EoM with a computational 
complexity reduction from O(n) to O(log2n) for an n-robot 
system. In other words, we have a large-scale (n>>) MRS 
where each robot is an independent processing unit capable 
of receiving data, processing, and sending data1 to other 
robots, involving a computation time of O(log2n).   

Using this multibody schema, we are capable of:  
• Implementing a large-scale MRS.  
• Addressing virtual dynamics constrains that allows to 

consider a wide set of different motion patterns (e.g. 
force-energy relationships to preserve a specified 
formation or obstacle avoidance). 

Section II reviews the mathematical foundations of classic 
Newton Euler’s multibody-coupled Equations of Motion and 
also introduces how to improve on the computation of those 
equations in order to parallelize and distribute them.  

Section III presents the Multi-Processor Parallel 
Architecture and also describes the parallel computation, 
communication network, and robot navigation issues. 
Section IV shows the results from scalability/performance 
tests and navigation/formation for robot cooperation. 
Finally, Section V concludes the paper with closing remarks 
on current and future work.   
 

1 The word “data” refers to the Equations of Motion –EoM that are being 
propagated through the Multi-robot System. 

II. DISTRIBUTED MULTI-ROBOT FORMATION BASED ON 
COUPLED MULTIBODY DYNAMICS 

This section provides the methodology to achieve 
locomotion based on rigid body dynamics extended to 
Multi-Robot System. Equations of Motion are presented 
using spatial algebra operators for improving physical 
insight. In addition, the use of spatial notation [19] has been 
very effective in the regard of obtaining high computational 
efficiency based on the physical variable-compactness.    

A. Foundations 
Assuming from Fig. 2 that the joint frame Oi  and the 

Center of Mass –CM are two points located on the rigid 
body-i, the term   

 
s oi,cm ∈ℜ3 is the vector that joints the joint 

Oi  with the CM, and   
 

p i,i+1 ∈ℜ
3

 is the vector that joints the 
joint frames from Oi  toOi+1. 
 

 
 
Fig. 2. Coupled rigid multibody description. 
  

The translational and angular velocities v,ω[ ] and forces
f ,τ[ ] respectively at any point on a body in ℜ6 are:  
 

Voi =
ω oi

voi

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ,     ˙ V oi =

˙ ω oi

˙ v oi

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ,    Foi =

τ oi

foi

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ .           (1) 

 
Additionally, in dynamics equations, the spatial quantities 

in (1) must be propagated and projected onto points or 
unique frames in order to be operated on. For this purpose, 
operators for translation ˆ P i,i+1 ∈ℜ

6x6  and rotation 
ˆ R i+1,i ∈ℜ

6x6  are also defined in spatial operators forms as: 
 

ˆ P i,i+1 =
I ˜ p i,i+1

0 I

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ,     Ri,i+1 =

ri+1,i 0

0 ri+1,i

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ,  (2) 

 
 
where I ∈ℜ3x3 is the identity operator, ˜ p i,i+1 ∈ℜ

3x3  is the 
skew symmetric matrix corresponding to the vector cross 
product operator of   

 
p i,i+1 . The term ri+1,i ∈ℜ

3x3  corresponds 
to the generalized rotation matrix that takes any point in 
coordinate frame i+1 and projects it onto frame i.  

Considering now that the body-i in Fig. 2 is serially 
connected with other bodies, and applying the Newton-Euler 
foundation based on d’Alambert’s principle [20]; the 
Equations of Motion –EoM are obtained by: i) Forward 
propagation of velocities Vi in (3) and accelerations ˙ V i in 
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(4), from i = 1( )  to last body i = n( ). ii) Backward 
propagation of the spatial forces Fi in (5) from last i = n( )  
to first body in the chain i = 1( ) . 

Based on the previous statement, the spatial quantities 
applied to any body-i are composed by the sum of the 
induced motion (from body i-1), and the local component 
motion (within body-i). The spatial velocity in ℜ6 is: 

 
Vi = ˆ P 

i,i+1

T ˆ R 
i+1,i

T Vi−1 + Hi
˙ Q i   ∀ i : i = 1...n{ }.   (3) 

 
The term Hi ∈ℜ

6  allows the projection of the local 
velocity component ˙ Q i  with respect to the axis of motion. 
Such joints can be for rotation or translation, and Denavit & 
Hartenberg parameters have been used to define the robots 
kinematics relations based on homogeneous transformations 
defined in (2) or quaternion. Differentiating (3), the spatial 
accelerations are: 

 

  
˙ V i = ˆ P 

i,i+1

T ˆ R 
i+1,i

T ˙ V i−1 + Hi
˙ ̇ Q i + ˆ ˙ P 

i,i+1

T ˆ R 
i+1,i

T Vi−1

       +  ˙ H i
˙ Q i   ∀ i : i = 1...n{ }.

