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Abstract—In this paper, a motion planning method for mo-
bile auditory robots is proposed based on an optimization tech-
nique. Since it is one of the most important abilities for auditory
robots to recognize vocal messages correctly, the proposed
method is designed to maximize the confidence measure of a
speech recognition since the measure is thought to be strongly
related to the accuracy of the speech recognition. However, the
cost function to optimize is hard to model explicitly, and it is
difficult to obtain the gradient that is normally utilized to derive
the motion. In order to overcome this difficulty, simultaneous
perturbation stochastic approximation(SPSA) that does not
require an explicit model of the cost function is applied to
generate robot motion. The effectiveness of the approach was
verified through real experiments: the robot could get better
speech recognition rate after it approached the sound source
by measuring the confidence measure.

I. INTRODUCTION

Auditory information such as conversation, ring tone,
buzzers and so on, is widely used in our daily life. It
is also necessary for robots that work in our environment
to handle these auditory features. Especially for human-
machine interface, accurate speech recognition is one of
the most important abilities and many researchers proposed
various approaches in order to realize robust and accurate
speech recognition.

For example, beam forming or noise reduction with plural
microphones(e.g.[1]) emphasizes the target signal for better
recognition. When the recorded sound signal is disturbed and
hard to recover the original information, the lost frequency
band can be removed from the recognition process using
a missing feature mask[2]. Under the existence of plural
sound sources, sound source separation technique such as
ICA[3] have been widely studied. Those researches tackled
the difficulty by improving signal processing methods that
handle recorded auditory signal.

On the other hand, the robot can ask the speaker to provide
the information repeatedly if necessary in most of practical
cases as we do in our daily life. We can also change our
position or configuration if it is hard to recognize auditory
signal precisely. This approach is also possible for robots
since they usually have an ability to change their location or
configuration. The present paper proposes a method to plan
the motion for a mobile robot with a microphone to reach
the better listening spot in the sense of speech recognition.

Most of motion planning methods for robots are based
on optimization techniques to maximize (or minimize) the
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utility (cost) function. For speech recognition, the recognition
accuracy is the target to be maximized, but this information
is not available for robots since it requires the ground-truth
of the sentence to recognize. Although it is impossible to
utilize the recognition accuracy, speech recognition algo-
rithms compute various statistical indexes such as estimated
generation probability of a word or a phrase, likelihood of
the sentence and so on. It is known that those quantities
have positive correlation with recognition accuracy, and they
can be utilized as quantities to optimize in order to improve
the speech recognition accuracy. It is hard to get an explicit
model to evaluate those quantities because they are obtained
after complicate computation. Therefore, optimization meth-
ods utilize gradient of the target function are not suitable for
this case.

In order to overcome this limitation, this paper proposes
to apply Simultaneous Perturbation Stochastic Approxima-
tion(SPSA) algorithm[4], [5] as an optimizer. SPSA utilizes
two (or a small number of) parameters to evaluate the
target function and approximates the gradient by a difference
of those evaluated costs. Parameter sets are generated by
stochastic perturbation and the approximated gradient is used
to update parameters to optimize. This method is suitable for
the objective because it evaluates the target function only
twice (or a few times) at each step, which implies that the
robot is able to plan and to execute the motion only with a
few trials of speech recognition.

This paper is organized as follows. Fundamentals of SPSA
is summarized in the next section. The motion planning
method for auditory robots to improve speech recognition is
proposed in Section III. Since the optimization requires that
the target function is continuous, a preliminary experiment
was also conducted to show that the quantity to optimize can
be a function of the listening position, and an optimization
fits as a motion planner. This is also included in Section III.
The proposed method was verified through experiments with
a mobile platform and results are shown in Section IV. Then
conclusion follows(Sec. V).

