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Abstract— This paper presents a proposal of an iterative
learning control method for a musculoskeletal arm to ac-
quire adequate internal force to realize human-like natural
movements. Additionally, a dynamic damping ellipsoid at the
end-point is introduced to evaluate internal forces obtained
through the iterative learning. In our previous works, we have
presented that a human-like smooth reaching movement using
a musculoskeletal redundant arm model can be obtained by
introducing a nonlinear muscle model and “the Virtual spring-
damper hypothesis”. However, the internal forces have been
determined heuristically, so far. In this paper, an iterative
learning control method is used for acquisition of an adequate
dynamic damping ellipsoid according to a given task, in order to
determine internal forces more systematically. It is presented
that the learning control scheme can perform effectively to
realize given desired tasks, even under the existence of strong
nonlinear characteristics of the muscles. After acquiring a
given task, the dynamic damping ellipsoid is introduced to
evaluate the relation between a damping effect generated by
the acquired internal forces and a trajectory of the end-point.
Some numerical simulations are performed and the usefulness
of the learning control strategy, despite strong nonlinearity of
the muscles, is demonstrated through these results.

I. INTRODUCTION

Humans’ movements are much more smooth, dexterous,
and natural than those of present robots. Up to now, many
robotics researchers have devoted attention to the acquisition
of such human-like movements; it remains a hot topic in
robotics. However, several difficulties remain in realizing
such human-like movements. To surmount such difficulties,
we should specifically examine the existence of redundancy
of two types, which a human body intrinsically possesses.
One is joint redundancy, whereby the number of joints is
greater than the dimensions of the task space. The other is
muscle redundancy, by which several muscles are related to
the actuation of one joint. Both redundancies might enhance
dexterity and versatility of human movements. However,
they each induce different ill-posed problems [1]. Joint
redundancy causes an ill-posed problem that each joint angle
cannot be determined uniquely corresponding to a given end-
point position of the arm. Muscle redundancy raises another
problem: the set of muscular forces to realize a given desired

This work was partially supported by Japan Society for the Promotion of
Science (JSPS), Grant-in-Aid for Scientific Research (C) (20560249), and
“the Kyushu University Research Superstar Program (SSP)”, based on the
budget of Kyushu University allocated under President’s initiative.

K. Tahara is with the Institute for Advanced Study, Kyushu
University, 744 Moto’oka, Nishi-ku, Fukuoka 819-0395, Japan
tahara@ieee.org

H. Kino is with the Department of Intelligent Mechanical Engineer-
ing, Fukuoka Institute of Technology, 3-30-1 Wajiro-higashi, Higashi-ku,
Fukuoka 811-0295, Japan kino@fit.ac.jp

joint torque cannot be determined uniquely. Many optimiza-
tion methods to overcome these ill-posed problems arising
from such redundancies have been proposed in the fields
of physiology and robotics to date [2–4]. In recent years,
Arimoto et al. [5] proposed a novel hypothesis, called “the
Virtual spring-damper hypothesis”: no optimization criteria
are necessary to overcome the ill-posed problem related to
joint redundancy. Expanding the virtual spring-damper hy-
pothesis, we have treated the other problem caused by muscle
redundancy in our previous study [6]. Based on the result,
we proposed an index by introducing a nonlinear muscle
model to determine the internal force generated by redundant
muscles. This nonlinear muscle model enables modulation
of the joint damping effect by changing the internal forces
generated by redundant muscles. Therefore, this feature
can give internal forces physical meaning to determine it
uniquely. However, in our previous studies, an adequate
value of the internal force has been chosen heuristically to
realize a human-like natural movement. The main objective
of the paper is to discuss how to determine an adequate
internal force to realize human-like natural movements when
a desired trajectory is given initially [7]. To do this, first an
iterative learning control scheme [8] is proposed to realize
a given desired end-point trajectory. Previous studies related
to iterative learning control did not treat any kind of muscle
dynamics which includes strong nonlinearity. Unlike those
earlier studies, this paper demonstrates for the first time that
the iterative learning control method is applicable to obtain
a suitable damping effect, even given the existence of strong
nonlinearity of the muscle dynamics. Secondly, the dynamic
damping ellipsoid at the end-point of the arm is introduced
to evaluate the damping effect. Some numerical simulations
are conducted. These results demonstrate that the iterative
learning control scheme can realize a desired trajectory
even though our muscle model includes strong nonlinearity.
Through evaluation of the acquired internal force pattern
using the dynamic damping ellipsoid, we discuss how to
determine an adequate internal force uniquely to realize
human-like natural movements.