         (4) 

 

The term ˆ ˙ P 
i,i+1

T ˆ R 
i+1,i

T Vi−1 and  ˙ H i
˙ Q i refer to the coriolis and 

centrifugal accelerations respectively. Finally, the spatial 
forces are: 

        
Fi = M i

˙ V i + ˙ M i − ˆ ˙ S oi,cmM i
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ Vi + ˆ R 

i +1,i

ˆ P 
i,i +1

Fi+1

      + ˆ S oi,cm
T FR,A     ∀ i: : i = n...1{ },      

 (5) 

      

 
where ˆ S oi,cm ∈ℜ6x6  has the same form expressed by the 
ˆ P i,i+1 ∈ℜ

6x6  operator in (2), and corresponds to the distance 
between the joint frame Oi  and the CM of the body as 
denoted by the vector   

 
s oi,cm  in Fig. 2. In addition, the term 

M i
˙ V i  is the local force component where ˙ M iVi − ˆ ˙ S oi,cmM iVi  

refers to the gyroscopic force effect acting on the body-i, and 
FR,A  is any external force acting on body’s CM (see Fig. 2). 

As previously mentioned, the centralized (serial) 
procedure to compute the EoM in (3), (4), and (5) involves a 
computational complexity O(n). Our goal in next subsection 
is to reduce that complexity to O(log2n).  

B. O(log2n) Dynamics to distributed MRS formation 
The solution for reducing the O(n) complexity involves 

the reformulation of the EoM from (3) to (5) in a first-order 
linear inhomogeneous recurrence (LIR) form.  This reduces 
to applying the Kogge and Stone [21] recursive-doubling 
technique, which reduces the equation set (∀ i), at each one 
of a total log2 n + 1 steps, by powers of 2. This procedure 
allows distributing the EoM computation using n-processing 
units (i.e. n-robots), and consequently reduces the 
complexity from O(n) to O(log2n) in the calculation and 
propagation of the EoM through the formation scheme. To 
properly define the LIR reformulation and subsequently the 

distribution of EoM, let focus on the spatial velocity in (3). 
The goal is to identify how the i-1 velocity term Vi−1 affects 
into the computation of the local termVi .   

 
Ci = ˆ P 

i,i+1

T ˆ R 
i+1,i

T ,    Bi = Hi
˙ Q i .         (6) 

 
Replacing Ci  and Bi  into (3), and expanding the i-1 

dependent terms until n (LIR structure), we obtain: 
 

  

V1 = C1V0 + B1,

V2 = C2V1 + B2 = C2C1V0 + C2B1 + B2

Vn = CnVn−1 + Bn = CnCn−1...C2C1V0 + CnCn−1...C2B1 +
                                 CnCn−1...B2 + ...+ CnCn−1Bn−2 +
                                 CnBn−1 + Bn .

  (7) 

 
Applying the same procedure for accelerations and forces 

in (4) and (5), the distribution of the EoM is clearly detailed 
in Fig. 3. This concept shows how to distribute/propagate the 
EoM along the robot formation based on the concept of the 
forward and backward propagations. 

 

 
 
Fig.  3.  O(log2n) propagation scheme of the EoM through the formation for 
n=4 robots. 

 
In Figure 3, the term V  corresponds to the velocity or 

acceleration forward propagation of (3) and (4) ∀ i: : i = 1...n
whereas the term F  is the force backward propagation of (5) 
∀ i: : i = n...1. Note that, for n=4 robots, just two stages e=2 
are required to compute the EoM, i.e., O(log24) against O(4). 
Thus, the system will maintain the scalability to achieve 
real-time response for increasing number of robots (n>>). 
Next section shows this process within the framework of 
Multi-Robot Systems. 

III. THE MULTI-PROCESSOR PARALLEL ARCHITECTURE 
MP2A  

The MP2A is a fully distributed parallel architecture 
specially conceived for solving formation and marching 
problems in large-scale MRS. Due to the EoM scheme based 
on coupled agent behavior, the MP2A supports on the 
dynamics presented in serial/parallel chains coupled 
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mechanisms, where each robot is capable to move according 
the physical requirements of the whole system, achieving the 
best possible synchronization because of the virtual 
coupling. Three modules basically compose this 
architecture: Computation/Propagation, Communication, 
and Navigation. Next subsections review these modules.   

A. MP2A Computation/Propagation  
This concept was previously introduced in Fig. 3. This 

section shows how the replacements (LIR EoM structure) in 
(6) are applied for computing and propagating velocities, 
accelerations and forces using the log2n step-approach.  