II. SIMULTANEOUS PERTURBATION STOCHASTIC
APPROXIMATION

Simultaneous  Perturbation  Stochastic =~ Approxima-
tion(SPSA) has been studied as an efficient optimization
method[4], [5]. This approach requires the evaluated value
of the target function to optimize at a few points(usually two
points) for each optimization step in order to approximate
the gradient of the function. This method is useful when 1)
an explicit mathematical model of the target function is not
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available to compute its gradient, or 2) the evaluation of the
target function requires extensive computational cost, which
fits the case considered in the present paper.

f

Fig. 1.

SPSA optimization : a sketch

A schematic diagram of the optimization steps is shown
in Fig.1. Consider that the optimization of a function that is
denoted as f is optimized by tuning the parameter vector c.
Instead of computing the gradient of f as % f, the difference
of f at ¢ and c_ are used to approximate the gradient
statistically. Here, c+ are perturbed parameter vectors and
every element of the vector is perturbed, that is, ¢/, # ¢
for any ¢ where ¢! and ¢’ denote the i-th element ¢+ and ¢
respectively.

Given the variable vector ¢ at the k-th step of the
optimization, the i-th element of the vector at k + 1-th step,
which is denoted as ¢j,_, is given as

flerr) = flek)

i )
e

c};H :c';;—oz for Vi, (D)
where « is a positive update gain. It is worth repeating that
f is evaluated at ¢, and c_ only, no matter how large the
dimension of the optimization space is.

The perturbation affected to ¢ is given by random variables
of appropriate distributions. For example, £1 of Bernoulli
distribution can be used as a perturbation generator such as

ik =c* 4 8,

where (3 represents a positive perturbation parameter and =+,
shows that the sign is decided for each ¢ and k. In the present
paper, the perturbation is generated using the above model
because of its simplicity that leads computational efficiency.

« and 8 can be given as a function of the step number
k to realize simulated annealing as shown in [4], that is, «
and [ tend to O as k increases.

III. MOTION PLANNING FOR AUDITORY ROBOTS

In this section, a motion planning method for a mobile
auditory robot based on SPSA is proposed. The target robot
system, and the objective of the approach is given first, then
the quantity to optimize in order to realize the objective is
introduced.
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Fig. 2. Mobile Auditory Robot and its system structure

A. Mobile Auditory Robot

The target device to implement the proposed method
is a mobile platform with a microphone. Fig.2 shows the
robot and its system structure. The robot has two steering
wheels and two drive wheels, and onboard computer is
installed. Two rotary encoders are equipped for odometry.
Steering wheels and drive wheels are actuated by electric
motors that are controlled by an embedded microprocessor
communicating with the onboard computer. The onboard
computer has a microphone interface and it can run a speech
recognition software on realtime.

B. Objective

In order to achieve the final goal, the paper proposes a
method to compute the move to the location where the robot
can recognize the speech stably.

It is impossible for robots to measure the recognition
accuracy directly because it needs the exact sentence given
to the robot to compare the recognized sentence. On the
other hand, the speech recognition engine computes various
quantities to evaluate the recognized sentences. Some of
those quantities or combinations of them are known to
have positive correlation with the recognition accuracy. For
example, the ratio of likelihood for the best two recognized
candidates can be used to monitor the performance. The
algorithm can reject the results when the ratio is close to
1 since the best candidate is hard to be distinguished from
the second one.

Following this approach, this paper proposes a motion
planning method using one of those quantities in speech
recognition without using the information of the recognition
accuracy directly.

C. Word Confidence Measure in Speech Recognition

Julius[6] is used as a speech recognition engine in this
research. Julius computes likelihood of each candidate and
selects the most likely, or those satisfy a given criteria, as the
recognized sentence(s). The confidence measure[7] is one of
those quantities that evaluate how reliable each recognized
word is and the measure is within the range from O to
1. Although the measure is not equal to the recognition
accuracy rate itself, it can be used as an index to estimate
how much the user can rely on the recognized result. This
implies that the measure can be used to compute the robot’s
motion in order to achieve the objective.
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Example of confidence measure (CM) for N sentences (S1 --- Sn)
S1 Kumamoto no Raishu no Tenki ha?
CM 0.954 0.999 0.768 0999 0911 0.999
So Kumamoto no Raishu no Tenki ha?
CM 0.924 1.000  0.858 0.999 0950 0.995
S.N Kumamoto no RaisPllu no Tenki ha?
CM 0.854 0.999  0.968 0.950 0.899 1.000

underline shows the minimum confidence measure of the sentence.