II. MUSCULO-SKELETAL ARM MODEL

A redundancy-driven musculoskeletal arm comprising two
links, four monoarticular muscles, and two biarticular mus-
cles is modeled in this paper. In our previous work [6], both
joint and muscle redundancies were examined, but this paper
treats only muscle redundancy because of focusing on the
internal forces generated by redundant muscles. The model
presented herein is shown in Fig. 1. Assume that the overall
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Fig. 1. Two-link planar arm model with six muscles.

movements are restricted in a horizontal plane, the gravity
effect can be ignored in this model. Each skeletal muscle is
approximated as a linear segment so that its contraction is
linear, and its mass transfer during contraction is omitted for
simplicity.

A. Kinematics

Suppose that a muscle length vector l = [l1, l2, · · · , l6]T ∈
R

6 can be expressed by a joint angle vector q = [q1, q2]
T ∈

R
2 in the following way:

l = Gl(q) ∈ R
6, (1)

where Gl(q) in the right-hand side of (1) is a nonlinear
vector that expresses the relation between each joint angle
and each muscle length. Namely, it indicates the forward
kinematics from the joint angle space to the muscle length
space. Moreover, the time derivertive of (1) is given in the
following:

l̇ = WTq̇ ∈ R
6, (2)

where WT ∈ R
6×2 is the Jacobian matrix for each muscle

contractile velocity with respect to each joint angular veloc-
ity, and hereafter, it is called “the muscle Jacobian matrix”.
On the other hand, the relation between each muscular force

fm ∈ R
6 and each joint torque τ ∈ R

2 can be given through
the principle of virtual work in the following manner:

τ = Wfm ∈ R
2, (3)

where we assume that the muscle Jacobian matrix W ∈
R

2×6 is of row full-rank during movement. The inverse
relation of (3) can be given in the following way:

fm = W+τ +
(
I6 −W+W

)
k ∈ R

6, (4)

where W+ = WT(WWT)−1 ∈ R
6×2 stands for the

pseudo-inverse matrix of W and
(
I6 −W+W

)
k ∈ R

6

implies the null-space of W . and k ∈ R
6 is an arbitrary

vector. The physical meaning of the null-space is that space
in which internal forces are generated by the configuration
of redundant muscles. In addition, the relation between the
joint torque τ and the output forces of the end-point in the
inertia frame F ∈ R

2 is given as

τ = JTF ∈ R
2. (5)

where J ∈ R
2×2 denotes the Jacobian matrix for the end-

point velocity with respect to each joint angular velocity.
Substituting (5) into (4) yields:

fm = W+JTF +
(
I6 −W+W

)
k ∈ R

6. (6)

Equation (6) shows the relation between the muscular force
and the output force of the end-point.

On the other hand, the end-point position vector x ∈ R
2

in the task space can be expressed by the joint angle vector
q ∈ R

2 as

x = Gx(q) ∈ R
2, (7)

where Gx(q) is a nonlinear vector that expresses the relation
between each joint angle and an end-point position. Namely,
it denotes the forward kinematics from the joint angle space
to the end-point position space.

