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Learning Task Constraints for Robot Grasping using Graphical Models

D. Song, K. Huebner, V. Kyrki and D. Kragic

Abstract— This paper studies the learning of task constraints
that allow grasp generation in a goal-directed manner. We
show how an object representation and a grasp generated on
it can be integrated with the task requirements. The scientific
problems tackled are (i) identification and modeling of such
task constraints, and (ii) integration between a semantically
expressed goal of a task and quantitative constraint functions
defined in the continuous object-action domains. We first define
constraint functions given a set of object and action attributes,
and then model the relationships between object, action, con-
straint features and the task using Bayesian networks. The
probabilistic framework deals with uncertainty, combines a-
priori knowledge with observed data, and allows inference on
target attributes given only partial observations. We present
a system designed to structure data generation and constraint
learning processes that is applicable to new tasks, embodiments
and sensory data. The application of the task constraint model
is demonstrated in a goal-directed imitation experiment.

I. INTRODUCTION

A major challenge in robotics is the integration of sym-
bolic task goals and low-level continuous representations. In
the research area of object grasping and manipulation, the
problem becomes a formidable challenge. Objects have many
physical attributes that may constrain planning of a grasp, as
also robots have limited sensorimotor capabilities due to their
various embodiments.

Considering the problem at hand, multiple approaches
take their inspiration from imitation studies in developmental
psychology: infants are able to infer the intention of others,
and understand and reproduce the underlying task constraints
through their own actions [1]. This goal-directed imitative
ability is obtained along multiple stages in a developmental
roadmap, both through the infant’s own motor exploration
(trial and error) and through the observation of others in-
teracting with the world (imitation learning) [2]. Roboticists
follow a similar developmental approach in order to design
architectures for artificial agents [2], [3], [4], [5]. Most of
these works, however, focus on the exploratory stage, where
robots obtain object affordances through their empirical
interaction with the world. The affordances being modeled
are measured as the salient changes in the agent’s sensory
channels, which are interpreted as effects of specific actions
applied on objects [4]. As an example, an effect of poking
a ball is making it roll. Though it is an important step for a

D. Song, K. Huebner and D. Kragic are with KTH - Royal In-
stitute of Technology, Stockholm, Sweden, as members of the Com-
puter Vision & Active Perception Lab., Centre for Autonomous Sys-
tems, www: http://www.csc.kth.se/cvap, e-mail addresses:
{dsong, khubner, danik}@kth. se.

V. Kyrki is with Lappeenranta University of Technology, Finland, Depart-
ment of Information Technology, www: http://www.it.lut.fi,
e-mail address: Ville.Kyrki@lut.fi.

978-1-4244-6676-4/10/$25.00 ©2010 IEEE

Ry

Human hand-over

Robot hand-over

19

An apple

A pen

Fig. 1. The idea of goal-directed imitation and task constraint learning in
a ‘hand-over’ task: though the embodiments, and thus hand configuration
spaces, are very different, both hands follow similar task-based constraints.

robot to discover this motor ability, another necessary step
to achieve goal-directed behavior is to link this immediate
motor act and its effects (as to poke the ball and let it roll),
to the conceptual goal of an assigned task (as to provide the
ball to a child). While trial-and-error-based exploration can
be seen as inefficient to solve such goal learning problems,
human supervision is helpful.

This motivates an idea different from the classical devel-
opmental studies in such a way that it incorporates task-
specific inputs from a human teacher. Thus, a system would
be able to learn natural, goal-oriented types of grasps in a
more efficient way. We clarify this idea in the hand-over task
shown in Fig. 1. Such a task requires enough free area for
another person to grasp the object. The robot should learn
that an important constraint for this task is free area. There
are numerous similar examples, e.g. pouring water from a
cup requires the opening of a cup uncovered, and using a
knife needs the robot to grasp the handle part. We believe
these links can efficiently be learned by the input from a
human expert. In this work, we develop such a method for
learning of task goals and task relevant representations. The
learning is performed in a high-dimensional feature space
that takes into account different object representations and
robot embodiments together with an input from a teacher.

