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Abstract— This paper focuses on developing a consistent
methodology for deriving a closed-form inverse kinematic joint
solution of a general humanoid robot. Most humanoid-robot
researchers resort to iterative methods for inverse kinematics
using the Jacobian matrix to avoid the difficulty of finding a
closed-form joint solution. Since a closed-form joint solution,
if available, has many advantages over iterative methods, we
have developed a novel reverse decoupling mechanism method
by viewing the kinematic chain of a limb of a humanoid robot
in reverse order and then decoupling it into the positioning
and orientation mechanisms, and finally utilizing the inverse
transform technique in deriving a consistent joint solution for
the humanoid robot. The proposed method presents a simple
and efficient procedure for finding the joint solution for most of
the existing humanoid robots. Extensive computer simulations
of the proposed approach on a Hubo KHR-4 humanoid robot
show that it can be applied easily to most humanoid robots
with slight modifications.

Index Terms— Reverse Decoupling Method, Inverse Kine-
matics, Inverse Transform

I. INTRODUCTION

A humanoid robot is a multi-jointed mechanism that
mechanically emulates a human’s functions, movements and
activities. It can be considered as a biped robot with an
upper main body, linking two arms, a neck and a head,
or as a combination of multiple manipulators, which are
themselves linked together through waist and neck joints
to emulate a human’s functions. Because of its human-like,
bipedal movement, the kinematic structure of a humanoid
robot has no fixed root node and has a large number of
degree-of-freedom (DOF). Since the robot servo system
requires the reference inputs to be in joint coordinates and a
task is generally stated in the Cartesian coordinate system,
controlling the position and orientation of the end point of
a limb (an arm or a leg) of a humanoid robot requires the
understanding of the inverse kinematic joint solution of a
humanoid robot.

Pieper outlined two conditions for finding a closed-form
joint solution to a robot manipulator in which either three
adjacent joint axes are parallel to one another or they inter-
sect at a single point [1]. Although a robot manipulator may
satisfy one of these two conditions for finding the closed-
form joint solution, it is difficult to develop a consistent
procedure for finding a closed-form joint solution for a
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humanoid robot and selecting one desirable solution from
multiple solutions.

Most humanoid-robot researchers often use iterative meth-
ods for controlling humanoid robots [2], [3], [4]. One of
the iterative methods makes use of the Jacobian matrix [2],
[5]. Singularity, redundancy, and computational complexity
are the main drawbacks of using the inverse-Jacobian-matrix
approach [4]. Since the Jacobian method is velocity based
instead of being position based, significant accumulation of
error in position can result due to the iterative nature of
the algorithm. Furthermore, the Jacobian matrix is singular
when a limb of the humanoid robot is in a fully stretched
condition. De Angulo et al [6] suggested learning the inverse
kinematics to tackle with some of the drawbacks of the
Jacobian method.

Another commonly adopted method for inverse kinemat-
ics is the geometric method [7], [8], [9]. However, the
geometric method requires geometric intuition in solving
the joint solution of a manipulator, and it may become
more difficult to obtain the joint solution when more than
four or five joints are involved. Furthermore, it is difficult
to generalize the approach from one humanoid robot to
another. In [10], [11], a closed-form solution for a 7-DOF
humanoid arm was obtained but it was done by dividing the
inverse kinematics problem into smaller sub-problems using
the constraint on the elbow position. This paper presents a
general closed-form joint solution with decision equations
to select a proper solution from multiple solutions.