The time derivertive of (7) is also given as follows:

ẋ = Jq̇ ∈ R
2. (8)

As mentioned previously, we consider a non-joint-redundant
two link planar arm model in this paper, and assume that an
attitude of the arm does not become singular during move-
ment. Therefore, we can easily obtain the inverse relation of
(7) and (8) in the following way:

q = G−1
x (x) ∈ R

2 (9)

q̇ = J−1ẋ ∈ R
2, (10)

where G−1
x (x) in the right-hand side of (9) signifies a

nonlinear vector which indicates the inverse kinematics from
the end-point position space to the joint angle space. Also,
(10) denotes the differential inverse kinematics from the end-
point velocity space to the joint angular velocity space.
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B. Nonlinear Muscle Model

In this paper, we introduce the nonlinear muscle model
which has already been proposed in our previous work [6].
In physiology, Hill’s muscle model, in which the force–
velocity relation of the skeletal muscle is expressed as a
simple hyperbolic equation, is formulated as

(fm + a)(l̇ + b) = b(f0 + a), (11)

where fm signifies the output contractile force, l̇ is the
contralctile velocity, f0 denotes the maximum isometric con-
tractile force, whose magnitude depends on its own length.
Furthermore, a and b are the heat constant and the rate
constant with respect to the energy liberation, respectively.
Mashima et al. [9] have proposed a more detailed muscle
model based on the Hill’s model in the following way:

fm(α, l̇) =

⎧⎨
⎩

bf0−al̇

|l̇|+b
α if l̇ ≥ 0

bf0−(2f0+a)l̇

|l̇|+b
α if l̇ < 0

(12)

where 0 ≤ α ≤ 1 stands for the muscle activation level.
The value of the constants a and b have been determined
experimentally as a = 0.25 · |f0|, b = 0.9 · |l0| [9], where
l0 denotes the intrinsic rest length of the muscle. Muscle
forces are known to be proportional to the value of the
muscle activation level α; f0 indicates the maximum output
force. Therefore in this paper, we assume that the input to the
muscle is defined as α′ = f0 ·α [N] to set the dimension of
the control input as equal to the muscle force. In addition, the
muscle has another nonlinear property that can only generate
a contractile force. Therefore, the control input to muscles
α′ should be modified to ᾱ as a saturated function such that

ᾱ =

{
0 if α′ ≤ 0

α′ if α′ > 0
. (13)

If the control inputs to the muscles become some negative
values, then these values must be re-shaped to zero to satisfy
ᾱ ≥ 0. By considering these definitions, (12) can be rewritten
in the following way:

fm(ᾱ, l̇) = p
(
ᾱ− ᾱcl̇

)
, (14)

where

p =
0.9l0

0.9l0 + |l̇| ,

c =

{
0.25
0.9l0

> 0 if l̇ ≥ 0
2.25
0.9l0

> 0 if l̇ < 0
.

In (14), the parameter p which depends on the contractile
velocity l̇ satisfies 0 < p ≤ 1 as far as l̇ is upper-bounded.
The system considered here has six muscles, and thereby all
the muscle dynamics can be expressed in the following way:

fm = Pᾱ− PA(ᾱ)Cl̇, (15)

where

fm = [fm1
, fm2

, · · · , fm6
]T ∈ R

6

ᾱ = [ᾱ1, ᾱ2, · · · , ᾱ6]
T ∈ R

6

P = diag[p1, p2, · · · , p6] ∈ R
6×6

A(ᾱ) = diag[ᾱ1, ᾱ2, · · · , ᾱ6] ∈ R
6×6

C = diag[c1, c2, · · · , c6] ∈ R
6×6.

Note that the diagonal matrix A is composed of the elements
of the control input vector ᾱ. In fact, A originates from
nonlinearity of the muscle model, and it satisfies A ≥ 0
from (13).