II. RELATED WORK

Deriving quantified constraints from conceptual task goals
presents a challenge similar to integrating high-level rea-
soning with low-level path planning and control systems in
robotics. The main challenges originate from the representa-
tional differences in the two research fields. [6] addresses this
problem through statistical relational models for a high-level
symbolic reasoner, which is integrated into a robot controller.
[7] proposes a coherent control, trajectory optimization, and
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action planning architecture by applying the inference-based
methods across all levels of representations.

Recently, imitation learning [8] and the concept of internal
models [9] have received considerable attention in the field
of robotics. The work in [2], [3] implements an internal
model through Bayesian networks. In [10], it is shown
that the internal models which represent the brain circuitry
subserving sensorimotor control also participate in action
recognition. They are used to predict the goal of observed
behavior, and activate the correct actions to maintain or
achieve the ‘goal’ state. A later work [11] extends the use
of an internal model to the domain of visual-manual tasks.

A very recent work closely related to ours is the affordance
model by Montesano et al. [4]. The authors adopt a self-
supervised, developmental approach where the robot first
explores its sensory motor capabilities, and then interacts
with objects to learn their affordances. A Bayesian network is
used to capture the statistical dependencies between actions,
object features and the observed effects of the actions. They
demonstrate an application of the affordance model for a
robot to perform goal-directed imitation.

Concluding, we observe that most of the named references
are either emphasizing higher-level planning systems [6],
[7], or different domains with less complexity [2], [10],
[11]. Even [4], though placed in the same domain of grasp
affordance learning, is applied on fairly simple manipulation
actions with discretely valued properties. Especially the latter
presents a major drawback regarding the applicability in real
world environments, which have to consider continuous and
uncertain domains.

In our work, we directly approach the task-oriented grasp-
ing problem considering characteristics of a real robot sys-
tem. We facilitate the generation of sensor and actor data
using a selected grasp planning system [12] in a grasp
simulation environment [13]. A simulator allows to capture
embodiment-specific motor capabilities (by using different
hand models), and also to include the wrench-space based
grasp quality measures. It also enables supervised learning
where knowledge of human experts can be efficiently used. A
concept of providing expertise about task semantics through
human tutoring has been implemented in [14]. Our grasps
will be acknowledged by human experts to be suitable
for given manipulation task(s), to let the system learn the
underlying structure of the feature space in a probabilistic
framework. To realize this, we take a widely used proba-
bilistic graphical model, Bayesian Network [15]. This model
will be used to encode the statistical dependencies between
object attributes, grasp actions and a set of task constraints;
therefore to link the symbolic tasks to quantified constraints.
The statistical method exploits the co-occurrence of the
stimuli in different sensory channels, much alike to similar
mechanisms in the human brain [16].

The main contributions of our work are (i) introducing
a semi-automated method for acquiring manually annotated,
task-related grasps; (ii) learning probabilistic relationships
between a multitude of task-, object- and action-related
features with a Bayesian network; (iii) thus acquiring a

hand-specific concept of affordance, which maps symbolic
representations of task requirements to the continuous con-
straints; (iv) additionally, using a probabilistic framework,
we can easily extend the object and action spaces, and allow
flexible learning of novel tasks and adaptation in uncertain
environments; (v) finally, our model can be applied to a goal-
directed imitation framework, which allows a robot to learn
from humans despite differences in their embodiments.

ITII. DEFINITION OF FEATURE SUBSETS

To introduce our approach, we first identify four subsets
of features which play major roles in the consideration of
a task-oriented grasp: task, object features, action features,
and constraint features. These will define a frame for the
creation of a Bayesion network learning approach presented
in Section IV. Within these four subsets, we can flexibly
instantiate a network with a specific constellation of network
nodes, as will be demonstrated in Section V.

A. Task

In our notation, a task T € T = {11, ..., Ty, } refers to a
‘basic task’ that involves grasping or manipulation of a single
object. According to [17], such a basic task can be called a
manipulation segment which starts and ends with both hands
free and the object at the stationary state. These manipulation
segments are the building blocks for complex manipulation
tasks. Though there may be an infinite number of complex
tasks, we assume the basic building blocks form a finite set
of object manipulation tasks. We therefore choose our task
representation at the level of manipulation segments as each
of them has an independent goal directly constraining how
to grasp an object.

