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Abstract— This paper presents a novel bilateral teleoperation operator, even when the slave may be operating completely
algorithm for n degree of freedom nonlinear manipulators in free motion [2]. However, no force sensors are required.
connected through communication networks with time delays. Niemeyer and Slotine [3], [4], [5], [6] have developed a well

Central to this approach is the use of second order sliding mode K iant of thi hitect b d iabl
unknown input observers for estimating the external forces nown variant or this architecture based on wave variables

acting on the manipulators. The use of these observers removes and ensuring passivity of the closed loop.
the need for both velocity and force sensors, leading to a lower ~ The position-force architecture involves transmitting th

cost hardware setup that provides all of the advantages of a master position to the slave side and then a measurement of
position-force teleoperation algorithm. A proof of stability for 6 gjave environment force back from the slave to the master
each of the master and slave manipulators and their associated . - o . L

observers and controllers is given, as well as stability results side. This additionally requ_lres, at minimum, a force senso
for the entire closed loop in the presence of time delays. mounted on the slave manipulator. However, the advantages
Experimental results are presented, confirming the validity of of this architecture are perfect force tracking when thegesla
this approach in practice. is in contact with an environment and a better perception of

Index Terms—Bilateral teleoperation, sliding mode control,  the system in free motion [7]. This increased performance,
force estimation, sliding mode observers, time delays. . .- .

in terms of transparency, of the position-force architestu
motivates research into position-force algorithms. Havev
force sensors can be costly and unreliable.

The field of teleoperation is one that has received much This paper presents a novel bilateral teleoperation algo-
interest over the years, both from theoreticians and i@t  rithm for » degree of freedom (DOF) nonlinear robots that
ers in control and robotics. One can envision many practicakovides the benefits of a position-force architecture imge
uses for teleoperation systems, such as interacting Wigj transparency and force tracking, but does not require the
harsh environments, telemedecine, and remote haptics. (e of force sensors. The work presented here extendsrearlie
particular interest is bilateral teleoperation, whichalves \york [8], which was developed for linear 1-DOF systems.
the ability to control a remote robot as well as to sense thgs well, [8] makes use of first order sliding mode observers.
forces acting on the robot in the remote environment. One qfe work presented here uses second order sliding mode
the major issues with time-delayed bilateral teleoperat®o opservers [9], which are better suited to implementation
that of stability. Time delays are inherent in communicatio g g computer in terms of the error due to a discrete
networks, and these time delays can lead to instabilitys Thijmplementation with a finite switching frequency. Unknown
problem became evident to researchers early on in the tejgpyt sliding mode observers provide a useful framework
operation research [1]. Therefore, any bilateral teleaf@@m  for force estimation in robotics [8]. By treating the extain
algorithm must focus on stability in the presence of delaygorces acting on a manipulator as unknown inputs, those

In bilateral tE|eOperati0n, Signals are transmitted fronfbrces can be recovered by the observer in finite time.

a master robot to a slave robot, and other signals are|n Section Il the bilateral teleoperation system, alonghwit
transmitted from the slave back to the master. Typicallyassociated controllers and observers, is presentedoBetiti

a human operator uses the master manipulator, while thiesents the stability analysis of each of the master ané sla
slave manipulator interacts with some remote environmergystems, while Section IV develops stability results fog th
These signals pass through communications channels thggtire closed loop. An experimental verification is given in

in general, cause time delays in the transmission. Thefction V. Conclusions and areas for future work are given
are several different bilateral teleoperation architesuin- iy Section VI.

cluding position-position and position-force architeet[2].
In a position-position architecture, the master manimulat Il. PROBLEM FORMULATION
position is transmitted to the slave, and the slave posion  This bilateral teleoperation control algorithm uses force
transmitted back to the master. The goal of this architectuteedback withn-DOF master and slave manipulators at each
is to have each side track the other. An issue with thigide of the communications. Although similar to Cleb
approach is that differences between the master and slaye[10], which deals with linear 1-DOF systems and requires
position may be experienced as large reaction forces by thgeasurement of positions, velocities, and external fottes
) ) algorithm presented here is developed for nonlineédOF
J. Daly and D. Wang are with the Department of Electrical anch@uater