III. ITERATIVE LEARNING CONTROL

A. Desired Trajectory

The purpose of this study is to acquire and evaluate
output muscle forces in the case in which a desired end-
point trajectory is realized. To do this, we assume that the
desired end-point trajectory is given in advance. Especially in
this paper, the desired end-point trajectory is given as a line
segment in the task space. Its time trajectory is subject to the
minimum-jerk criterion, which has been proposed by Flash
and Hogan [7]. The performance function to minimize the
square of the jerk at the end-point is given as the following
way,

C =

∫ T

0

‖...
x(t)‖2dt, (16)

where T is a duration time of the movement, and
...
x stands

for a jerk of the end-point in the task-space. By calculating
(16), we obtain the specific desired trajectory expressed as
follows:

xd(t) = x0 + (xf − x0)ω
(

t
T

)
, (17)

where

ω
(

t
T

)
= 6

(
t
T

)5 − 15
(

t
T

)4
+ 10

(
t
T

)3
.

Equation (17) indicates a line segment trajectory designed
in the task space. In (17), x0 signifies an initial position
of the end-point, xf denotes a desired final position of
that. Note that the optimality of a trajectory of the end-
point is not treated in this paper because it is beyond the
scope of the paper. As described in the paper, the minimum-
jerk criterion is introduced just for the time being. We can
easily introduce any other optimal trajectories that have been
proposed in physiology or robotics (e.g. Todorov’s work [10],
etc...) instead of the minimum-jerk criterion.

B. Iterative Learning Control Scheme

In order to realize a given desired trajectory, we employ a
PI-type iterative learning control scheme [8]. The construc-
tion of the learning control signals has three candidates of
learning space: the muscle length space, the joint space, and
the task space. As described in this paper, the learning space
is chosen as the muscle length space to examine the internal
forces generated specifically by the redundant muscles. The
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PI-type iterative learning control method in the muscle length
space is that the time series error datasets of the muscle’s
trajectory regarding its length and contractile velocity are
stored during one trial. These learning datasets, in which the
time series error datasets are multiplied by the learning gains,
are added to the control input for the subsequent trial. The
control signal for the muscles at the ith trial is given as the
following.

ᾱi = −KpΔli −KvΔl̇i + vi, (18)

where a subscript i represents the trial number, Kp =
diag[kp1

, kp2
, · · · , kp6

] ∈ R
6×6 > 0 denotes a feed-

back gain matrix for the muscle lengths, Kv =
diag[kv1

, kv1
, · · · , kv6

] ∈ R
6×6 > 0 denotes a feedback gain

matrix for the muscle contractile velocities, and vi is the
feed-forward term. The vector Δli = li − ld ∈ R

6 signifies
the error vector for muscle length and Δl̇i = l̇i− l̇d ∈ R

6 is
the error vector for muscle contractile velocity. The desired
trajectory is designed in the task space, and thereby these
error vectors can be obtained by using (1), (2), (9), and (10).
They are given in the following way:

Δl = Gl(q)−Gl(qd)

= Gl(G
−1
x (x))−Gl(G

−1
x (xd)), (19)

Δl̇ = WTΔq̇ = WTJ−1Δẋ. (20)

The desired muscle length ld ∈ R
6 and the muscle contractile

velocity l̇d ∈ R
6 are given as time-dependent trajectories.

The feed-forward term vi ∈ R
6 is given by the iterative

learning scheme, and it is updated in the following manner:

vi =

{
0 if i = 1

vi−1 −
(
ΦΔli−1 +ΨΔl̇i−1

)
if i > 1

, (21)

where Φ = diag[φ1, φ1, · · · , φ6] ∈ R
6×6 > 0 and Ψ =

diag[ψ1, ψ2, · · · , ψ6] ∈ R
6×6 > 0 are the position and

velocity learning gain matrices, respectively.