B. Object Features

An object feature set O = {Oy,...,O,,} specifies the
attributes (e.g. size) and/or categorical (e.g. type) information
of an object. The features in O are not necessarily indepen-
dent. The same attribute, such as shape, can be represented
by different variables dependent on the capabilities of the
perceptual system and the current object knowledge. For
instance, eccentricity and convexity can be estimated from
any kind of point cloud or mesh, while 3D shape repre-
sentations like Zernike descriptors [18] can be used when
a complete and dense 3D model of an object is available,
i.e. when the object is known. Though apparently redundant,
a system-dependent object representation offers flexibility in
generalization across possibly different vision systems which
can provide various levels of object knowledge.

C. Action Features

An action feature set A = {A;,..., A, ,} describes the
object-centered, static and kinematic grasp features, which
may be the direct outputs of a grasp planner. A may include
properties like grasp position, hand approach vector, or the
grasp configuration.
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D. Constraint Features

Finally, constraint feature set C = {C4, ..., C,,. } specifies
a set of constraint functions which is defined by human
experts; we term these to be a range of variables representing
functions of both object and action features. As an example
in a grasp scenario (like in Fig. 1), one may define the
enclosure of the object volume as a constraint feature, which
obviously depends on both object features (size and shape)
and action features (grasp position and configuration). Thus,
constraint features form the basic elements of general, task-
dependent constraints in the sense that they can be used to
quantitatively interpret the ‘goal’ or the ‘requirements’ of a
given task.

IV. BAYESTAN NETWORK MODELING

Given a complementary set of variables {T,0,A,C} =
X, our focus is to model the dependencies between their
elements using a Bayesian network (BN) [15] (see an exam-
ple network in Fig. 2). A BN encodes the relations between
the set of random variables X = {X;, Xs,..., X,,}. Each
node in the network represents one variable, and the directed
arcs represent conditional independence assumptions. The
topology of the directed arcs is referred to as the structure of
the network, and it is constrained to be directed and acyclic,
meaning there are no cyclic connections between the nodes.
Given the network structure .S, and a set of local conditional
probability distributions (CPDs) of each variable X;, the joint
distribution of all the variables can be decomposed as

n
P(x) = P(x|0,,5) = [[ P(xi|pa;,0:,5), (1)
i=1
where pa; denotes the parents of node X;, and the parameter
vector 05 = (04, ...,0,,) specifies the CPDs. Training a BN
includes discovering, from a dataset D = (x1,Xa,...,xn5)7,
(i) how one variable X; depends on others X;;, i.e. the
CPDs encoded by 6;, which is referred to as the parameter
learning, and/or (ii) if one variable X; is conditionally
dependent or independent of others X;_;, which is referred
to as the structure learning. In this paper, we will focus on
the parameter learning, and leave the structure learning as a
topic of future work.

Given that X includes both discrete (1) and continuous
variables (O, A, C), the model is a mixed Bayesian net-
work. We model the discrete variable 7' as a multinomial
distribution. For the continuous variables, we use Gaussian
Mixture Models (GMM) to represent the relatively complex
distributions. The number of components of the GMM for a
variable X; is determined from its training instances based on
a Bayesian information criterion. In the BN, the node with
the GMM distribution has a discrete latent parent to store
the mixture coefficients. The learning of the BN parameter
therefore uses an expectation-maximization algorithm.

The structure, as exemplified in Fig. 2, is determined based
on our knowledge on the causal relationships between the
four variable subsets. A coarse structure of the network
reflects the relationships between the four subsets of vari-
ables. As task 7' is determinant variable that constrains the

selection of objects and how to grasp the objects, it is the
root node. T therefore parents all the features in O and C. O
features also parent C features because object attributes can,
independently of task, influence the grasping method. A fea-
tures only have C features as their parents since we assume
the constraint variables encode the task requirements that
determine the distribution of grasping actions. In addition
to the coarse structure, there are also dependencies between
some variables within each subset, which we refer to as the
fine structure. For example in Fig. 2, the A variables are fully
connected as they all influence each other to some extent.

Fig. 2. Experimentally instantiated Bayesian network. The coarse structure
of the BN specifies the subset dependencies between 7', O, A, C. The fine
policy specifies the dependencies between variables within each feature
subset. The latent variables for GMM nodes are not shown here.