Engineering, University of Waterloo, 200 University Avenw/est, Waterloo, robots and requ_lres Only position me.asuremems' A sI|d|_ng
Ontario, Canadd. ndal y@ eee. or g mode controller is used at the slave side to ensure a desired

I. INTRODUCTION
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4h>%—> Master E— Tl Ts = Ms(Qs)ds + hs(‘]sv QS) + Te (2)
LAY ) wheregs, T, M,(qs), andhs(gs, ¢s) are defined analogously
T e {X, g i ]" to the master case, arifl, € R" is the vector of external
torques applied by the environment.
[Xg;)g;l;)}m] Control design will be performed in the robot task space.
{ Following [11], it is straightforward to determine task spa

I EE— expressions for the robot dynamics. The master manipulator
Slave dynamics expressed in the robot task space are given as,

ar 17

(X,

Sl’XSTz]T

e Xml = X’I’)’Lz (3)
sz = Mrzl(Xml)(_ﬁm(meXmg)

Environment +F,, + F)) (4)

where X,,,, € R" is the vector of positions an&’,,, €

n i S i~Ad
Fig. 1. Block diagram of the master system and the slave andoamvent ,R is the vector of velocities. The mat”Cégm(Xml) and

subsystem. hon(Xm,, Xm,) are defined in [11]. Defining the slave states
similarly, the slave state space representation of therdigza
is given as,

closed loop impedance and tracking of the delayed master

trajectory. A computed torque method impedance controller 'Sl - X, (5)

at the master side is used to give the master a desired
impedance and to apply the reflected slave environment force

back to the master. This is an output feedback algorithm, so Since this is an output feedback algorithm, observers are
robot position measurements drive observers that estimatged at both the master and slave sites. These observers are
both the state and the external forces. The control alguorithhased on the observer developed in [9], but are designed for
in this work is designed in the manipulator Cartesian spagfien-DOF case. They make use of the super-twisting second
and the slave environment is modeled asnaDOF system order sliding mode algorithm. Sliding mode observers are
acting on the slave end effector. This is done since it iSUjsefse|ected for several reasons. Their robustness propmies

to be able to specify a desired impedance for each degree @fmodeled dynamics are valuable in that the state estimates
freedom of the end effector. A block diagram representatiogill converge to the true states in finite time despite the fac

of this system is given in Figure 1. In this diagram, thehat the external force acting on the robot is not included
master block contains the master manipulator, observelr, af the observer dynamics. As well, this external force signa
controller, and likewise for the slave side. The inputs tenay be recovered from the equivalent output injection term
the master system are the forég applied by the human in the observer. For the case of theDOF bilateral teleoper-
operator and the delayed environment force estimigteThe  ation system, MIMO observers are developed. The observer
master trajectory estimaf&?, , X7 . X7 17 is transmitted for the master robot is given as,

through the delayl’ to the slave. The slave interacts with

the environment through its state outduf? , XX, and : e

XS2 = Mﬁl(Xsl)(7E5(X51’X52)+E97Fe) (6)

S

receives as input the forcE. applied by the environment. L )fmz +AZ7"1 o K @)
Finally, the force estimatdé, exerted on the slave by the  X,,, = M, (X,.,) (_hm(meXmg) + Fm)
environment is reflected back to the master through delay +z (8)
T. m2
Consider the following master manipulator dynamics ifvherez,,, ¢ R" andz,,, € R". Thei-th element of vector
joint space, zZm, IS given as,
Ty = Mrn(Qm)‘j’rn + hm(Qnudm) — Ty (1) Zmy; — )\mi Xmli - Xmlill/QSign(th — th.> (9)