 

 
 
Fig.  4. MP2A O(log2n) velocity propagation scheme for n=8 robots 
 

Figure 4 shows the computation and communication of 
velocities for n=8 robots with e=3 propagation steps, 
∀e :e = 0... log2 n . The arrows represent how the velocity 
EoM flows along the nodes/robots, which each node/robot is 
represented by a circle. Note that at step e=0, each robot 
computes their local equations, where the terms B and C  are 
the replacements in (6) respectively. Note that the C term 
corresponds to a matrix (M) ∈ℜ6x6whereas the B term is a 
vector (V) ∈ℜ

6 . Furthermore note how the data (matrices 
and vectors) is propagated and operated in order to compute 
the total spatial velocities in (4) for each robot-node 
∀ i : i = 1...8  for a total propagation steps ∀e :e = 1... log2 8⎡ ⎤. 

In the case of computing and propagating spatial 
accelerations the procedure used in Fig. 4 is maintained but 
using the followingCi  and Bi  parameters replacements: 

 

   
Ci = ˆ P 

i,i+1

T ˆ R 
i+1,i

T ,    Bi = Hi
˙ ̇ Q i + ˆ ˙ P 

i ,i+1

T ˆ R 
i+1,i

T Vi−1 +  ˙ H i
˙ Q i  

  
(8) 

 
Finally, for the backward recurrence spatial forces in (5) 

the parameters Ci , Bi  and Di  are (see Fig. 3-right): 
 

Ci = ˆ R 
i +1,i

ˆ P 
i,i +1

,    Bi = M i
˙ V i + ˙ M i − ˆ ˙ S oi,cmM i

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ Vi ,

                     Di = ˆ S oi,cm
T FR,A . 

     (9) 

B. MP2A network-topology communication costs  
Our Follow-The leader formation requires peer-to-peer 

communication structure in order to send/receive the EoM 
data.  

 
 
Fig.  5. Peer-to-peer communication structure using a broken-ring network 
topology. 
 

A peer-to-peer system (see Fig. 5) can be implemented in 
practice using a broken ring network topology. To measure 
the total response time of the MP2A, three basic parameters 
are considered: i) serial time component (Ts), which is the 
intrinsic time that each robot delays for receiving 
information from the previous robot; ii) the parallel time (Tp) 
that corresponds to the O(log2n) computation time of the 
EoM showed in Fig. 4, and iii) the number of robots (n) 
within the network. Those parameters are related as: 

 

Tp =
log2 n⎡ ⎤Ts

n
+ La +

bN
NTS

.              (10)  

 
The bN  term corresponds to number of transmitted bits, 

La is the latency and NTS  the average transmission speed of 
the network. In order to perform simulation testing of 
communication costs, we have to develop a specific 
mathematical model that regards the real number of data that 
is being transmitted through the network. Using the 
information related to the number of matrixes (M) and 
vectors (V) that are propagated in both forward and 
backward recurrences, we are capable of establishing the 
total amount of data that is being transmitted within the 
peer-to-peer structure. This model is shown in Table I.          

 

TABLE I 
MP2A NETWORK TOPOLOGY MODEL 

Topology Number of vector (V) data 

Dv = 2 log 2n⎡ ⎤ −1( ) − 2 log2n⎡ ⎤ − n( ) 
Number of matrix (M) + vector (V) data 

Dm _ v = 2i−1

i=1

log2 n⎡ ⎤−1

∑  

Total number of communications 

 
 

Broken Ring: 
 

 
 
 

DC = Dv + Dm _ v  
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Using this model, the total number of propagated data DT  
(taking into account the three recurrences Re ) is: 
 

       DT = Re AbDm _ v + BbDv( ) + Bb n −1( ),
            

(11) 
 

where Ab is the size of the buffer in the case of sending a 
matrix (M) plus a vector (V), and the parameter Bb is the size 
of the buffer is the case of sending just one vector (V). 
Finally using (11), the computation and communication time 
(T) of the MP2A for n-robots performing a Follow-The-
Leader formation trajectory with pt  sample points, is: 
 

T =
log2 n⎡ ⎤Ts

n
+ pt LaReDC +

2

NTS

Re 42Dm _ v +

6DvRe + 6 n −1( )
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
.   (12) 

C. The MP2A in robot navigation: obstacle avoidance 
Obstacle avoidance is an indispensable feature in 

relation to navigation. Our dynamic model is capable of 
including an external force command that can be used to 
drive the robot to the desired direction. This force is applied 
to the center of mass of any robot within the virtual 
kinematics chain. This external force is integrated into the 
Force EoM in (5) as: ˆ S oi,cm

T FR,A .  The MP2A generates 
repulsion forces that drive the robot away from the obstacle, 
and attraction forces that recover the original trajectory path.  
 

