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Abstract— This paper presents a novel bilateral teleoperation
algorithm for n degree of freedom nonlinear manipulators
connected through communication networks with time delays.
Central to this approach is the use of second order sliding mode
unknown input observers for estimating the external forces
acting on the manipulators. The use of these observers removes
the need for both velocity and force sensors, leading to a lower
cost hardware setup that provides all of the advantages of a
position-force teleoperation algorithm. A proof of stability for
each of the master and slave manipulators and their associated
observers and controllers is given, as well as stability results
for the entire closed loop in the presence of time delays.
Experimental results are presented, confirming the validity of
this approach in practice.

Index Terms— Bilateral teleoperation, sliding mode control,
force estimation, sliding mode observers, time delays.

I. I NTRODUCTION

The field of teleoperation is one that has received much
interest over the years, both from theoreticians and practition-
ers in control and robotics. One can envision many practical
uses for teleoperation systems, such as interacting with
harsh environments, telemedecine, and remote haptics. Of
particular interest is bilateral teleoperation, which involves
the ability to control a remote robot as well as to sense the
forces acting on the robot in the remote environment. One of
the major issues with time-delayed bilateral teleoperation is
that of stability. Time delays are inherent in communication
networks, and these time delays can lead to instability. This
problem became evident to researchers early on in the tele-
operation research [1]. Therefore, any bilateral teleoperation
algorithm must focus on stability in the presence of delays.

In bilateral teleoperation, signals are transmitted from
a master robot to a slave robot, and other signals are
transmitted from the slave back to the master. Typically,
a human operator uses the master manipulator, while the
slave manipulator interacts with some remote environment.
These signals pass through communications channels that,
in general, cause time delays in the transmission. There
are several different bilateral teleoperation architectures, in-
cluding position-position and position-force architectures [2].
In a position-position architecture, the master manipulator
position is transmitted to the slave, and the slave positionis
transmitted back to the master. The goal of this architecture
is to have each side track the other. An issue with this
approach is that differences between the master and slave
position may be experienced as large reaction forces by the
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operator, even when the slave may be operating completely
in free motion [2]. However, no force sensors are required.
Niemeyer and Slotine [3], [4], [5], [6] have developed a well
known variant of this architecture based on wave variables
and ensuring passivity of the closed loop.

The position-force architecture involves transmitting the
master position to the slave side and then a measurement of
the slave environment force back from the slave to the master
side. This additionally requires, at minimum, a force sensor
mounted on the slave manipulator. However, the advantages
of this architecture are perfect force tracking when the slave
is in contact with an environment and a better perception of
the system in free motion [7]. This increased performance,
in terms of transparency, of the position-force architecture
motivates research into position-force algorithms. However,
force sensors can be costly and unreliable.

This paper presents a novel bilateral teleoperation algo-
rithm for n degree of freedom (DOF) nonlinear robots that
provides the benefits of a position-force architecture in terms
of transparency and force tracking, but does not require the
use of force sensors. The work presented here extends earlier
work [8], which was developed for linear 1-DOF systems.
As well, [8] makes use of first order sliding mode observers.
The work presented here uses second order sliding mode
observers [9], which are better suited to implementation
on a computer in terms of the error due to a discrete
implementation with a finite switching frequency. Unknown
input sliding mode observers provide a useful framework
for force estimation in robotics [8]. By treating the external
forces acting on a manipulator as unknown inputs, those
forces can be recovered by the observer in finite time.

In Section II the bilateral teleoperation system, along with
associated controllers and observers, is presented. Section III
presents the stability analysis of each of the master and slave
systems, while Section IV develops stability results for the
entire closed loop. An experimental verification is given in
Section V. Conclusions and areas for future work are given
in Section VI.

II. PROBLEM FORMULATION

This bilateral teleoperation control algorithm uses force
feedback withn-DOF master and slave manipulators at each
side of the communications. Although similar to Choet
al. [10], which deals with linear 1-DOF systems and requires
measurement of positions, velocities, and external forces, the
algorithm presented here is developed for nonlinearn-DOF
robots and requires only position measurements. A sliding
mode controller is used at the slave side to ensure a desired
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Fig. 1. Block diagram of the master system and the slave and environment
subsystem.