Another method, called the inverse-transform technique,
was presented by Paul et al [12] to obtain the inverse
kinematic joint solution of a 6-DOF robot manipulator. Cui
et al [13] derived a closed-form joint solution for a 6-DOF
humanoid robot arm but only the solution of joint angles
within a certain range was considered and the singularities
were not discussed. In this paper, we propose a novel reverse
decoupling mechanism method by viewing the kinematic
chain of a limb of a humanoid robot in reverse order and
then decoupling it into the positioning and orientation mech-
anisms, and finally utilizing the inverse transform technique
in deriving a consistent joint solution for the humanoid robot.
We have also obtained the decision equations that iden-
tify the correct joint solution from multiple solutions. The
proposed approach is applied to a Hubo KHR-4 humanoid
robot, and the proposed technique can also be applied to
an ASIMO robot from Honda Motors, an HRP-2 robot
from Kawada Industries, and a HOAP-2 robot from Fujitsu
Automation with slight modifications. Computer simulations
were performed to verify the correctness of the closed-form
inverse kinematic joint solutions for these humanoid robots.
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II. KINEMATIC LINK COORDINATE FRAMES

We shall use the Denavit-Hartenberg (D-H) matrix rep-
resentation [14] for each link to describe the rotational and
translational relationship between adjacent links. Using the
D-H matrix representation and following the link coordinate
frame assignment outlined in [7], one can assign link coor-
dinate frames that are consistent with the positive direction
of rotation of joints of a humanoid robot. A Hubo robot (see
Fig. 1 and Table I) is used as an example in our discussion.

(a) (b)
Fig. 1. A Hubo KHR-4 Humanoid Robot.

TABLE I
DEGREES OF FREEDOM OF A HUBO KHR-4 HUMANOID ROBOT

Head Waist Arm Hand Leg Total
2/Neck 1/Waist 3/Shoulder 5/Hand 3/Hip
2/Eyes 1/Elbow 1/Knee

2/Wrist 2/Ankle
6 DOF 1 DOF 12 DOF 10 DOF 12 DOF 41 DOF

We first establish two base coordinate frames B1 and B2
for the Hubo KHR-4 humanoid robot. B1 is established at
the center of the neck and is the reference coordinate frame
for the arms and the head, and B2 is the reference coordinate
frame for the legs. B2 is linked to B1 through a waist joint,
and there is a simple link transformation matrix between B1
and B2. As a result, B1 is considered to be the global base
coordinate frame for the whole robot.

Since the general kinematic structures of the left arm/leg
of a Hubo KHR-4 robot are identical to those of the
right arm/leg, we have assigned identical coordinate frames
for the left and right limbs. Figures 2 and 3 show the
assigned link coordinate frames and their D-H parameters
for the right arm and the right leg, respectively. From the
established link coordinate frames and the D-H parameters,
the position and orientation of the end-effector of a limb can
be obtained by chain-multiplying the 6 link-transformation
matrices together to obtain the spatial displacement of the
6th coordinate frame with respect to the base/reference
coordinate frame:

0T6 =

6∏
i=1

i−1Ai =
0A1

1A2
2A3

3A4
4A5

5A6

=

[
x6 y6 z6 p6

0 0 0 1

]
=

[
n s a p
0 0 0 1

]
(1)

where xi, yi, and zi represent the unit vectors along the
principal axes of the coordinate frame i, i−1Ai is a general

Fig. 2. Link Coordinate Frames of the Right Arm of a Hubo KHR-4
Robot and its D-H Parameters.

Fig. 3. Link Coordinate Frames of the Right Leg of a Hubo KHR-4 Robot
and its D-H Parameters.

link transformation matrix, relating the ith coordinate frame
to the (i−1)th coordinate frame, and [n, s, a, p] represents
the normal vector, the sliding vector, the approach vector,
and the position vector of the hand, respectively [7]. This
forward kinematic equation will be used in deriving the
closed-form joint solution for a Hubo robot.

III. INVERSE KINEMATIC JOINT SOLUTION

Given the desired position and orientation of the end-
effector of a limb (an arm or a leg) and the geometric link
parameters with respect to a reference coordinate system,
the inverse kinematic position problem is to find a closed-
form joint solution for positioning the end-effector with the
desired position and orientation. And if a closed-form joint
solution exists, then it is desirable to determine how many
different joint solutions will satisfy the same condition. If a
limb of the robot has six joints, we should, in principle, be
able to find a closed-form joint solution. A joint solution is
said to be “closed-form” if the unknown joint angles can be
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solved for symbolically in terms of the arc-tangent function.
Looking at some existing humanoid robots shown in Fig.