C. Dynamics

The dynamics of the two-link planar arm model is known
to be expressible in the following way:

H(q)q̈ +

{
1

2
Ḣ(q) + S(q, q̇)

}
q̇ = τ , (22)

where H(q) ∈ R
2×2 denotes an inertia matrix, and

S(q, q̇) ∈ R
2×2 denotes a skew-symmetric matrix which

includes Coriolis and centrifugal forces, and τ ∈ R
2 is an

input torque vector. Substituting (3), (15), and (18) into (22)
yields:

Hi(qi)q̈i+

{
1

2
Ḣi(qi) + Si(qi, q̇i)

}
q̇i =

−W iP iKpΔli −W iP iKvΔl̇i

+W iP ivi −W iP iAiCWT
i q̇i. (23)

Equation (23) indicates the dynamics of the overall system
in the ith trial, which is expressed in joint space. The
first and second terms of the right-hand side of (23) are

the muscle length and muscle contractile velocity feedback
control signals. The third term is the feed-forward signal
generated by the iterative learning control scheme to realize
trajectory tracking. Moreover, the fourth term is the damping
effect in joint space. It includes the control input matrix A.
For that reason, it depends on the control signal ᾱ which
includes both feedback and feed-forward control signals.

IV. DYNAMIC DAMPING ELLIPSOID

We assume that the muscular force pattern to realize a
given desired trajectory can be acquired by the iterative
learning control scheme proposed in the previous section.
How is the damping effect at the end-point expressed in the
fourth term of the right-hand side of Eq. (23) shaped when
the desired trajectory is realized? To evaluate the damping
effect of the end-point, we introduce the dynamic damping
ellipsoid. The basic idea of the damping ellipsoid at the end-
point was proposed by Tsuji et al. [11] to measure and
evaluate the mechanical impedance of the end-point of a
human arm’s movement. Specifically, when the end-point of
the human’s arm in static situation is perturbed by some
external forces, a mechanical impedance parameterized by
inertia, stiffness, and viscosity coefficients is derived under
a linear-approximated human arm’s dynamics, and their
impedance parameters are expressed as ellipsoids at the end-
point. Namely, the damping ellipsoid proposed by Tsuji et al.
is used from the viewpoint of quasi-static inverse dynamics.
In contrast, the objective of introducing the dynamic damping
ellipsoid here is to measure and evaluate how the damping el-
lipsoid generated by the control input is shaped when a given
desired end-point trajectory is realized, and how it affects
its own movements. In other words, different from Tsuji’s
motivation to use the damping ellipsoid, that presented here
is used from the viewpoint of the control scheme and the
forward dynamics. Note again that the dynamic damping
ellipsoid is introduced to evaluate the resultant internal forces
when the desired trajectory is realized. Figure 3 presents
a schematic of the dynamic damping ellipsoid. Next, we
specifically examine the part of the control signals expressed
as the fourth term of the right-hand-side of (23), which is
related only to a joint damping effect. It is given in the
following manner:

τDi = −W iP iAiCWT
i q̇i ∈ R

2, (24)

where τDi stands for a damping joint torque generated by
internal forces and the control input. The damping term
expressed as Eq. (24) includes the control input matrix Ai.
Thereby the damping effect can be modulated by the control
signal Ai. On the other hand, an end-point damping force
FDi can be expressed as τDi as

FDi = −Diẋi ∈ R
2, (25)

where

Di = −J−T
i W iP iAiCWT

i J
−1
i ∈ R

2×2,

and J−T
i ∈ R

2×2 indicates the inverse of the transposed Ja-
cobian matrix JT

i ∈ R
2×2. Therefore, the dynamic damping
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ellipsoid at the end-point, which strongly depends on the
given control input, is obtainable as long as the end-point
velocity satisfies ‖ẋ‖ ≤ 1 in the following manner:

FD
T
i (D

−1
i )TD−1

i FDi ≤ 1. (26)

Note that the dynamic damping ellipsoid presented here is
composed solely of the control input matrix Ai. It does not
include the effect of the robot arm dynamics.