closed loop impedance and tracking of the delayed master
trajectory. A computed torque method impedance controller
at the master side is used to give the master a desired
impedance and to apply the reflected slave environment force
back to the master. This is an output feedback algorithm, so
robot position measurements drive observers that estimate
both the state and the external forces. The control algorithm
in this work is designed in the manipulator Cartesian space
and the slave environment is modeled as ann-DOF system
acting on the slave end effector. This is done since it is useful
to be able to specify a desired impedance for each degree of
freedom of the end effector. A block diagram representation
of this system is given in Figure 1. In this diagram, the
master block contains the master manipulator, observer, and
controller, and likewise for the slave side. The inputs to
the master system are the forceFh applied by the human
operator and the delayed environment force estimateF̂ d

e . The

master trajectory estimate[X̂T
m1

, X̂T
m2

,
˙̂

XT
m2

]T is transmitted
through the delayT1 to the slave. The slave interacts with
the environment through its state output[XT

s1
,XT

s2
]T , and

receives as input the forceFe applied by the environment.
Finally, the force estimatêFe exerted on the slave by the
environment is reflected back to the master through delay
T2.

Consider the following master manipulator dynamics in
joint space,

Tm = Mm(qm)q̈m + hm(qm, q̇m) − Th (1)

whereqm ∈ Rn is the vector of joint positions,Tm ∈ Rn

is the vector of input torques,Mm(qm) ∈ Rn×n is the mass
matrix, hm(qm, q̇m) ∈ Rn is a vector of other nonlinear
terms, which could include gravity, Coriolis, and friction
terms, andTh ∈ Rn is the vector of external torques applied
by the human. Similarly, the slave dynamics in joint space
are given as,

Ts = Ms(qs)q̈s + hs(qs, q̇s) + Te (2)

whereqs, Ts, Ms(qs), andhs(qs, q̇s) are defined analogously
to the master case, andTe ∈ Rn is the vector of external
torques applied by the environment.

Control design will be performed in the robot task space.
Following [11], it is straightforward to determine task space
expressions for the robot dynamics. The master manipulator
dynamics expressed in the robot task space are given as,

Ẋm1
= Xm2

(3)

Ẋm2
= M̄−1

m (Xm1
)
(
−h̄m(Xm1

,Xm2
)

+Fm + Fh) (4)

where Xm1
∈ Rn is the vector of positions andXm2

∈
Rn is the vector of velocities. The matrices̄Mm(Xm1

) and
h̄m(Xm1

,Xm2
) are defined in [11]. Defining the slave states

similarly, the slave state space representation of the dynamics
is given as,

Ẋs1
= Xs2

(5)

Ẋs2
= M̄−1

s (Xs1
)
(
−h̄s(Xs1

,Xs2
) + Fs − Fe

)
(6)

Since this is an output feedback algorithm, observers are
used at both the master and slave sites. These observers are
based on the observer developed in [9], but are designed for
then-DOF case. They make use of the super-twisting second
order sliding mode algorithm. Sliding mode observers are
selected for several reasons. Their robustness propertiesto
unmodeled dynamics are valuable in that the state estimates
will converge to the true states in finite time despite the fact
that the external force acting on the robot is not included
in the observer dynamics. As well, this external force signal
may be recovered from the equivalent output injection term
in the observer. For the case of then-DOF bilateral teleoper-
ation system, MIMO observers are developed. The observer
for the master robot is given as,

˙̂
Xm1

= X̂m2
+ zm1

(7)
˙̂

Xm2
= M̄−1

m (X̂m1
)
(

−h̄m(X̂m1
, X̂m2

) + Fm

)

+zm2
(8)

wherezm1
∈ Rn andzm2

∈ Rn. The i-th element of vector
zm1

is given as,

zm1i
= λmi

|Xm1i
− X̂m1i

|1/2sign(Xm1i
− X̂m1i

) (9)

and thei-th element of vectorzm2
is given as,

zm2i
= αmi

sign(Xm1i
− X̂m1i

) (10)

where λmi
and αmi

are constants whose values will be
specified later. Note that the human force exerted on the end
effector does not appear at all in the observer. Regardless
of this, finite time convergence of the state estimates is
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achieved, and an estimate of the human force is obtained as
well. It is this force estimate that is used in the control law.
The human force estimate is obtained from the equivalent
output injection termzm2i

as,

F̂h = M̄m(X̂m1
)zm2eq (11)

wherezm2eq represents a low pass filtering operation onzm2

in order to obtain the equivalent output injection signal [12].
Note that, in practice, the above force estimate will contain
all unmodeled terms in the manipulator dynamics. However,
this work shows through experiments that with a suitable
model of the manipulator dynamics, the recovered unknown
input estimate is very usable as the force estimate. The sec-
ond order sliding mode observer for the slave dynamics takes
the same form as the master side observer. The equations for
the slave observer are expressed as,