4, we note all of them have limbs with at most six joints.
Hence, one should be able to find closed-form solutions for
these robots, and since the kinematic configuration of all
these humanoid robots is almost the same as a Hubo robot,
the developed closed-form joint solution will be applicable
to these humanoid robots with only slight modifications.

(a) (b) (c)

(d) (e) (f)
Fig. 4. (a) HONDA ASIMO Robot and its associated kinematic diagram
in (d), (b) AIST HRP-2 Robot and its associated kinematic diagram in (e),
and (c) Fujitsu HOAP-2 Robot and its associated kinematic diagram in (f).

In tackling the inverse kinematic position problem, Pieper
indicated a closed-form joint solution exists if a robot
manipulator’s three adjacent joint axes are parallel to one
another or they intersect at a single point [1]. Considering a
limb in which the joint axes of the last three joints intersect
at a point, the position vector p to the wrist coordinate
frame decouples the limb into positioning and orientation
subsystems, and obviously it is a function of just the first
three joint angles; the last three joint angles contribute
nothing to the position but the orientation. Hence, there are
three equations with known variables px, py and pz and
three unknown joint angles θ1, θ2 and θ3. The last three
joint angles are determined from [n, s, a] and the solved
first three joint angles. The key concept here is that the
robot is decoupled with the three of the six joint angles
for positioning and three joint angles for orientation.

Unfortunately, for the limbs of the existing humanoid
robots, the joint axes of the last three joints do not intersect
at a point; for example, the last three joint axes of the right
leg/arm of a Hubo robot do not intersect at a point. As a
result, the position vector p is a function of four joint angles
θ1, θ2, θ3, and θ4. Hence, obtaining a closed-form joint
solution becomes complicated, if not impossible. However,

a closer examination reveals that the joint axes of the first
three joints do intersect at a point. This means that if we
view the IK-problem with the joint angles in reverse order;
that is, with the position/orientation of the base coordinate
frame referenced to the end-effector coordinate frame, the
new position vector, denoted as p′, is a function of only
the three joint angles θ4, θ5 and θ6. This new position
vector p′ decouples the limb into positioning and orientation
subsystems. To solve the IK-problem in this reverse way,
we take the inverse of both sides of Eq. (1) so that the new
composite link transformation matrix T′ is now referenced
to the end-effector coordinate frame; that is,

T′ =

[
n s a p
0 0 0 1

]−1
=

[
n′ s′ a′ p′

0 0 0 1

]
= 6A5

5A4
4A3

3A2
2A1

1A0 = 6A0 (2)

Thus, the novelty here is to observe the intersection of 3
adjacent joint axes in the kinematic chain for decoupling
the robotic arm/leg system into positioning and orientation
subsystems for solving its joint solution. We shall next show
how this reverse decoupling method can be applied to a
Hubo robot for finding its joint solution and extend it to
other humanoid robots shown in Fig. 4.

A. Joint Solution for the Right Leg of a Hubo Robot

The transformation matrix from the base coordinate frame
B2 attached to the waist to the first coordinate frame of the
right leg is

B2A0 =

−1 0 0 lL1

0 −1 0 0
0 0 1 −lL2

0 0 0 1

 (3)

To obtain the solution for the last three joint angles θ4, θ5
and θ6, we equate the elements of the position vector p′ in
both sides of Eq. (2) as

−C6(C45lL3 + C5lL4) = p′x + lL5 (4)
S6(C45lL3 + C5lL4) = p′y (5)

−S45lL3 − S5lL4 = p′z (6)

where Si ≡ sin θi, Ci ≡ cos θi, Sij ≡ sin(θi + θj), Cij ≡
cos(θi+θj), and lLi are geometric link parameters in Fig. 3.
It is evident that these three equations have three unknowns
θ4, θ5 and θ6. By squaring and adding these three equations,
we can obtain C4 and then S4 from C4, and from which we
can solve for the joint solution θ4,