It is well-known that the redundant tensile forces generated
by some linear actuators, e.g., in a parallel wire-driven
system [12], can be basically distributed into two mutually
orthogonal spaces. One is composed only of the driving
forces to generate the joint torques. The other comprises
the internal forces that are not contributed to the arm’s
movements. However, in our model, the internal forces can
affect the arm’s movement because of the nonlinearity of
the muscles. As shown in the fourth term of the right-hand
side of (23), the joint damping effect can be generated not
only by the driving forces, but also by the internal forces.
The arm’s movement is changeable when the internal forces
are changed during movement. Therefore, in this paper, the
output forces of the muscles are distributed into these two
spaces to investigate the effect of the internal forces for the
arm’s movements. Our proposed iterative learning controller,
as presented in Eq. (18) is designed in the muscle length
space. Thereby, the input to the muscles ᾱ is expressible as
the summation of the two mutually orthogonal spaces in the
following expression:

ᾱi = ᾱdrvi
+ ᾱinti , (27)

where

ᾱdrvi
= W+

i W iᾱi, ᾱinti =
(
I6 −W+

i W i

)
ᾱi,

and both matrices W+
i W i ∈ R

6×6 and
(
I6 −W+

i W i

) ∈
R

6×6 are the projection matrices. They are the mutually
orthogonal subspaces, namely, ᾱdrvi

⊥ᾱinti . Therefore, the
dynamic damping ellipsoid can also be distributed into two
ellipsoids. One is generated by ᾱdrvi

. The other is also
generated by ᾱinti . These are given as

FD
T
i (D

−1
i )TD−1

i FDi =

FD
T
i

{
(D−1

drvi
)TD−1

drvi
+(D−1

inti
)TD−1

inti

}
FDi ≤ 1, (28)

where

Ddrvi
= −J−T

i W iP iAdrvi
CWT

i J
−1
i ∈ R

2×2

Dinti = −J−T
i W iP iAintiCWT

i J
−1
i ∈ R

2×2

Adrvi
= diag[ᾱdrvi

] ∈ R
6×6

Ainti = diag[ᾱinti ] ∈ R
6×6.

Therefore, the driving forces and the internal forces gener-
ated by the input to the muscles ᾱi, which affect the dynamic
damping ellipsoid, can be expressed independently as (28).
As described in this paper, the internal forces, which can be
acquired when the end-point realizes the desired adequate
trajectories according to the minimum-jerk criterion, are
called one of the “adequate” internal forces.

V. NUMERICAL SIMULATION

In this section, we discuss the shape and its physical mean-
ing of the dynamic damping ellipsoid through numerical
simulation results. Tables I to IV show physical parameters,
a desired trajectory, and each gain used in the simulation.

Figure 3 shows the dynamic damping ellipsoid when a
desired line segment trajectory is realized after the 100th

trial. We see from this figure that the desired line segment
trajectory is mostly realized by the iterative learning control
scheme expressed as (18) even though the muscle model
has strong nonlinearities. Especially, each muscles can only

TABLE I

PHYSICAL PARAMETERS OF THE ARM MODEL

Length Mass Inertia Mass center
[m] [kg] [kg·m2] [m]

Upper arm 0.31 1.93 0.0141 0.165

Forearm 0.34 1.52 0.0188 0.170

TABLE II

INSERTIONS OF THE MUSCLES

Muscle Value [m]

l1 a1 = 0.055 b1 = 0.080

l2 a2 = 0.055 b2 = 0.080

l3 a3 = 0.030 b3 = 0.120

l4 a4 = 0.030 b4 = 0.120

l5 a51 = 0.040 a52 = 0.045

l6 a61 = 0.040 a62 = 0.045
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desired linear trajectory is realized after the 100th

trial
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Fig. 5. Dynamic damping ellipsoid which is
composed only of “the driving force” when the
desired linear trajectory is realized after the 100th

trial

TABLE III

DESIRED LINEAR TRAJECTORY

Initial position x0 [0.22, 0.56]T [m],

Final position xf [-0.20, 0.40]T [m],

Duration Time T 0.8 [s]