= median(0.768,0.858, --- ,0.854) = 0.858

Fig. 3. Word Confidence Measure

One recognized sentence provides those scores as many as
the number of words that the sentence has. Furthermore, the
robot may recognize plural sentences at one spot. In order
to compute the robot’s motion by a simple way, one of the
scores is selected as follows.

Denote the number of recognized sentences at k-th trial as
N (k), the number of words in the i-th sentence as N (k), and
the measure of the j-th word in the i-th sentence as s (k).
Then the representative value of those measures, which is
denoted as s(k), is defined as

s(k) =log {lmled]lva(ri) <j1I.I.1.iNni(k) (Sé(k))) } .

Since the computed measure may be varied and disturbed
rather largely, the median of the worst scores is utilized in
order to reject the effect of outliers. The logarithmic function
enlarges the range of s that makes the numerical optimization
process easier. In what follows, a set of 17 words and 2 types
of grammar is utilized as an example. Although this might be
thought rather simple and small set for normal conversation,
it is a good size for the robots that accepts simple voice
commands.

D. Speech Recognition in a Room

Because of reflection and diffraction by objects or walls
in a room, the speech signal is distorted when it is trans-
mitted from the speaker to the listener. This implies that the
distortion is a function of position and configuration of the
speaker and the listener. It is not surprising to assume that
the function is smooth, at least locally. It is also expected
that the word recognition confidence parameter depends on
position and configuration of the speaker and the listener
smoothly. In order to validate this assumption, preliminary
experiments to measure the score in a room were conducted.
Since this paper considers the case when the listener, or the
robot, moves, the listening location is varied.

Fig.4 shows a sketch of the room and the hatched 2mx2m
region was considered as the space to search. The confidence
measure was computed at every 0.5m grid points, hence there
were 25 points in the target region. The microphone was
installed at the grid point and it was pointed toward the sound
source. Fig.5 shows the measured result in bird eye’s view.
Roughly speaking, the closer the listener was to the speaker,
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Fig. 4. Sketch of the room for experiments
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Fig. 5. Confidence Measure in a room: pointing to the source

the better the confidence was, as it was expected. But the
peak, or the most confident location, was slightly left from
the speaker. This might be caused by acoustic effects of the
environment.

Fig.6 shows the result when the direction of the mi-
crophone was also considered as a parameter. Since it is
impossible to draw the result as in Fig.5, confidence is shown
in radar charts. The center of each radar shows the position
of the listener, and the direction of the microphone is shown
as the angle. The confidence is shown as the radius from the
center. In this case, 3 by 3 points were selected to measure.

As shown in Fig.5, the same tendency can be seen that the
closer listening point shows the better confidence. It might
be surprising that there was no directional effect seen when
the listener was close to the speaker, but this was because
the test signal was loud and the microphone could get a
good signal for any direction. It is hard to find a systematic
trend with respect to the direction, but better confidence was
obtained when the microphone was not pointing the opposite
direction to the sound source.

E. Proposed method

As shown in the previous subsection, the confidence mea-
sure, that is expected to represent the recognition accuracy,
depends on the listener’s position. Then, it is natural to
command the robot to move to a certain point, or a region,
where the best confidence measure can be obtained.

The logarithmic confidence measure is used as the index
to be maximized, and the score can be computed by listening
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sound source

Fig. 6. Logarithmic confidence in a room: with direction.

the speech at two different locations.

Let denote the location and configuration of the robot at
time k as X, and the confidence measure obtained at X,
can be expressed as s(X ). It can be assumed that the robot
can achieve the command to move its state X to the given
desired state owing to the low-level controller.