C4 =
(p′x + lL5)

2
+ p′y

2
+ p′z

2 − l2L3 − l2L4
2lL3lL4

θ4 = atan2(±
√

1− C2
4 , C4) (7)

where atan2(y, x) is an arc-tangent function, which returns
tan−1( yx ) adjusted to the proper quadrant. By squaring Eqs.
(4) and (5), adding and expanding them, we get

C5(C4lL3 + lL4)− S4S5lL3 = ±
√
(p′x + lL5)

2
+ p′y

2 (8)

By expanding Eq. (6), we obtain

S5(C4lL3 + lL4) + C5(S4lL3) = −p′z (9)
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Let C4lL3 + lL4 = rCψ and S4lL3 = rSψ , and substituting
them into Eqs. (8) and (9), we get, correspondingly,

rC5ψ = ±
√
(p′x + lL5)

2
+ p′y

2 (10)

rS5ψ = −p′z (11)

where r =
√

(p′x + lL5)
2
+ p′y

2 + p′z
2 and ψ =

atan2(S4lL3, C4lL3 + lL4). Dividing Eq. (11) by Eq. (10),
we obtain tan(θ5+ψ), which finally gives the joint solution
for θ5,

θ5 = atan2
(
−p′z, ±

√
(p′x + lL5)2 + p′y

2

)
− ψ (12)

Dividing Eq. (5) by Eq. (4), we get the joint solution for θ6,

θ6 = atan2
(
p′y, −p′x − lL5

)
(13)

and if C45lL3 + C5lL4 < 0, then we have θ6 = θ6 + π.
To obtain the other three joint angles θ1, θ2 and θ3, we

can use the inverse transform method [12] by moving the
link transformation matrix 6A5 to the left-hand side of Eq.
(2). This results in a matrix equation that we label as G2

equation. The left-hand side of G2 is,

G
(LHS)
2−leg = 5A6

[
n′ s′ a′ p′

0 0 0 1

]
=C6n

′
x−S6n

′
y, C6s

′
x−S6s

′
y, C6a

′
x−S6a

′
y, C6p

′
x−S6p

′
y+C6lL5

S6n
′
x+C6n

′
y, S6s

′
x+C6s

′
y, S6a

′
x+C6a

′
y, S6p

′
x+C6p

′
y+S6lL5

n′
z, s′z, a′z, p′z
0 0 0 1


and the right-hand side of G2 is,

G
(RHS)
2−leg = 5A0 = 5A4

4A3
3A2

2A1
1A0 =[

C1C2C345−S1S345, S1C2C345+C1S345, S2C345, −C45lL3−C5lL4

−C1S2, −S1S2, C2, 0
C1C2S345+S1C345, S1C2S345−C1C345, S2S345, −S45lL3−S5lL4

0 0 0 1

]
By comparing the elements (2,3) of the LHS and RHS of

G2, we can find C2 and S2, and from which we obtain the
joint solution for θ2

θ2 = atan2
(
±
√
1− (S6a′x + C6a′y)

2, S6a
′
x + C6a

′
y

)
(14)

By comparing the elements (2,1) and (2,2) of the LHS and
RHS of G2, we get two equations from these two elements,

S1S2 = −S6s
′
x − C6s

′
y and C1S2 = −S6n

′
x − C6n

′
y

By dividing these two equations, we obtain the joint solution
for θ1,

θ1 = atan2
(
−S6s

′
x − C6s

′
y, −S6n

′
x − C6n

′
y

)
(15)

and if S2 < 0, then θ1 = θ1 + π.
By comparing the elements (1,3) and (3,3) of the LHS

and RHS of G2, we get two equations in S345 and C345,
and by dividing these two equations, we find the joint angle
θ345, S2S345 = a′z and S2C345 = C6a

′
x − S6a

′
y

θ345 = atan2
(
a′z, C6a

′
x − S6a

′
y

)
(16)

and if S2 < 0, then we have θ345 = θ345 + π. Finally, from
Eq. (16), we can find the joint solution θ3

θ3 = θ345 − θ4 − θ5 (17)

The above closed-form joint solution can be easily applied
to the left leg by replacing +lL1 with −lL1 in Eq. (3).
We should mention that for the legs, singularity due to two
collinear joint axes does not exist within the valid joint-angle
constraints.