˙̂
Xs1

= X̂s2
+ zs1

(12)
˙̂

Xs2
= M̄−1

s (X̂s1
)
(

−h̄s(X̂s1
, X̂s2

) + Fs

)

+ zs2
(13)

wherezs1
∈ Rn andzs2

∈ Rn. The i-th element of vectors
zs1

and zs2
are defined analogously to thei-th elements of

zm1
andzm2

, respectively. The estimate of the environmental
force acting on the slave is obtained from the equivalent
output injection termzs2i as,

F̂e = −M̄s(X̂s1
)zs2eq (14)

Before presenting the master and slave controllers, some
notation is introduced. A signalx(t) delayed byT1 seconds
is represented as,

xd(t) ≡ x(t − T1)

Similarly, a signal delayed by two times delays,T1 andT2,
is represented as,

xdd(t) ≡ x(t − T1 − T2)

The master control law is a computed torque method
controller to decouple and linearize each degree of freedom
in the task space. The outer loop controller is specified as,

Fm = M̄m(X̂m1
)vm + h̄m(X̂m1

, X̂m2
) − F̂h (15)

The inner impedance controller, to provide each degree of
freedom with desired impedance characteristics, is given as,

vm = M̃−1
m

(

−B̃mX̂m2
− K̃mX̂m1

+ F̂h − F̂ d
e

)

(16)

where M̃m ∈ Rn×n is the diagonal constant matrix that
specifies the desired mass characteristic for each degree of
freedom. The desired mass for thei-th degree of freedom
is given by thei-th diagonal ofM̃m. The matricesB̃m ∈
Rn×n andK̃m ∈ Rn×n are also diagonal constant matrices
representing the desired damping and stiffness values for

each degree of freedom. The control law (15) and (16)
ensures that, after convergence of the observers, the master
manipulator has the desired mass-spring-damper impedance
characteristics for each degree of freedom. As with any stan-
dard computed torque method controller, there will not be a
perfect cancellation of nonlinearities in practice. However,
for a robot modeled sufficiently well, this control technique
provides desirable performance in practice, as will be shown
in the experimental results.

Next, define the master-slave position and velocity track-
ing error aser1

= Xs1
−Xd

m1
∈ Rn ander2

= Xs2
−Xd

m2
∈

Rn. The slave controller is designed in order to give each
degree of freedom of the end effector a desired impedance
characteristic. Then-DOF equation of dynamics that gives
rise to the desired impedance is,

I = M̃sėr2
+ B̃ser2

+ K̃ser1
+ Fe = 0 (17)

where the matricesM̃s, B̃s, and K̃s are defined as in the
master controller, but for the slave impedances. When (17)
is satisfied, the slave has the desired closed loop impedance
and asymptotically tracks the delayed master trajectories.
However, this work examines output feedback control. An
output feedback version of the end effector dynamics that
yield the desired impedance model is defined as,

Î = M̃s
˙̂er2

+ B̃sêr2
+ K̃sêr1

+ F̂e = 0 (18)

whereêr1
= X̂s1

− X̂d
m1

and êr2
= X̂s2

− X̂d
m2

. In order to
ensure that this desired impedance characteristic is satisfied,
the sliding surface for the slave controller is defined as,

ŝ =

∫ t

0

M̃−1
s Î(τ) dτ (19)

= êr2
+

∫ t

0

(

M̃−1
s B̃sêr2

+ M̃−1
s K̃sêr1

+M̃−1
s F̂e

)

dτ (20)

= 0 (21)

Then, the slave side sliding mode controller is given as,

Fs = −M̄s(X̂s1
)
[

M̃−1
s K̃sX̂s1

+ M̃−1
s B̃sX̂s2

−M̄−1
s (X̂s1

)h̄s(X̂s1
, X̂s2

)

+ (M̃−1
m K̃m − M̃−1

s K̃s)X̂
d
m1

+(M̃−1
m B̃m − M̃−1

s B̃s)X̂
d
m2

− (M̃−1
m

−M̄−1
m (X̂d

m1
))F̂ d

h + M̃−1
m F̂ dd

e + M̃−1
s F̂e + zs2eq

−zd
m2eq + Kgsign(ŝ)

]
(22)

whereKg = kgIn×n ∈ Rn×n andkg is a scalar whose value
will be specified later.