V. EXPERIMENTAL SETUP

In this section, we will instantiate an exemplary set X for
task-oriented grasp learning. The network illustrated in Fig.
2 will be used in our experiment to evaluate our approach
to learn the task constraint for robot grasping. We first
present the process of data generation using a simulation
environment; then, we will explain in detail how to extract
the selected features for the instantiated network; and finally
we will describe how the BNs are trained and tested. The
process described here can be visualized in the video material
accompanying this paper.

A. Generating Data D = {o,a,c,t}

We use Grasplt! 2.0 [13] as a simulation environment to
provide the basis for data generation and visualization of
our experiments. We decided on two hand models similar
to those in Fig. 1 (a 20-DoF human hand model and a 7-
DoF Schunk Dexterous hand model) for generating grasp
hypotheses over 25 object models with 6 types taken from the
Princeton Shape Benchmark (PSB) [19]: bottle, glass, mug,
knife, hammer and screwdriver. To generate a set of grasp
hypotheses on each object-hand pair, we use a planner for
Box Approximation, Decomposition and Grasping (BADGr)
[12]. BADGtr can not only be used to extract action features
A, but also offers several shape representations to build an
object feature set O. Since O, A are available, we extended
the system to generate specified constraint features C. We
store, in an offline dataset {o,a,c} as instantiated feature
vectors for only those grasps which result in valid force-
closure grasps (Grasplt! provides stability criteria to identify
those). To provide task labels for this set of stable grasps,
each object-grasp combination (a grasp instance {0;, a;, ¢; })

1581



TABLE I
FEATURE SETS USED IN OUR EXPERIMENTS.

’ Set ‘ Symbol ‘ Description ‘ Type ‘
T  task T = {hand-over, pouring, tool-use} D3
o O1 size Object (bounding box) size. R3
Og cvex Object convexity. R?
A1 egpc Eigengrasp pre-configuration. R2
A Aa  upos Unified position. R3
Az dir Quaternion orientation. R4
C C1 fvol Free volume. R?
Ca2 geps Grasp Stability. R?

is visualized as a 3D scene in Grasplt!. The human tutor then
selects, among a set of possible tasks 7 = {T1,..., Ty}
the affordable task(s) for this object-grasp configuration. If
this grasp instance is labeled to be valid for at least one
task t; = Tp € 7, a data instance {o;,a;,c;,t;} will be
included in the final complete dataset D = {o,a,c,t} for
training and testing. Note that, for this reason, our training
is based on positive examples, not considering negative (i.e.
non-force-closure, or non-labeled) examples.

B. Network Instantiation

The dataset D = {o,a,c,t} includes the instances for
a large set of feature variables. In this section, we select
an experimental small set of features X = {O,A,C,T}
to evaluate the capabilities of our learning framework (see
the eight variables in Fig. 2 and Tab. I). The following text
presents the technical details of the feature extraction.

Task (T'): For the current study, we use a single discrete
node to represent the task variable with three states 7 =
{hand-over, pouring, tool-use}. This decision connects to our
choice of the six object types as they are a set of hand-over-
able, pour-able, or tool-use-able objects.

Object Size (O1): A first step of BADGr is to envelop the
object’s point cloud by a minimum volume bounding box,
the so-called ‘root’ box By. The size of the object is taken
to be the three dimensions of this box, thus corresponding
to width, depth and height of the object. We note that all
objects have been adjusted in such a way that their ‘top’
points in positive z-axis direction.

Object Convexity (O3): A subsequent step of BADGr
is to decompose the root box By and re-approximate until
a fitness measure is reached (details in [12]). After this
process, a number n of bounding boxes By;<, has emerged
which envelop parts of the object. The object’s convexity is
approximated to be the ratio of volumes before and after the
decomposition, as cvex = volume(By)/ Y1, volume(B;).

Eigengrasp Pre-Configuration (A;): BADGr only plans
the pose of each hand model (grasp position and hand
orientation), and does not plan grasp pre-configuration, or
pre-shape. Since the hand configuration spaces are high-
dimensional, we use the idea of [20] to project those into
2D Eigengrasp spaces. The two dimensions roughly depict
spread and extension of each hand. The mapping for the
human hand comes with Grasplt! which is based on [20]; for
the Schunk hand, the first dimension is mapped to the spread

joint, and the second dimension to the extension of the three
finger joints. For each grasp pose that BADGr generates, we
sample 5 random Eigengrasps.