The method is summarized as follows:

/ 1) Generate the perturbation vectors ¢y, who@
i-th element is given as

o = X ik B

2) Move the robot to c; and listen the speech

3) Compute the confidence measure s(c )

4) Move the robot to c_j and listen again

5) Compute the confidence measure s(c_y,)

6) Compute the difference of the measure, de-
noted as A X, as an approximated gradient:

s(c+r) = s(e-k)

AXk' = i i
Chrr — Ck

% )

where a subscript ; represents the ¢-th element

of a vector.
7) Move the robot to X + arAX .
\8) Let £ — k + 1 and back to Step 1 /
ci is defined by a random variable governed by
Bernoulli distribution of amplitude [j. According to SPSA
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Fig. 7. Experiment 1(X,Y" case)

formulation[4], oy, and Bj, can be given as

1
U = G An
1
Bk - ﬁo(k—‘—l)E’

where «ag, By, A, v and € show appropriate constants. v and
e should be selected carefully since they play the role to
control how the algorithm converges to a solution. When
and e are large, the algorithm stops updating the parameter
quickly, and it might stack at a pseudo maximum.

1V. EXPERIMENT

The proposed algorithm was evaluated by experiments in
the room shown in Fig.4. Corresponding to Fig.5 and 6, the
algorithm was tested in a horizontal displacement case and
a horizontal and angular displacement case. In the first case,
the microphone was pointed to the sound source and only the
horizontal displacement was considered. This required the
information about the sound source direction from the robot,
which might be not always available. In order to consider
the case when no directional information is available, the
second case considered the directional displacement of the
microphone as well. Adding to those two experiments, the
method was also tested in a different room that was larger
and noisy in order to verify the robustness.

The sound signal given to the robot was a recorded
sentence by a male subject and it was repeated two times
at each listening position. In order to avoid the disturbance
by ego noise, the sound signal was measured while the robot
located at the listening spot quietly.

A. Horizontal Displacement Case (X and Y')

As the microphone was controlled to point the sound
source in this experiment, the quantities to be optimized were
X and Y location of the robot. ag and 3y were selected to
0.6 and 0.2 respectively. According to [4], v = 0.101 and
e = 0.602. Because of the limit of the experiment area, Y
coordinate was limited to Y > 0.2. This was realized by
clipping the generated motion with respect to Y axis.

The generated motion is shown in Fig.7. Fig.7(a) shows
the time history of X and Y location. Markers without
lines show the location of perturbed measurement points and
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Fig. 8. Confidence measure in speech recognition and its performance

markers with line segments show the location of the robot.
As time passed, Y component converged to 0.2 that was the
limit of ¥ and X converged to almost 1.0 where the sound
source located (1.0,0.0). The confidence measure and the
recognition accuracy were improved as shown in Fig.8. At
each step, two values of confidence measure and recognition
accuracy were evaluated corresponding to the measurement
points ¢4 and c_j. Fig.8(a) shows the history of the
logarithmic confidence measure defined in Sec.IIl. From the
figure, it can be concluded that the confidence measure was
improved and got close to the best value 0 as k increased. The
recognition accuracy in Fig.8(b) is expressed by the number
of correctly recognized sentences. Since the robot obtained
two sentences at every measurement, 2 was the best (prefect)
recognition. When the logarithmic confidence got higher than
—0.1, the recognition accuracy was also 2 (100% accurate).

B. Horizontal and Angular Displacement Case (X, Y and
0)

The second experiment was conducted in the same room.
In this case, v and € were set to O in order to search
larger parameter space than the previous one because 6
was included. Fig.9 shows the motion of the robot and
the direction of the microphone. As seen in the previous
experiment, Fig.9(a) shows that the robot got close to the
sound source. Adding to this, the direction of the microphone
also converged to the direction pointing to the sound source
(Fig.9(b)).

Confidence measure and the recognition accuracy are
shown in Fig.10. Although the robot could reach the sound
source with pointing its microphone toward the sound source,
the performance index was not as good as the previous
case. This was because the direction of the microphone that
effected the performance was varied and its motion was kept
active until the end of the experiment(y = € = 0).