. . . and thei-th element of vectoe,,, is given as,
whereg,, € R™ is the vector of joint positions],, € R" ’ m2 15 9

is the vector of input torquesy,, (¢.,) € R™*" is the mass
matrix, h.,(gm,qn) € R™ is a vector of other nonlinear
terms, which could include gravity, Coriolis, and frictionwhere \,,, and «,,, are constants whose values will be

terms, andl;, € R™ is the vector of external torques appliedspecified later. Note that the human force exerted on the end
by the human. Similarly, the slave dynamics in joint spaceffector does not appear at all in the observer. Regardless
are given as, of this, finite time convergence of the state estimates is

Zma; = a7”iSign(X77L1i - X”Lli) (10)
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achieved, and an estimate of the human force is obtained each degree of freedom. The control law (15) and (16)
well. It is this force estimate that is used in the control.lawensures that, after convergence of the observers, the maste
The human force estimate is obtained from the equivalemanipulator has the desired mass-spring-damper impedance

output injection terne,,,, as, characteristics for each degree of freedom. As with anystan
dard computed torque method controller, there will not be a
Fy = Mp(Xon,) 2maeq (11) perfect cancellation of nonlinearities in practice. Hoewlv

for a robot modeled sufficiently well, this control technéqu
provides desirable performance in practice, as will be show
in the experimental results.

Next, define the master-slave position and velocity track-

wherez,,, ., represents a low pass filtering operationzqy

in order to obtain the equivalent output injection sign&][1
Note that, in practice, the above force estimate will cantai
all unmodeled terms in the manipulator dynamics. Howeveﬁ,]g error as,, = X, *Xgn € R" ande,, = X,, —Xﬁw c

this work shows through experiments that with a suitablg,. Tha gjave controller is designed in order to give each

model of the manipulator dynamics, the recovered unknowgpegree of freedom of the end effector a desired impedance

input estimate is very usable as the force estimate. The S&Haracteristic. The-DOF equation of dynamics that gives
ond order sliding mode observer for the slave dynamics tak?rge to the desired impedance is

the same form as the master side observer. The equations for
the slave observer are expressed as, I=M.é.. +Bee. +Keeo +F. =0 17)
- s-ro EA ) stry e —

: . where the matrices/,, B,, and K, are defined as in the
)_(51 = Xy + 25 (12)  master controller, but for the slave impedances. When (17)
X, = M7Y(X,) (_}}s(f(s“j(sz) + Fs) + 2,,(13) is satisfied, the slave has the desired closed loop impedance
and asymptotically tracks the delayed master trajectories
wherez;, € R" andz,, € R". Thei-th element of vectors However, this work examines output feedback control. An
zs, and z;, are defined analogously to thieh elements of output feedback version of the end effector dynamics that
Zm, andzp,,, respectively. The estimate of the environmentajjeld the desired impedance model is defined as,
force acting on the slave is obtained from the equivalent

output injection term,,; as, I = Myé,, + Byéy, + Keéy, + F. =0 (18)

By = —NL(Xy,) 20000 (14) Wheree,, = X‘_Sl — X'_;‘fh ande,, = X, — X2 In order to
ensure that this desired impedance characteristic idiedtis

Before presenting the master and slave controllers, sortee sliding surface for the slave controller is defined as,

notation is introduced. A signal(t) delayed by} seconds

is represented as, t
/ M7 YI(r)dr (29)
() = x(t — T)) 0
Similarly, a signal delayed by two times delays, and 75,
is represented as, ~ 1 ) dr (20)
2 () = x(t — Ty — Ty) =0 (21)

The master control law is a computed torque method Then, the slave side sliding mode controller is given as,
controller to decouple and linearize each degree of freedom

in the task space. The outer loop controller is specified asp M (X,,) { 7K, X,, + MI'B, X,
. o R —M7Y(X)he(Xs,, Xs,)
Fm:Mm Xm m hm Xm7Xm - F 15 N ! ~ 1,~ ZA
( 1>U + ( 1 2) h ( ) +(]\/fn_lem_Ms_le)lel
The inner impedance controller, to provide each degree of (M B, — MI'B)XE — (M1
m m s S mao m

freedom with desired impedance characteristics, is giwn a _ N . o -
— Mo (X)) EY + My X+ M Ee + Zoeq