Unified Grasp Position (A5): The grasp position with
respect to the object will be an important feature of our
experiment. For example, a mug should not be grasped
from above in the case of a pouring task. We represent this
parameter using a unified grasp position, which is calculated
by projecting the 3D grasp position to a 2D unified spherical
space. This sphere is defined by the center point of the
specific object (taken from the root box) and a fixed radius
(which only has to ensure that all objects are inside this
radius). We then intersect this sphere with the grasp approach
vector emitted from the grasp position.

Grasp Orientation (A3): Though the unified grasp posi-
tion is using the grasp direction, it is not encoding it. Thus,
we consider this value in a separate variable. The grasp
orientation is embedded in each grasp generated by BADGr,
in terms of a quaternion representation.

Free Volume (C7): The free-volume constraint defines
the percentage of the object volume that corresponds to
the non-covered part in a grasp configuration. Briefly, we
span a tetrahedron A using the palm position and the three
contact points that maximize the volume of A. Considering
the box decomposition By<;<,, we compute to what extent
A intersects each B;, and sum up the volumes to V..
(occupied volume). The free volume is then acquired as
ol =1 = Vyee/ S0 volume(B;).

Grasp Stability (Cs): To incorporate force-related task
constraints, we use one of the commonly used measures
of grasp stability that Grasplt! provides, epsr. It describes
stability of each grasp in terms of force-closure (see [21]).

C. Training and Testing the Bayesian Network

To train and use the BNs (Fig 2) for human and Schunk
hands, we use the BNT [22], the Bayes Net Toolbox for
Matlab. In the following experiments, the training data comes
from the on-line labeling by only one human expert. For the
human-hand BN, the training set includes 600 x 3 instances,
with 600 instances per task, and around 100 instances per
object type; and for the Schunk-hand BN, the training set
includes 1200 x 3 instances, with 1200 instances per task,
and around 200 instances per object type. The testing set
comes from the 6 objects that are not included in the training
set. Each of the 6 objects belongs to one of the 6 object
types. This is to evaluate how well the trained network can
generalize to the unknown objects.

VI. EXPERIMENTAL RESULTS

In this section, we will describe the application of the
trained BN for three different experiments. While two of
them will mainly provide a view on the evaluation of the
technique, the third one will show a setup for robot imitation
based on task-constraints. For each experiment, we formulate
the corresponding semantic questions to the system.
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TABLE 1T

EXPERIMENT IV.A: DISTRIBUTION OF UNIFIED POSITION CONDITIONED ON TASKS AND
OBJECT FEATURES P (upos|task, size, conv).

TABLE III
EXPERIMENT IV.B:
CONFUSION MATRIX.

T: : hand-over T, : pouring

T|0
T3 : tool-use l

bottle hammer

mug

051 0.15 034

022 0.78 0.00

0.15 0.10 0.75

T|0,A

0.56 0.35 0.09

0.13 0.87 0.00

0.12 0.00 0.88

T|0,A,C
070 021 0.09
0.11 089 0.00

0.11 0.00 0.89

A. “From where to grasp an object, given a task?”

Formulating this question as P(upos|task, size, conv), our
goal is to observe how our three tasks influence the position
of a grasp, upos. As representatives for the experimental
results, we select a hammer, a bottle, and a mug out of the 25
object models as the test set, and train the Bayesian network
using the Schunk hand data stored from the remaining 22
models. We then compute P for all 3 test objects, and all 3
tasks. The results for this experiment are shown in Tab. II.

Analyzing the results, we have the following observations:
(1) the BN is clearly affected by the BADGr planner, provid-
ing a lot of “from where to grasp” hypotheses from the four
sides, top and bottom of an object. (ii) Given a hand-over
task, the results do not substiantially differ, and all major
directions are valid. (iii) Given a pouring task, the network
clearly rejects to grasp from the top in cases of bottle and
mug. We see that also the hammer has some (but much less)
likelihood to be poured from these directions. This is because
objects are only represented by size and convexity, and the
hammer has similar size as a bottle, but higher convexity. (iv)
For tool-use, the network emphasizes the hammer, from sides
and bottom, to be tool-use-able. It correctly rejects grasps
from the top. In a same way, and for the same reasons as in
the “pourable hammer” case, the bottle is tool-usable. The
mug is identified as being non-tool-use-able at all, since it is
very much different in size and convexity from a usual tool
(which should be long and convex up to some extent).