To summarize, for master robot (3), (4) and slave robot
(5), (6) connected bilaterally through a time delay ofT1

seconds from the master to the slave andT2 seconds from the
slave to the master, the system may be controlled using the
master control law (15) and (16) with master side observer
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(7), (8) and slave sliding mode control law (22) with slave
side observer (12), (13).

Having presented the bilateral teleoperation algorithm in
its entirety, the next section will develop the stability analysis
of this system.

III. STABILITY ANALYSIS

In order to show stability of this system, the following
assumption is made.

Assumption 3.1: The external forces acting on both master
and slave are bounded for all time with some known upper
bounds.

The observers used in this work are based on SISO
observers presented in [9]. Here, MIMO observers are de-
signed and a corollary is developed to demonstrate that the
SISO observers may be extended to MIMO observers while
still ensuring finite time convergence of the observer error
dynamics to zero. This result is shown only for the master
observer, but it is the same for the slave observer.

Define the observer estimation error as̃Xm1
= Xm1

−
X̂m1

and X̃m2
= Xm2

− X̂m2
. Then, the observer error

dynamics may be found as,

˙̃Xm1
= X̃m2

− zm1
(23)

˙̃Xm2
= F (Xm1

,Xm2
, X̂m1

, X̂m2
, Fm, Fh)

−zm2
(24)

where,

F (Xm1
,Xm2

, X̂m1
, X̂m2

, Fm, Fh) =

M̄−1
m (Xm1

)
(
−h̄m(Xm1

,Xm2
) + Fm + Fh

)

−M̄−1
m (X̂m1

)
(

−h̄m(X̂m1
, X̂m2

) + Fm

)

and assume that the inequality, for thei-th element ofF ,

|Fi(Xm1
,Xm2

, X̂m1
, X̂m2

, Fm, Fh)| < f+

i (25)

for some constantf+

i holds over the operational domain. As
long as the controller used stabilizes the process in the case
of full state measurements, one can choose the observer error
dynamics to be fast enough so that the state estimates are
recovered before the robot leaves some chosen area. This will
ensure that the bound (25) remains satisfied in the operational
domain [9].

Let αmi
and λmi

satisfy the following inequalities, for
every elementi in vectorsαm andλm respectively,

αmi
> f+

i (26)

λmi
>

√

2

αmi
− f+

i

(αmi
+ f+

i )(1 + pi)

(1 − pi)
(27)

Corollary 3.1: Suppose that the parameters for the ob-
server (7) and (8) are selected according to the above
conditions (26) and (27) forαm andλm, and that condition
(25) holds over the operational domain of the robot. Then, the

variables of the observer converge in finite time to the states
of the system, i.e.(X̂m1

, X̂m2
) → (Xm1

,Xm2
). Further, the

unknown force vectorFh(t) may be recovered in finite time
asM̄m(X̂m1

)zm2eq
.

Proof: Omitted for space reasons. See [13]. The proof
follows the SISO proof presented in [9].

The next theorem shows asymptotic stability of both the
master and slave under output feedback with force estima-
tion, and in the presence of time delays in the communica-
tions.

Theorem 3.1: Consider master robot (3), (4) and slave
robot (5), (6) connected bilaterally through a time delay ofT1

seconds from the master to the slave andT2 seconds from
the slave to the master, with master control law (15) and
(16), master side observer (7), (8) and slave sliding mode
control law (22) with slave side observer (12), (13). Then,
there exists a sliding mode controller gainKg = kgIn×n

where,

kg > ||zs2
− zs2eq − zd

m2
+ zd

m2eq||2 + εg (28)

for someεg > 0, and observer gainsλm, αm, λs, αs such
that the state estimates recover the true state in finite time,
and the master and slave robot dynamics have the desired
impedance model.

Proof: The first step is to show that the estimated
states converge to the true states in finite time. Observer
convergence for both the master and slave is guaranteed from
Corollary 3.1, provided that the observer gains are chosen
according to (26) and (27). The master observer states will
be exactly the master states afterTm seconds, and likewise
for the slave observer states afterTs seconds.