my
d - ~
v = Mt (< By — Ko Xy + By B7) (26) Fmacq T Kysien()] #2
whereK, = kI« € R™*™ andk, is a scalar whose value

where M,, € R"*" is the diagonal constant matrix thatwill be specified later.
specifies the desired mass characteristic for each degree offo summarize, for master robot (3), (4) and slave robot
freedom. The desired mass for thwh degree of freedom (5), (6) connected bilaterally through a time delay Bf
is given by thei-th diagonal ofM,,,. The matricesB,, € seconds from the master to the slave @hdeconds from the
R™" and K,,, € R™*™ are also diagonal constant matricesslave to the master, the system may be controlled using the
representing the desired damping and stiffness values foraster control law (15) and (16) with master side observer
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(7), (8) and slave sliding mode control law (22) with slavevariables of the observer converge in finite time to the state
side observer (12), (13). of the system, i.6(X,n,, Xim,) — (Xom,, Xim, ). Further, the
Having presented the bilateral teleoperation algorithm innknown force vecto#},(¢) may be recovered in finite time
its entirety, the next section will develop the stabilityalysis ~ as M,,, (X, )Zmseq-
of this system. Proof: Omitted for space reasons. See [13]. The proof
follows the SISO proof presented in [9]. [ ]
The next theorem shows asymptotic stability of both the
In order to show stability of this system, the following master and slave under output feedback with force estima-
assumption is made. tion, and in the presence of time delays in the communica-
Assumption 3.1: The external forces acting on both mastetions.
and slave are bounded for all time with some known upper Theorem 3.1: Consider master robot (3), (4) and slave
bounds. robot (5), (6) connected bilaterally through a time delayof
The observers used in this work are based on SIS€econds from the master to the slave dhdseconds from
observers presented in [9]. Here, MIMO observers are deéhe slave to the master, with master control law (15) and
signed and a corollary is developed to demonstrate that tiie6), master side observer (7), (8) and slave sliding mode
SISO observers may be extended to MIMO observers whilgontrol law (22) with slave side observer (12), (13). Then,
still ensuring finite time convergence of the observer errathere exists a sliding mode controller galy, = kyl,xn
dynamics to zero. This result is shown only for the masteghere,
observer, but it is the same for the slave observer.
_Define the observer estimation error A%,, = X,,, — kg > |[Zsy — Zsgeq — 2, + 20 callz +24  (28)
X, and X,,,, = X,,, — X,,,. Then, the observer error
dynamics may be found as,

IIl. STABILITY ANALYSIS

for somee, > 0, and observer gaing,,, a,,, As, as such
that the state estimates recover the true state in finite, time
and the master and slave robot dynamics have the desired

e

mi = Xy — Zm, (23) impedance model.
5 5 5 Proof: The first step is to show that the estimated
Xy = F(Xmy, X Xings Xmgs Fimy F o
e (Kimss Xy Xinys X, B, i) states converge to the true states in finite time. Observer
—Zmy (24) convergence for both the master and slave is guaranteed from

where, Corollary 3.1, provided that the observer gains are chosen
according to (26) and (27). The master observer states will
) ) be exactly the master states afie, seconds, and likewise
F(Xony s Xongs Xong s Xongs Finy i) = for the slave observer states affér seconds.
M (X)) (=R (Xomy s Xony) + Fon + F) In order to show stability of the slave system, a Lyapunov
—J\Zf‘l(f( ) (—E (X’ % )+ F, ) function is used, and the controller is selected to ensiwae th
m Ay mASmy s ma m the sliding mode dynamics are finite time stable. Due to
and assume that the inequality, for théh element ofF, the definition of the sliding surface (20), expressions far t
dynamics of both the master and slave observers are required
‘FZ_(Xml’meXmmew Fo, Fy)| < £ (25) The master observer dynamics, after substituting the maste
control law (15) and (16) into the original expression foe th
for some constanf;r holds over the operational domain. Asmaster observer dynamics (8), are given by,