B. “What tasks is this (object / object and action / object,
action and constraint) good for?”

Dependent on the characteristic of this, the question can
be formulated as P(T]0O), P(T|0O,A), or P(T|O,A,C).
Since the task is represented by a single discrete node, we
can identify each problem as a classification, given different
amounts of observations. Our goal is to analyze how good
these classifications work for unknown objects. We train the

networks for the human and the Schunk hand, leaving out 1
object per object type. Thus, our training set includes data
from 19 objects with the test data covering all 6 object types.
The resulting confusion matrices are shown in Tab. III.

Analyzing the results, we can make the following ob-
servations: (i) object features contain important information
for task, in particular pouring (78% classification rate) and
tool-use (715%); (ii) introduction of action features improves
correct classification of these tasks (87% and 88%), but does
not affect hand-over (56%); (iii) when introducing constraint
features, pouring and tool-use do not improve significantly
(89% and 89%), but hand-over (70%).

C. “Can you imitate this demonstrated grasping task?”

In this section, we demonstrate the use of the task
constraint Bayesian network in a goal-directed imitation
experiment. The experiment is implemented using the human
hand model as the demonstrator, and the Schunk hand as the
imitator. The goal is to imitate the demonstrator performing
a pouring task using a mug o'’. We therefore train the
networks for both hands, letting out the seven test objects
off and o; to og presented in Tab. IV. Superscript 7 is
used to indicate features from human demonstration. We
first describe the general formulation in a two-step imitation
framework.

In the first step, the robot observes a human performing a
grasp on an object, and estimates the intention (task) t¥ of
the human action. P (T|O, A, C) encodes the probability
of the tasks for the demonstrated object-grasp combination,
where P means that the BN is specific to the demon-
strator’s embodiment. We denote the maximum-likelihood
estimate of the task as £7.

In the second step, the robot finds the most compatible
grasp on the object(s) it perceived, in order to achieve the
same task 7. This step can be formulated as a Bayesian de-
cision problem, where a reward function r defines the degree

1583



TABLE IV
EXPERIMENT IV.C: GOAL-DIRECTED IMITATION ON ‘pouring’ TASK.

Scenes Objective Functions
Step 1 Human demonstration: recognize task £7 PH(t]|ofl all cH)
£H
T1 = hand-over
' ] ‘ T, = pouring
> '~ T = tool-use ‘T oo
1 2 3
OH aH
Step 2.1 Select object o*: matching £, or also similar to o*! PE(Ty|0) PR(Ty|0)-0.2
' + S(o, o |Tz) - 0.8
* 0*
e = /J \\\\\\ (o] H
mm e
| 0:1 23 4 5 6 0:1 23 4 5 6
05 O¢
PE(Ty|04,a) PE(Ty|01,a)-0.2

+ S(a, aff|T») - 0.8

a*
.
a: 1 2 3 4

of similarity in the set of features x = {0, a,c,t} between
the demonstrator and the robot. As the knowledge over this
feature set is not certain, the expectation E() is taken over
the reward function. For instance, PT(T|O, A, C) encodes
the probability of the suitable task given an object-grasp
combination, where P means that the BN is specific to
the robot’s embodiment. The general optimization function
for decision making is

(a*,0") = argmaxE(r(aH,oH,cH,fH,a, o,c,t)> , (2
acA,ocO

where the maximization is over a set of stable grasp hy-

potheses A = {aj,...,a,,} generated by the robot’s grasp

planner, and/or available objects O = {o01,...,0,,} pre-

sented to the robot. We present two imitation scenarios to

illustrate the fomulation:

1) Matching of Tasks: The objective is to plan a grasp
to match the same task while the robot is given six objects
(see Tab. IV). In step 1, the robot estimates the most likely
task of the demonstrated grasp to be pouring t = Ty. In
the second imitation step, the robot first follows step 2.1
to select the object o* € O that best affords 75, and then
step 2.2 to select the grasp action a* € A that best affords
T5. The results of the second step are illustrated in the two
left bar plots in Tab. IV. The reward is a simple indicator
function of the demonstrated task, r(7%), which equals 1 if
t = T5, 0 otherwise. The optimization is then

(a*,0%) = argmax rP%(t = Tya,0,c) ,
acA,ocO

where Pf(t = Ty|a,0,c) is the likelihood of a task being

T, given the features of an object and the grasp generated

on it, i.e. the ‘task-affordances’ of the object and the grasp.