In order to show stability of the slave system, a Lyapunov
function is used, and the controller is selected to ensure that
the sliding mode dynamics are finite time stable. Due to
the definition of the sliding surface (20), expressions for the
dynamics of both the master and slave observers are required.
The master observer dynamics, after substituting the master
control law (15) and (16) into the original expression for the
master observer dynamics (8), are given by,

˙̂
Xm1

= X̂m2
+ zm2

(29)
˙̂

Xm2
= −M̃−1

m B̃mX̂m2
− M̃−1

m K̃mX̂m1
+ M̃−1

m F̂h

−M̃−1
m F̂ d

e − M̄−1
m (X̂m1

)F̂h + zm2
(30)

Substituting the delayed version of the closed loop master
observer dynamics (30) and the slave observer dynamics (13)
into the sliding surface (20) and simplifying, one arrives at,

ŝ =

∫ t

0

(

−M̄−1
s (X̂s1

)h̄s(X̂s1
, X̂s2

) + M̃−1
s K̃sX̂s1

+M̃−1
s B̃sX̂s2

− M̃−1
s K̃sX̂

d
m1

− M̃−1
s B̃sX̂

d
m2

+ M̃−1
m K̃mX̂d

m1
+ M̃−1

m B̃mX̂d
m2

−(M̃−1
m − M̄−1

m (X̂d
m1

))F̂ d
h + M̃−1

m F̂ dd
e

+M̃−1
s F̂e + M̄−1

s (X̂s1
)Fs + zs2

− zd
m2

)

dτ (31)
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Now consider the Lyapunov function candidate,

Vs =
1

2
ŝT ŝ (32)

Taking the derivative ofVs along the trajectories of the
system,

V̇s = ŝT ˙̂s (33)

= ŝT
[(

−M̄−1
s (X̂s1

)h̄s(X̂s1
, X̂s2

) + M̃−1
s K̃sX̂s1

+M̃−1
s B̃sX̂s2

− M̃−1
s K̃sX̂

d
m1

− M̃−1
s B̃sX̂

d
m2

+M̃−1
m K̃mX̂d

m1
+ M̃−1

m B̃mX̂d
m2

−(M̃−1
m − M̄−1

m (X̂d
m1

))F̂ d
h + M̃−1

m F̂ dd
e

+M̃−1
s F̂e + M̄−1

s (X̂s1
)Fs + zs2

− zd
m2

)]

(34)

Now simplifying (22) and (34) and noting thatŝT sign(ŝ) =
∑n

i=1
|ŝi| = ||ŝ||1 yields,

V̇s ≤ −kg||ŝ||1 + |ŝT
(
zs2

− zs2eq − zd
m2

+ zd
m2eq

)
|

The second term on the right hand side of the above
inequality represents an inner product of two vectors. By the
Cauchy-Schwartz inequality and recalling that||x||2 ≤ ||x||1
in Rn leads to,

V̇s ≤ −kg||ŝ||1 + ||ŝ||1 ||zs2
− zs2eq − zd

m2
+ zd

m2eq||2

= −||ŝ||1
(
kg − ||zs2

− zs2eq − zd
m2

+ zd
m2eq||2

)

Choosingkg as in (28) ensures that,

V̇s < −||ŝ||1εg < 0 ∀ ||ŝ||1 6= 0 (35)

This guarantees stability, and additionally finite time con-
vergence of the system trajectories to the sliding surface.
Finite time convergence is shown through the Comparison
Lemma [14]. As long askg is chosen large enough, the
sliding surface will be reached inTg seconds.

Satisfying the conditions of Corollary 3.1 ensures that both
the master and slave estimation errors will converge to zero
within Tm seconds andTs seconds, respectively. As well,
the system trajectories will reach the sliding surfaceŝ = 0
within Tg seconds. Therefore, att = max(Ts, Tm, Tg), all
observers will have converged, the slave dynamics will reach
the sliding surfacês = 0, and all force estimates will be equal
to the actual external forces acting on the robots.

One may compute the slave equivalent control signal
by solving for the control input in the equation̂̇s = 0.
Finding the equivalent control and substituting it into the
slave dynamics (5), (6) once the observers have converged
yields,

Ẋs1
= Xs2

(36)

Ẋs2
= −M̃−1

s K̃sXs1
− M̃−1

s B̃sXs2
− M̃−1

s Fe

+Ẋd
m2

+ M̃−1
s B̃sX

d
m2

+ M̃−1
s K̃sX

d
m1

(37)

Next, the closed loop expression for the master dynamics
is found by substituting the master controller (15) and (16)
into the master robot dynamics (3) and (4). Making this
substitution and simplifying yields,

Ẋm1
= Xm2

(38)

Ẋm2
= −M̃−1

m K̃mXm1
− M̃−1

m B̃mXm2
+ M̃−1

m Fh

−M̃−1
m F d

e (39)

In order to determine the tracking error dynamicser1
=

Xs1
− Xd

m1
and er2

= Xss
− Xd

m2
, subtract the delayed

version of (38) from (36) and the delayed version of (39)
from (37). This yields,

ėr1
= er2

(40)

ėr2
= −M̃−1

s K̃ser1
− M̃−1

s B̃ser2
− M̃−1

s Fe (41)

This result is exactly the equation of dynamics representing
the desired characteristic impedance for the tracking error
dynamics. This analysis has shown that on the sliding surface
the master and slave dynamics remain stable, and the desired
characteristic impedance is achieved.