long as the controller used stabilizes the process in the cas
of full state measurements, one can choose the observer erro x

dynamics to be fast enough so that the state estimates are),(m1 Ximg + Zmy (29)
recovered before the robot leaves some chosen area. ThiswilX,,, = —M_ "B, X, — M KXo, + M1 E),
snsur_e t?;}t the bound (25) remains satisfied in the opegdtion _anlﬁaéi . Mgl(Xml)Fh + 2, (30)
omain [9].
Let a,,, and \,,, satisfy the following inequalities, for Substituting the delayed version of the closed loop master
every element in vectorsa,, and \,, respectively, observer dynamics (30) and the slave observer dynamics (13)
into the sliding surface (20) and simplifying, one arrivés a
Qm, > fi (26) t,
A 2 (Qm, +f'+)(1+pi) 27) § = A (_Ms_1<X81)hS(XS17X82) +M5_1KSX51
m; > . L ~ ~ A ~ ~ A ~ ~ ~
am, = fi7  (L=pi) MV B, - MRXE, - MBXY,
Corollary 3.1: Suppose that the parameters for the ob- + M K, X4 + M, B, X2
server (7) and (8) are selected according to the“above _(Mn:,l _MTZI(Xg;Ll))F’;i_*_MT;ngd
conditions (26) and (27) fow,,, and \,,, and that condition - s 4
(25) holds over the operational domain of the robot. Them, th Mg Fe + Mg (X, )Fs + 25, — Zm2> dr (31)
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Now consider the Lyapunov function candidate, Next, the closed loop expression for the master dynamics
1 is found by substituting the master controller (15) and (16)
V,=-3Ts (32) into the master robot dynamics (3) and (4). Making this

2 substitution and simplifying yields,
Taking the derivative ofV; along the trajectories of the
system, i
Xml = Xmg (38)
V. oT 3 33 Xm? = _M;llf(mel - M;zlémeg + M’rleh
STt s o — M F? (39)
= & [(_Ms_l(X51)hS(XS1aX82) +M5_1K8X81 . . .
SR e ey s oy In order to determine the tracking error dynamigs =
M B X, = Mg K X5, — M BX,, X,, — X¢ ande,, = X,, — X2, subtract the delayed
+]E[T;1f(mj(;fn + Mrﬁlém)zﬁfzz version of (38) from (36) and the delayed version of (39)
—(M;Ll B MTZI(X%I))Fg " Mﬁ}%ﬁd from (37). This yields,
MVE, + MY (R VFs + 2o, — 21 )} 34
+ s + s ( 1) +Zt2 Zmz ( ) érl = e, (40)
Now simplifying (22) and (34) and noting thaf sign(s) = br, = —M 'K, —M'Be,, — M'F, (41)

™ 15 = |18]|1 yields, . . . . .
2= [l = I3l y This result is exactly the equation of dynamics represgntin

the desired characteristic impedance for the trackingrerro
Ve < —kgll8ll1 + |87 (25, — Zspeq — 2ohy + 20 ca) | dynamics. This analysis has shown that on the sliding serrfac

) ] the master and slave dynamics remain stable, and the desired
The second term on the right hand side of the abovg,, acteristic impedance is achieved.

inequality represents an inner product of two vectors. By th -
Cauchy-Schwartz inequality and recalling thiaf|> < ||=|]1

_ Theorem 3.1 guarantees stability of each of the master and
in R™ leads to,

slave robots. However, stability of the entire closed losp i
not addressed in this result. The next section addresses the
issue of closed loop stability when the slave is in contact
with an environment.