B. Joint Solution for the Right Arm of a Hubo Robot

The transformation matrix from the base coordinate frame
B1 attached to the neck to the first coordinate frame of the
right arm is,

B1A0 =

0 0 1 lA1

1 0 0 0
0 1 0 0
0 0 0 1

 (18)

Next, we obtain G2 for the right arm using the inverse
transform method,

G
(LHS)
2−arm =


g211 g212 g213 C6(p

′
x + lA4)− S6p

′
y

g221 g222 g223 S6(p
′
x + lA4) + C6p

′
y

g231 g232 g233 p′z
0 0 0 1



G
(RHS)
2−arm =


g211 g212 g213 S4C5lA2

g221 g222 g223 −C4lA2 − lA3

g231 g232 g233 S4S5lA2

0 0 0 1


By comparing the elements (1,4), (2,4) and (3,4) of the

LHS and RHS of G2, we have

C6(p
′
x + lA4)− S6p

′
y = S4C5lA2 (19)

S6(p
′
x + lA4) + C6p

′
y = −C4lA2 − lA3 (20)

p′z = S4S5lA2 (21)

Let p′x + lA4 = rCψ and p′y = rSψ , and substituting them
into Eqs. (19), (20) and (21), we get, correspondingly,

rC6ψ = S4C5lA2 (22)
rS6ψ = −C4lA2 − lA3 (23)
p′z = S4S5lA2 (24)

where r =
√
(p′x + lA4)2 + (p′y)

2 and ψ = atan2(p′y, p
′
x +

lA4). By squaring Eqs. (22), (23), and (24) and adding them
up, we can obtain C4 and then S4 from C4, and from which
we can find the joint solution for θ4,

C4 =
(p′x + lA4)

2 + p′y
2
+ p′z

2 − l2A2 − l2A3

2lA2lA3

θ4 = atan2(±
√
1− C2

4 , C4). (25)

From Eq. (24), we can find S5 and then C5, and from which
we can find the joint solution θ5,
S5 = p′z/(S4lA2); θ5 = atan2(S5, ±

√
1− S2

5). (26)

By dividing Eq. (23) by Eq. (22), we get

tan(6ψ) = tan(θ6 + ψ) =
S6ψ

C6ψ
=

−C4lA2 − lA3

S4C5lA2
(27)

and from which we obtain the joint solution θ6,

θ6 = atan2(−(C4lA2 + lA3), S4C5lA2)− ψ. (28)

707



For the solution of the rest of the joints, we use G4,

G
(LHS)
4−arm =


g411 g412 g413 g414
g421 g422 g423 g424
g431 g432 g433 g434
0 0 0 1


G

(RHS)
4−arm =

C1C2C3 − S1S3 C1S3 + S1C2C3 S2C3 0
−C1S2 −S1S2 C2 lA2

S1C3 + C1C2S3 S1C2S3 − C1C3 S2S3 0
0 0 0 1


By comparing the element (2,3) of LHS and RHS of G4,

we get C2 and then S2, and the joint solution θ2 from them,

C2 = g423 = a′zS4S5 − a′y(C4C6 + S4C5S6)

− a′x(C4S6 − S4C5C6)

θ2 = atan2(±
√

1− C2
2 , C2). (29)