Theorem 3.1 guarantees stability of each of the master and
slave robots. However, stability of the entire closed loop is
not addressed in this result. The next section addresses the
issue of closed loop stability when the slave is in contact
with an environment.

IV. CLOSED LOOPSTABILITY

Having guaranteed stability for each of the master and
slave manipulators with their associated observers and con-
trollers, it remains to show that the entire closed loop can be
stabilized in the presence of time delays. This section will
present closed loop stability results for the case where the
environment is a nonlinear finite-gain stable system.

In general, one may not be able to assume a known
structure for the slave side environment. In fact, it may not
even be possible to determine one. This section will show
that, for a general nonlinear environment with a finite gain
and a small modification to the slave closed loop dynamics,
stability independent of delay for an unknown nonlinear
environment may be achieved.

Defining the environment as some relation,

Fe = HXs (42)

whereH : L2n
2e → Ln

2e is the mapping relating slave state to
environmental force, this subsystem must be finite-gainL2

stable. That is, there must exist nonnegative constantsγe and
βe such that,

||(HXs)τ ||L2
≤ γe||(Xs)τ ||L2

+ βe (43)

for all Xs ∈ L2n
2e andτ ∈ [0,∞).

One would like to be able to choose the slave robotL2

gain arbitrarily small to ensure a loop gain of less than
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one. However, theH∞ norm of the slave system cannot be
made arbitrarily small without some modification. In order to
overcome this, a scaling termkp on the delayed master states
is introduced. As well, the desired impedance parameters are
re-defined. Define,

M̃s = ǫpM̃
′

s, B̃s = ǫpB̃
′

s, K̃s = ǫpK̃
′

s (44)

whereǫp is a positive scalar to be set by the designer andM̃ ′

s,
B̃′

s, andK̃ ′

s are positive diagonal matrices that may be freely
chosen as well. Introducing these parameters has the effect
of giving full control of theH∞ norm of the slave to the
designer while maintaining the desired dynamic behaviour.
Introducing the scalar master trajectory scaling factorkp and
using the re-definitions of the impedance parameters, one can
express the slave dynamics as,

[
Ẋs1

Ẋs2

]

=

[
0 In×n

−M̃
′
−1

s K̃ ′

s −M̃
′
−1

s B̃′

s

]

︸ ︷︷ ︸

As

[
Xs1

Xs2

]

+

[
0 0 0 0

kpM̃
′
−1

s K̃ ′

s kpM̃
′
−1

s B̃′

s kpIn×n −ǫ−1
p M̃

′
−1

s

]

︸ ︷︷ ︸

Bs

×







Xd
m1

Xd
m2

Ẋd
m2

Fe







(45)

Ys =

[
In×n 0

0 In×n

]

︸ ︷︷ ︸

Cs

[
Xs1

Xs2

]

(46)

Lemma 4.1: Given the slave system (45) and (46) with the
scaling factorkp on the delayed master trajectory inputs, set
K̃s = ǫpK̃

′

s, B̃s = ǫpB̃
′

s, andM̃s = ǫpM̃
′

s. Then, theH∞

norm of the slave system may be made arbitrarily small.
Proof: Omitted for space. See [13].

Lemma 4.2: Consider master system (38) and (39) con-
nected through time delays to slave system (36) and (37).
Define the gain of the slave-environment subsystem asγs+e

and the gain of the master system asγm. If the master
impedance parameters are chosen as,

mmi
> γs+e

√

3

2
, kmi

= mmi
, bmi

=
√

2kmi
mmi

(47)

then the loop gainγmγs+e always satisfies the condition
γmγs+e < 1.

Proof: Omitted for space. See [13].
Theorem 4.1: Consider the finite-gain stable environment

operator (42), with known gainγe, connected in feedback
with the slave subsystem (45) and (46). One can always
ensure that this feedback connection is finite-gain stable by
ensuring that the slaveL2 gain γs < 1/γe.

Proof: By Lemma 4.1 one can choose slave parameters
such thatγs may be made arbitrarily small. The condition
γs < 1/γe may be equivalently expressed as,

γsγe < 1 (48)

This is a small gain condition. When (48) is satisfied, the
slave-environment loop is finite-gainL2 stable by the Small
Gain Theorem [14].