A

—kgl 181l + 113111 [l2s, = Zsaeq = 2, + Zmaeqll2

~ d d
—||S||1 (kg - H252 — Zszeq T Fmey + ngeqHQ)

IV. CLOSEDLOOPSTABILITY

Having guaranteed stability for each of the master and
V, < —[|ll1e, <0 V13]]1 #0 (35) slave mfcmipula.tors with their associat(_ad observers and con
trollers, it remains to show that the entire closed loop can b
This guarantees stability, and additionally finite time constabilized in the presence of time delays. This section will
vergence of the system trajectories to the sliding surfacpresent closed loop stability results for the case where the
Finite time convergence is shown through the Comparisognvironment is a nonlinear finite-gain stable system.
Lemma [14]. As long ask, is chosen large enough, the In general, one may not be able to assume a known
sliding surface will be reached ifi, seconds. structure for the slave side environment. In fact, it may not
Satisfying the conditions of Corollary 3.1 ensures thahboteven be possible to determine one. This section will show
the master and slave estimation errors will converge to zetbat, for a general nonlinear environment with a finite gain
within T;,, seconds and’; seconds, respectively. As well, and a small modification to the slave closed loop dynamics,
the system trajectories will reach the sliding surféce 0  stability independent of delay for an unknown nonlinear
within T, seconds. Therefore, at= max(7s,T,,,T,), all environment may be achieved.
observers will have converged, the slave dynamics willmeac Defining the environment as some relation,
the sliding surfacé = 0, and all force estimates will be equal
to the actual external forces acting on the robots. F.=HX, (42)

One may compute the slave equivalent control signal ron n . .
by solving for the control input in the equatioh = 0. whereH : L3 — L%, is the mapping relating slave state to

Y : T environmental force, this subsystem must be finite-gain
F h I [ h ) ' . i
inding the equivalent control and substituting it into t et ble. That is, there must exist nonnegative constargsd

slave dynamics (5), (6) once the observers have converg

Choosingk, as in (28) ensures that,

yields, . such that,
. (HXs)r|lL, < Yell(Xs)rllL, + Be (43)
X = Xa - - - (36)  for all X, € £2" and7 € [0, %),
X5y = —M; KX, — M7 BsX,, — M, Fe One would like to be able to choose the slave robet

+X2 4+ M7'B XY + M7'K,XE  (37) gain arbitrarily small to ensure a loop gain of less than
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one. However, theéd,, norm of the slave system cannot be Proof: By Lemma 4.1 one can choose slave parameters
made arbitrarily small without some modification. In order t such thaty, may be made arbitrarily small. The condition
overcome this, a scaling terky on the delayed master statesy, < 1/7. may be equivalently expressed as,

is introduced. As well, the desired impedance parameters ar

re-defined. Define, YsYe < 1 (48)

(44) This is a small gain condition. When (48) is satisfied, the
slave-environment loop is finite-gaify, stable by the Small
wheree,, is a positive scalar to be set by the designer afid ~ Gain Theorem [14]. u
B!, andK’, are positive diagonal matrices that may be freely The slave-environment closed loop gain is defined.as.
chosen as well. Introducing these parameters has the efféichas already been shown in Lemma 4.2 that a suitable
of giving full control of the H,, norm of the slave to the choice of master robot parameters may always be made to
designer while maintaining the desired dynamic behaviougnsure the closed-loop stability of the master-slave syste
Introducing the scalar master trajectory scaling fagtpand In this case one can choose parameters to ensure that,
using the re-definitions of the impedance parameters, ame ca 1

M, = M, B, = e,B, K, = ¢,

express the slave dynamics as, (|G (8)]]oo < (49)
s+e
X 0 I X Then the feedback connection of the finite-gdin stable
S1 nxn S1 . .. . .
{X ] = { R V=YY } {X :|+ master with the finite-gainL, stable slave+environment

S2 s s s s S2 i R
subsystem is guaranteed to be stable by the Small Gain
A, Theorem. Note that delay elements have a gain of one and

so delays of this nature do not affect stability of the closed

0 0 0 0 loop when the small gain condition is met.

ka\Z/; -lK! kpMS’ 1B kyluxn —e;! 1,1 Other results have been developed for linear environments
that allow for less conservative choices of the closed loop

B. impedance parameters. As well, a closed loop stabilityltresu
o has been developed for the case when the human is also

XgLI modeled as nonlinear dynamics. This work is detailed in.[13]