C. Robustness

The method was also tested in a different room shown
in Fig.11. The room was larger (18.5 x 10[m] size) than
the previous one, and there was the second sound source
which generated white noise during the trial. As the first
case, 7 = 0.101 and € = 0.602, and the robot was initially
located about 1[m] from the sound source and 2[m] from the
noise source.
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Fig. 10. Confidence measure in speech recognition and its performance

Fig.12 shows the result of the experiment. From Fig.12(a),
X decreased gradually and converged around 0O, and Y
increased at the beginning and then decreased. This is
plotted in Fig.12(b), and the motion was indicated by a
counter clockwise arrow. The robot escaped from the noise
at the beginning and then reached the sound source from
the far side of the noise, which was reasonable. Owing to
the motion, the performance shown in Fig.12(c) and (d)
was improved and succeeded in recognizing the sentence
perfectly.

D. Discussion

As shown in Fig.5, the optimal listening spot with respect
to the confidence measure located close to the speaker. In this
sense, it is acceptable that the robot got close to the sound

435



10[m]

! 2.0[m] !
—| | Feasible region
B £ Lol
= S .0[m
é N =) oise source
Y =
X 1.0[m|
v £
<
Sound source
Fig. 11. Large room case, with noise source
R Initial pos.
— 25 e X pos. (e) 30 v Final pos.
é 2.0 _Y_Y pos. (V) 2 Soundpos.
S 1 2.0
R SR AN
:>: 1 \\I \i\\ I~ EIO Pe N.oisc
:«% 0.5 & ’ ‘I‘j:f*:}‘:;i ~ 0 x
R ! [ !
o _ Soynd pos.
05516 s 10 o 0 1o 20 30

Step X[m]

Motion of the robot with

(a) (b) Motion of the robot (hori-
respect to time. zontal view)
0 et B
—0.1 5 2 e e e e e e
. * 2
S —0.2 ¢ * é
U —0.3s ¢, g 1p o = -
—0.4 3
(9]
% 0
2 4 6 8 10 4 2 4 6 8 10

(©) Conﬁdensctee}%neasure (d) Recognitglg%Paccuracy

Fig. 12. Figures corresponding to Fig.7 and Fig.8

source in order to get better confidence (Fig7, 9 and 12).
Since the performance of speech recognition was improved,
the assumption that the confidence improvement provides the
better recognition accuracy was also validated.

Microphone direction of the second experiment reached
to the relative direction of the sound source, which implied
that the method succeeded in guiding the robot. However,
the speech recognition performance could not be improved
stably. This was because the direction of the microphone kept
moving since parameters v and e were set to be 0. Although
this parameter configuration is good for the case when the
robot needs to explore in a large area, the result shows that
an appropriate selection of the parameters is necessary.

From the third experiment, the method succeeded in
guiding the robot with reducing the effect from the noise.
It is not shown in this paper, but authors have examined that
the method also succeeded under the noise of vocal signal
or music as far as its intensity did not varied largely. It is
expected that the vocal noise could be rejected because of

the grammar, but further study is needed.

The algorithm does not require any a priori information
about the sound field, but just compute the confidence
measure at several points. This is practical and important
for real active audition. It might be thought that the first
experiment requires the information about the location of the
sound source in order to keep the microphone pointing to the
source. This can be overcome by estimating the location of
the sound using microphone arrays, or dynamic robotic head
controlled by audio servo[8].

V. CONCLUSION

A preliminary experiment in this paper revealed that the
confidence measure could be modeled as a smooth function
of the listener’s position. Based on the assumption that
the better confidence measure gives more accurate speech
recognition, it is also proposed to utilize word confidence
measure optimization as a method to plan the motion for a
mobile auditory robot. The approach was validated through
experiments that showed that the robot could get more
accurate recognition after moving from the initial location.
Even under noisy situation, the robot could reach the bet-
ter listening spot in the sense of the speech recognition.
However, the study also shows that an appropriate parameter
selection is necessary, which will be studied as a future work.
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