The slave-environment closed loop gain is defined asγs+e.
It has already been shown in Lemma 4.2 that a suitable
choice of master robot parameters may always be made to
ensure the closed-loop stability of the master-slave system.
In this case one can choose parameters to ensure that,

||Gm(s)||∞ <
1

γs+e
(49)

Then the feedback connection of the finite-gainL2 stable
master with the finite-gainL2 stable slave+environment
subsystem is guaranteed to be stable by the Small Gain
Theorem. Note that delay elements have a gain of one and
so delays of this nature do not affect stability of the closed
loop when the small gain condition is met.

Other results have been developed for linear environments
that allow for less conservative choices of the closed loop
impedance parameters. As well, a closed loop stability result
has been developed for the case when the human is also
modeled as nonlinear dynamics. This work is detailed in [13].

V. EXPERIMENTAL RESULTS

While the algorithm presented has been shown to be stable
theoretically, it is important to ensure that the approach is
feasible in practice. The experimental implementation in-
volves factors not addressed in the theory, namely unmodeled
dynamics, friction, sensor noise, and a limited sample period.

This algorithm is implemented on the University of Wa-
terloo Teleoperation Platform, which consists of two 3-DOF
robot manipulators connected to a PC through data acqui-
sition hardware. Only the revolute base degree of freedom
is used on each robot, while the other degrees of freedom
are locked. In performing 1-DOF experiments, one can show
that the algorithm is implementable in practice and robust to
real world issues such as unmodeled dynamics and sensor
noise. Future work will implement these algorithms on
higher degree of freedom robots. There are position encoders
on each motor for position measurements, but no velocity
sensors exist. Dynamic models of the base degree of freedom
for each manipulator were developed prior to running the
experiments. For each robot, the base degree of freedom
was modeled as a mass-damper with Coulomb friction. The
master robot dynamics are given as,

ẋm1
= xm2

(50)

ẋm2
= −

Bm

Jm
xm2

−
1

Jm
fcm(xm2

) +
1

Jm
Fh +

1

Jm
Fm

(51)
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where,

fcm(xm2
) =

{
fcm1 if xm2

≥ 0
fcm2 if xm2

< 0

A system identification was performed for this manipulator,
giving the following values for the parameters:Jm = 0.8084,
Bm = 0.1150, fcm1 = 0.1090, and fcm2 = −0.0746.
Similarly, the slave dynamic model is given as,

ẋs1
= xs2

(52)

ẋs2
= −

Bs

Js
xs2

−
1

Js
fcs(xs2

) −
1

Js
Fe +

1

Js
Fs (53)

where,

fcs(xs2
) =

{
fcs1 if xs2

≥ 0
fcs2 if xs2

< 0

Identifying the slave parameters yields the following values:
Js = 0.8042, Bs = 0.1768, fcs1 = 0.1462, and fcs2 =
−0.0237.

Note that since the robots are 1-DOF manipulators there
is no need to transform the system to the Cartesian space,
and all control design may be performed directly in the joint
space.

Due to limitations of the hardware used, the sample time
in the experiments is limited toTs = 5 × 10−4 seconds,
giving a sample frequency of2 kHz. As well, the position
encoders produce signals with some noise. This can be a
complication with sliding mode observers in practice. As
a result, the pure switching components in the observers
were replaced by saturation functions, which allow the use
of a boundary layer. This boundary layer reduces the effect
of chattering and provides more usable state estimates. It
was determined experimentally that boundary layer widths
of ǫm = 10−4 and ǫs = 10−2, for the master and slave
observers respectively, yielded the best state estimates in
terms of reducing chattering. The observer gain parameters
were chosen experimentally to ensure that the second order
sliding mode gain conditions are met and that good state
estimates are produced. The observer gains are set toλm =
10.5, αm = 15.4 for the master observer, andλs = 10.5,
αs = 15.4 for the slave as well. In order to obtain the
estimated force signals from the observers, the switching
signals were passed through5 Hz second order low pass
filters. This filtering yielded very usable force estimates.

It was also found in practice that the use of a pure
switching component in the slave control signal produced
significant chattering in the manipulator. As a result, a
boundary layer was used in the slave sliding mode controller.
As well, the slave control signal was passed through a
second order low pass filter before being applied to the robot.
Without the use of the filter, the chattering became too great,
causing too much power draw through the motor amplifier
power supply.