Xm
X Xd2 (45) V. EXPERIMENTAL RESULTS
ma

| Fe While the algorithm presented has been shown to be stable

[ Inxn O X, theoretically, it is important to ensure that the approach i

Ys = ! (46) ; : - ; . L
0 I,xn X, feasible in practice. The experimental implementation in-
'—Cz—/ volves factors not addressed in the theory, namely unmddele

dynamics, friction, sensor noise, and a limited sampleogleri
Lemma 4.1: Given the slave system (45) and (46) with the This algorithm is implemented on the University of Wa-
scaling factork,, on the delayed master trajectory inputs, seterloo Teleoperation Platform, which consists of two 3-DOF
K, = K], B, = ¢,B,, and M, = ¢,M/. Then, theH,, robot manipulators connected to a PC through data acqui-
norm of the slave system may be made arbitrarily small. sition hardware. Only the revolute base degree of freedom
Proof: Omitted for space. See [13]. B is used on each robot, while the other degrees of freedom
Lemma 4.2: Consider master system (38) and (39) conare locked. In performing 1-DOF experiments, one can show
nected through time delays to slave system (36) and (37#hat the algorithm is implementable in practice and robost t
Define the gain of the slave-environment subsystem,as real world issues such as unmodeled dynamics and sensor
and the gain of the master system @g. If the master noise. Future work will implement these algorithms on
impedance parameters are chosen as, higher degree of freedom robots. There are position ensoder
on each motor for position measurements, but no velocity
3 sensors exist. Dynamic models of the base degree of freedom
M, > ’ys+e\/7, Em;, = M, bm, = \/2km,mm, (47) for each manipulator were developed prior to running the
2 experiments. For each robot, the base degree of freedom
then the loop gaimy,,vs+. always satisfies the condition was modeled as a mass-damper with Coulomb friction. The
Y Yste < 1. master robot dynamics are given as,
Proof: Omitted for space. See [13]. [ ]
Theorem 4.1: Consider the finite-gain stable environment
operator (42), with known gain., connected in feedback (50)
with the slave subsystem (45) and (46). One can always ; _ _ Bum - 1 Fom(@ms) + 1 Pt 1 P
ensure that this feedback connection is finite-gain staple b =~ S 2 Im
ensuring that the slavé, gainys < 1/7e.

Tmy = Tmgy

(51)
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where, (the link that contacts the environment) is a link with
some flexibility, giving some compliance to the manipulator
Fom (@) = { Jema %f Ty 20 environment interface. The flexible link on the slave robot

Jem2 i Ty, <0 has a modulus of elasticity @0 x 10> N-cm? [15]. The en-

A system identification was performed for this manipulatorVironment dynamics are not specifically modeled, but closed
giving the following values for the parameters; = 0.8084, foop impedance parameters were chosen experimentally to
B = 0.1150, fumi = 0.1090, and fume = —0.0746, €nsure stable be.hawour in contact. -

Similarly, the slave dynamic model is given as, For the experiment, the master closed loop impedance
parameters were chosen a$,, = 22, B,, = 32, and

K,, = 22. The slave closed loop impedance parameters

iy = T, (52) were chosen ad/, = 7, B, = 42, K, = 63. While in
) B, 1 1 1 practice these spring parameters are fairly large, bualshyit
Tsy = —759352 - jsfc.s(x82) - jsFe + jst (53)  chosen for this experimental setup, to ensure slave trgckin