3)

As shown in step 2.1 in Tab. IV, the network clearly rejects
the three tools, since their features {size,cvex} can well
discriminate between pouring and fool-use tasks. Among
the three ‘container’ objects, the network produces similar
likelihood levels, with a slight favor towards the bottle og.
This may be explained by the simpler shape of the bottle
which enables more stable grasps to be generated that afford
pouring. We assume the robot selects the mug o; and show
the grasp selection on o; in step 2.2. The network selects
the grasp hypothesis a, as it best affords the pouring task.
As expected, the network rejects the top grasp as because it
blocks the opening of the mug; and rejects a; as it has one
finger poking into the mug thus does not afford pouring.

2) Matching of Tasks and Features of Object and Action:
In this scenario, the objective is not only to choose the object
and action that afford the task, but also to select those that
are similar to the object used by the human and the grasp
the human applied, i.e. matching their features. This requires
adding to the objective function a similarity measure between
o and o, and between a and a’. The results of the second
step of imitation are illustrated in the two right bar plots
in Tab. IV. Note that the feature vectors o and a are both
concatenations of multiple variables, such as egpc and upos
for a. If we let o; and a; represent the individual variables,
the similarity between, for example a and al | is defined as

na PR(af"|t)
S(a,af’|t) = l -
(a,a ‘ ) ; (ai _ af{)TZ;L.l(ai - af{) 4

where n4 is number of the action variables, and >, is
the covariance matrix of a;. This is a linear combination
of the similarity in each a; (calculated as the inverse of the
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Mahalanobis distance between a; and af{ ), which is weighed
by the likelihood of af’ in the robot’s BN for a given task
t. This is because that given a task, the ith reference action
feature a7 may have lower likelihood in P than others, i.e.
it is less confidently represented in the robot’s knowledge
base. For this feature, the similarity is weighed down. The

optimization is then formulated as

(a*,0*) = argmax r{Pf(t="Tyla,0,c)-(1—)\)

acA,0c0
+ S(0,a,0 af |t = Ty) - \)},(5)

where ) is used to specify the relative importance of match-
ing the features as compared to matching the task.

Tab. IV shows the results on object and action selections
when A = 0.8, i.e. the main goal (80%) is to find o* and
a* that are similar to human demonstration, with only 20%
requirements of matching the pouring task. In step 2.1, we
see that the network selects the mug o; because it is most
similar to the mug used in the demonstration. In step 2.2
the selected grasp is ag. This is because the action feature
upos of az is most similar to the demonstration: the grasping
positions of two hands are both on the negative side of the
x—axis in the object’s local coordinate frame.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a probabilistic framework for
learning of task constraints in grasp selection. Our con-
straint learning model links the semantic requirements of
manipulation tasks to the continuous feature space of the
objects and grasp actions. Our approach is semi-automated
and embodiment-specific. A simulation-based grasp planner
generates a set of hand-specific, stable grasp hypotheses on
a range of objects. A teacher provides the knowledge of
task requirements by labeling each hypothesis with the suit-
able manipulation task(s). The underlying relations between
the conceptual task goals and the continuous object-action
features are encoded by the probabilistic dependencies in a
Bayesian network. Using this network as a knowledge base,
the simulation experiments showed that the robot is able to
infer the intended task of a human demonstration, choose the
object that affords this task, and select the best grasp action to
fulfill the task requirements. Though we implement and test
the current framework based on the BADGr grasp planner
[12], this task constraint framework can be integrated with
any grasp planning system.

In the current implementation, we do not address the
learning of the network structure, but manually connect the
nodes based on our knowledge. In the future, we intend
to introduce more tasks, constraint functions, as well as
different and potentially redundant object and action features.
In such cases, building the network structure based purely
on human knowledge will be cumbersome and nonreliable.
Data-driven, automated structure learning is needed to iden-
tify the task-relevant variables, and discover the underlying
dependencies between these variables. In addition, we would
like to implement the approach on the real robot sensory-
motor platforms. For example, we can introduce different

object representations by applying different vision modules,
allowing the network to encode uncertainty in the perception
system.
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