TABLE IV

FEEDBACK AND LEARNING GAINS

Muscle length feedback gain Kp 300I6

Muscle contractile velocity feedback gain Kv 200I6

Muscle length learning gain Φ 90I6

Muscle contractile velocity learning gain Ψ 80I6

generate a contractile force, namely, the muscle output force
must be larger than 0 [N]. It is quite strong nonlinearity
because the output force is discontinuous at 0 [N]. The itera-
tive learning control scheme produces a good performance to
track the desired trajectory even though strong nonlinearities
exist. Also we can find that the shape of the ellipsoid is
drastically changed during movement. It means the internal
force is not constant, and it strongly depends on the attitude
of the arm and time. Especially in the start phase of the
trajectory tracking, the ellipsoid gradually becomes larger,
which demonstrates that the end-point position tends to be
over the desired trajectory in the start phase. Consequently,
the damping effect becomes larger to put the brakes on the
end-point movement and thereby inhibit overshooting. As
with the start to middle phase, the damping effect becomes
much larger to stop the end-point on the desired position in
the stop phase. Figures 4 and 5 respectively portray dynamic
damping ellipsoids composed solely of the internal forces
and driving forces. These figures show that the shapes of both
dynamic damping ellipsoids are similar. In addition, both
damping ellipsoids are larger than the total dynamic damping
ellipsoid, which includes both the feedback control term and
the learning control term in the middle phase, indicating
that the feedback control term becomes negative; then the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-0.5

0

0.5

1

1.5

Time [s]

x 
[m

/s
]
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1st

10th

50th

100th

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-0.2

0

0.2

0.4

0.6

Time [s]

y 
[m

/s
]

des

1st

10th

50th

100th

Fig. 6. Transient responses of the end-point velocities after the 1st, 10th,
50th, and the 100th trial

damping ellipsoid becomes larger to contain a movement on
the end-point. Figure 6 presents velocity profiles of the end-
point during trials. As the figure shows, in the start phase, the
desired velocity trajectory can be mostly tracked. However,
in the stop phase, the velocity profiles tend to be oscillatory,
presumably because of the nonlinearity of the muscles. This
oscillation can be reduced by repeating trials. Furthermore,
the adjustment of the learning gains can reduce it.

Figure 7 depicts the transient responses of the muscular
output forces during movement. This figure shows clearly
that several terms exist for which each muscle force becomes
zero because the control input must satisfy ᾱ > 0, as shown
in Eq. (13). Nevertheless, the trajectory tracking is mostly
realized, indicating that the learning control scheme is quite
effective even under strong nonlinearities. Through the simu-
lation result, we conclude that our proposed iterative learning
control scheme can be applicable to the musculoskeletal
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Fig. 7. Transient responses of the muscular forces after the 1st, 10th, 50th,
and the 100th trial

redundant system with strong nonlinearities of the muscles.

VI. CONCLUSION

In this paper, we have proposed an iterative learning
control method to acquire the given desired trajectories
using a musculoskeletal redundant arm model, even under
the existence of strong nonlinearities of muscles. Addition-
ally, the dynamic damping ellipsoid has been introduced
to evaluate the end-point damping effect acquired through
iterative learning. Based on the numerical simulation result,
we conclude that the given desired trajectory can be realized
through our proposed iterative learning scheme, even under
the existence of strong nonlinearities. We also conclude that
the value of the internal forces strongly affects the learning
speed and its performance. However in this paper, we did
not address the strict convergence of the iterative learning
control from a theoretical perspective. Moreover, we did not
treat joint redundancy. In future works, we must prove the
convergence of the iterative learning control scheme under
the existence of strong nonlinearities. Furthermore, we will
introduce another optimal trajectory criterion to replace the
minimum-jerk criterion and provide a comparison of the
criteria. In addition, learning spaces can choose not only the
muscle length space, as this paper explained, but also the task

and the joint space. We will attempt to compare performance
and human-similarity with these learning spaces.
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