stability one need only choose a slave side spring force that
is positive. The slave values were chosen to give the slave
. manipulator, and by extension the tracking error dynamics,
fes1 if xg, >0 h .
Jes(®s,) = { P i’ : <0 a pair of critically damped poles at = —3. The master
ooz o impedance parameters were chosen such that the closed loop
Identifying the slave parameters yields the following esu system would be stable independent of delay by the Small
Js = 0.8042, B, = 0.1768, fcs1 = 0.1462, and f..2 = Gain Theorem. The slave control signal was filtered with
—0.0237. a second order low pass 25 Hz filter. Time delays of 0.5
Note that since the robots are 1-DOF manipulators thegeconds were introduced from the master to the slave side,
is no need to transform the system to the Cartesian spae@d from the slave back to the master.
and all control design may be performed directly in the joint Figure 2 shows the master and the slave trajectories for this
space. experiment. In the presence of time delays, the system re-
Due to limitations of the hardware used, the sample timmains stable both in and out of contact with the environment.
in the experiments is limited t@, = 5 x 10~* seconds, There is some small error in tracking when the slave is in free
giving a sample frequency of kHz. As well, the position motion. Several factors may contribute to this. The first is
encoders produce signals with some noise. This can ben@deling error. It is apparent that there is some statitidnc
complication with sliding mode observers in practice. Adn the system that has not been modeled, causing a non-zero
a result, the pure switching components in the observepdsition error in steady state since not enough controkteffo
were replaced by saturation functions, which allow the usis being applied to overcome the static friction. As welEren
of a boundary layer. This boundary layer reduces the effeid certainly some error on the inertial and damping paramete
of chattering and provides more usable state estimates.vHlues in the identified robot models. An additional source o
was determined experimentally that boundary layer widthsrror is due to the fairly large boundary layer that is used in
of €, = 107* and e, = 1072, for the master and slave the sliding mode controller. This contributes to trackimgg
observers respectively, yielded the best state estimatesds the sliding surface = 0 is never actually reached. There
terms of reducing chattering. The observer gain parametesise some small periods of time where the slave manipulator
were chosen experimentally to ensure that the second ordetperiences some chattering. This is likely caused by the
sliding mode gain conditions are met and that good stateise on the state and force estimates due to running the
estimates are produced. The observer gains are et  observers at a larger than ideal sample period. However, it
10.5, a,,, = 15.4 for the master observer, and = 10.5, is not significant in this experiment.
as = 15.4 for the slave as well. In order to obtain the The estimate of the torque applied to the master manip-
estimated force signals from the observers, the switchingator is given in Figure 3. Due to the spring term on the
signals were passed throughHz second order low pass master manipulator, which is a requirement for the closed
filters. This filtering yielded very usable force estimates. loop stability analysis, the human operator must always
It was also found in practice that the use of a purapply a non-zero force to the manipulator when it is away
switching component in the slave control signal produceffom the origin. In practice, it is desirable to set the sgrin
significant chattering in the manipulator. As a result, @erm to zero, or close to zero, on the master side as this
boundary layer was used in the slave sliding mode controllggives the operator the sensation of using a tool that can
As well, the slave control signal was passed through lae arbitrarily placed in the space and left there. It is also
second order low pass filter before being applied to the robatpparent in Figure 3 that during periods of time when the
Without the use of the filter, the chattering became too greatlave manipulator is in contact with the environment, the
causing too much power draw through the motor amplifieoperator must apply more torque to the master manipulator to
power supply. compensate for the environment torque that is fed back to the
A very stiff metal structure was used as the environmenmhaster from the slave. This further shows the effectivenéss
at the slave side. However, the last link on the manipulatdghe the algorithm, even with a round trip delay of 1 second.
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experiment.

VI. CONCLUSION

Position of the master (solid) and slave (dashed) méatiprs in

This paper has also shown experimental results for the
proposed algorithm. In particular, since sliding mode tech
nigues have been used in the algorithm, it is important to
verify that these approaches will work even though it was
necessary to use a slower sample frequency than is desirable
for the sliding mode observers, due to hardware limitations
However, with the use of boundary layers in the slave con-
troller and the observers, as well as with some filtering ef th
slave control signal, a feasible and practical impleméonat
of this algorithm can be achieved. Both tracking of the nraste
by the slave and force reflection from the slave back to the
master were effectively demonstrated. This result reptsse
a new position-force teleoperation architecture withd t
need for force sensing.

Additionally, the experimental results suggest that this
algorithm is stable through contact transitions at the eslav
side. This is one aspect to be examined from a theoretical
standpoint in future work. An important area for future work
would be to implement this algorithm on hardware that
allows for faster sample frequencies and on manipulators
that have less friction in order to see even better results in
practice.
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