A very stiff metal structure was used as the environment
at the slave side. However, the last link on the manipulator

(the link that contacts the environment) is a link with
some flexibility, giving some compliance to the manipulator-
environment interface. The flexible link on the slave robot
has a modulus of elasticity of69×105 N-cm2 [15]. The en-
vironment dynamics are not specifically modeled, but closed
loop impedance parameters were chosen experimentally to
ensure stable behaviour in contact.

For the experiment, the master closed loop impedance
parameters were chosen as̃Mm = 22, B̃m = 32, and
K̃m = 22. The slave closed loop impedance parameters
were chosen asM̃s = 7, B̃s = 42, K̃s = 63. While in
practice these spring parameters are fairly large, but suitably
chosen for this experimental setup, to ensure slave tracking
stability one need only choose a slave side spring force that
is positive. The slave values were chosen to give the slave
manipulator, and by extension the tracking error dynamics,
a pair of critically damped poles ats = −3. The master
impedance parameters were chosen such that the closed loop
system would be stable independent of delay by the Small
Gain Theorem. The slave control signal was filtered with
a second order low pass 25 Hz filter. Time delays of 0.5
seconds were introduced from the master to the slave side,
and from the slave back to the master.

Figure 2 shows the master and the slave trajectories for this
experiment. In the presence of time delays, the system re-
mains stable both in and out of contact with the environment.
There is some small error in tracking when the slave is in free
motion. Several factors may contribute to this. The first is
modeling error. It is apparent that there is some static friction
in the system that has not been modeled, causing a non-zero
position error in steady state since not enough control effort
is being applied to overcome the static friction. As well, there
is certainly some error on the inertial and damping parameter
values in the identified robot models. An additional source of
error is due to the fairly large boundary layer that is used in
the sliding mode controller. This contributes to tracking error,
as the sliding surfaces = 0 is never actually reached. There
are some small periods of time where the slave manipulator
experiences some chattering. This is likely caused by the
noise on the state and force estimates due to running the
observers at a larger than ideal sample period. However, it
is not significant in this experiment.

The estimate of the torque applied to the master manip-
ulator is given in Figure 3. Due to the spring term on the
master manipulator, which is a requirement for the closed
loop stability analysis, the human operator must always
apply a non-zero force to the manipulator when it is away
from the origin. In practice, it is desirable to set the spring
term to zero, or close to zero, on the master side as this
gives the operator the sensation of using a tool that can
be arbitrarily placed in the space and left there. It is also
apparent in Figure 3 that during periods of time when the
slave manipulator is in contact with the environment, the
operator must apply more torque to the master manipulator to
compensate for the environment torque that is fed back to the
master from the slave. This further shows the effectivenessof
the the algorithm, even with a round trip delay of 1 second.
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Fig. 2. Position of the master (solid) and slave (dashed) manipulators in
the second experiment.
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Fig. 3. Estimate of the human torque applied to the master in the second
experiment.

VI. CONCLUSION

This paper has presented a novel bilateral teleoperation
algorithm forn-DOF nonlinear robot manipulators connected
through time delays. The algorithm provides the benefits of a
position-force teleoperation architecture while only requiring
position measurements. This effectively gives the advantages
of both the position-position and position-force architec-
tures while removing their respective disadvantages. Using
unknown input sliding mode observers, both the external
forces and robot states are estimated exactly with finite time
convergence, thus eliminating the need for velocity and force
sensors. The output feedback controllers for each of the
master and slave decouple and linearize the dynamics in the
Cartesian space, allowing one to specify desired impedance
characteristics for each end effector DOF.

Closed loop stability of the whole teleoperator system
under time delays has been proved for a nonlinear slave side
environment.

This paper has also shown experimental results for the
proposed algorithm. In particular, since sliding mode tech-
niques have been used in the algorithm, it is important to
verify that these approaches will work even though it was
necessary to use a slower sample frequency than is desirable
for the sliding mode observers, due to hardware limitations.
However, with the use of boundary layers in the slave con-
troller and the observers, as well as with some filtering of the
slave control signal, a feasible and practical implementation
of this algorithm can be achieved. Both tracking of the master
by the slave and force reflection from the slave back to the
master were effectively demonstrated. This result represents
a new position-force teleoperation architecture without the
need for force sensing.

Additionally, the experimental results suggest that this
algorithm is stable through contact transitions at the slave
side. This is one aspect to be examined from a theoretical
standpoint in future work. An important area for future work
would be to implement this algorithm on hardware that
allows for faster sample frequencies and on manipulators
that have less friction in order to see even better results in
practice.
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