FR,A =
cφ −sφ
sφ cφ
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
CN 0

0 −CN + CT

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
cφ sφ
−sφ cφ
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

kR
kAΔmax

2
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

 
(13) 

 
Where CT  and CN  are the tangential and normal force 

vectors used to generate the repulsive force Fr  and attraction 
force Fa . The term Δmax  is the orthogonal distance from the 
robot to the straight line that holds the segment. Likewise, 
kR,kA  are the parameters for tuning both forces. 

IV. RESULTS  
In this section we analyze the performance in terms of 

scalability and cooperative locomotion of the MP2A within 
the framework of Follow-The-Leader formation keeping. 
The theoretical foundations described have been tested with 
extensive simulations aiming to: i) Demonstrate the MP2A 
scalability for large-scale applications, and ii) Demonstrate 
reliable robot navigation. 

A. Performance results for large-scale MRS   
We have compared the total computation and 

communication time (T) using our distributed O(log2n) 
structure against a centralized, non-distributed O(n) 
approach. The MP2A algorithms have been coded using C++ 
programming language. In order to simulate a large-scale 
robot system, we use an Intel® CoreTM 2 Quad processor 
Q8200 cluster with 4-cores and 8-proccesing threads. Using 
the multi-core capability of this platform we can use the 

processors/process that emulates the behavior of a robot. We 
adopted the MPI v2.0 libraries as a message-passing 
protocol. Computation and communication times are 
measured based on the network model in (12). A large-scale 
MRS with up to n=512 robots that must keep a typical path 
formation trajectory composed by pt = 2000  sample-points 
has been considered. Figure 7 shows the time response of the 
MP2A as a function of increasing the number of robots from 
n=0 to n=512.  

 

 
Fig. 7. Testing the O(log2n) distributed MP2A  VS  the O(n) centralized 
architecture, when the number of agents in the MRS is being dramatically 
increased (execution for n=512 robots). Numerical results from: Intel® 
CoreTM 2 Quad processor Q8200 cluster. 

 
The O(n) centralized computation is capable of real-time 

response for n<32 robots, however for a MRS with more 
than 32 robots, our O(log2n) approach appears to be more 
suitable. For n=512 the MP2A demands only 0.152s 
compared to 6.4s if a non-distributed architecture is used for 
the same simulation.  

B.  Navigation results 
In this test we used n=8 robots that must perform 

formation keeping with obstacle avoidance. The desired 
trajectory is only known by the leader-robot. 

  

          

 
Fig. 8.  Robots performing Follow-The-Leader tasks using the MP2A for 
navigation and obstacle avoidance, n=8. 
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Using our EoM propagation scheme, the desired motion is 
transmitted along the formation. Note that any robot is 
capable of modifying the original trajectory and transmits 
such information to the other robots behind. This scheme is 
very useful for navigation purposes in the case of avoiding 
obstacles. Figure 8 shows the results of this experiment. The 
leader robot has a predefined trajectory that does not 
consider the obstacles along the path. When any robot 
detects and avoids the obstacle, the new trajectory 
information is propagated along the chain, and all the robots 
will follow the modified trajectory. 

In the second experiment (Fig. 9) a more complex rigid 
formation is demonstrated. Three robots aligned in a 
triangle-shape must maintain such formation in order to 
transport a box.  

 
Fig. 9.  Robots performing Formation-Keeping task using a non-serial 
kinematic structure (triangle-shape).  
 

The purpose of this test was to demonstrate that the MP2A 
architecture can be used for the motion control of complex 
configurations, besides the serial chain formation used for 
Follow-The-Leader in Fig. 8.  

V. FINAL REMARKS AND CONCLUSION 
Virtual joints were used to constrain the robots to adopt 

different formation tasks with high-level of synchronization. 
The coordinated motion among robots was based on 
propagating, through the formation, the dynamic’s Equation 
of Motion presented in coupled multibody mechanisms. 

The computation/communication scheme adopted allowed 
the MRS to maintain formation and to include external 
forces in order to avoid obstacles. In terms of performance, 
the MP2A takes advantage of the available hardware 
resources to achieve scalability when the number of robots 
increases. The simulations carried out confirmed that our 
distributed approach is about 1.2x (for n=8) and 42x (for 
n=512) times faster compared to centralized computing of 
the EoM. Current and future work is oriented towards the 
experimentation of our methodology on a real system. 
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