By comparing the elements (1,3) and (3,3) of LHS and
RHS of G4, we get two equations. By dividing these two
equations, we can find the joint solution θ3,
g413 = a′

x(C4C5C6 + S4S6) + C4S5a
′
z + (S4C6 − C4C5S6)a

′
y

g433 = S5C6a
′
x − C5a

′
z − S5S6a

′
y

θ3 = atan2(g433, g413), (30)

and if S2 < 0, then θ3 = θ3+π. By comparing the elements
(2,1) and (2,2) of LHS and RHS of G4, we get two equations.
By dividing these two equations, we find the joint angle θ1,
g421 = (S4C5C6 − C4S6)n

′
x + S4S5n

′
z − (S4C5S6 + C4C6)n

′
y

g422 = (S4C5C6 − C4S6)s
′
x + S4S5s

′
z − (S4C5S6 + C4C6)s

′
y

θ1 = atan2(−g422,−g421), (31)

and if S2 < 0, then θ1 = θ1 + π.
The above closed-form joint solution can be applied to

the left arm with −lA1 instead of +lA1 in Eq. (18).
In the above joint solution for the right leg and arm of a

Hubo robot, we see each of θ2, θ4 and θ5 have two solutions,
yielding a total of 8 possible solutions. We shall discuss these
multiple solutions in subsection III-D. When the specified
position/orientation is out of range of the arm or leg, the
joint values obtained from the above equations will have
imaginary parts, indicating that no real solution exists.

C. Singularities with Collinear Joint Axes in the Arm

We have identified three cases of singularity that arise
within the joint-limit constraints. They all occur when one
joint axis aligns with another joint axis, thus reducing the
number of degrees of freedom by one.

Case 1: When θ2 = π, the joint-three axis aligns with the
joint-one axis, resulting in a singularity. In this case, the sum
of the joint angles θT = θ1+(−θ3) is found using elements
(2,1) and (2,2) of LHS and RHS of G2 with θ2 = π,

θT = atan2(−C6s
′
y − S6s

′
x,−C6n

′
y − S6n

′
x),

and if S4 < 0, then θT = θT + π. To determine θ1 and θ3
from θT , we can keep the current value of θ1 unchanged,
and θ3 is evaluated from θT as θ3 = θ1 − θT .

Case 2: When θ4 = 0, the joint-five axis aligns with
the joint-three axis, which results in a singularity. In this

case, the sum of the joint angles θT = θ3 − θ5 is found
using elements (1,3) and (3,3) of LHS and RHS of G2 with
θ4 = 0,

θT = atan2(−a′z, a′xC6 − a′yS6)

and if S2 < 0, then θT = θT + π. Using elements (1,4) and
(2,4) of LHS and RHS of Eq. (2) with θ4 = 0, we find θ6

θ6 = atan2(−(p′x + lA4), −p′y)

To determine θ5 and θ3 from θT , we again keep the current
value of θ3 unchanged, and θ5 is evaluated from θT as θ5 =
θ3 − θT . Using elements (2,1) and (2,2) of LHS and RHS
of G2 with θ4 = 0, we can find θ1,

θ1 = atan2(C6s
′
y + S6s

′
x, C6n

′
y + S6n

′
x)

Using elements (2,1) and (2,3) of LHS and RHS of G2 with
θ4 = 0, we can find θ2,

θ2 = atan2
(
C6n

′
y + S6n

′
x, −C1(C6a

′
y + S6a

′
x)
)

and if C1 < 0, then θ2 = θ2 + π.

Case 3: When both θ4 = 0 and θ2 = π, the joint axes of
joints 1, 3, and 5 are aligned with one another. In this case,
the sum of the joint angles θT = θ1 + θ5 + (−θ3) is found
using elements (3,1) and (3,2) of LHS and RHS of G2 with
θ4 = 0 and θ2 = π as follows. θ6 is found in the same way
as done in Case 2.

θT = atan2(−n′z, s′z) and θ6 = atan2(−(p′x + lA4),−p′y)

To determine θ5, θ1 and θ3 from θT , we keep the current
values of θ1 and θ3 unchanged, and θ5 is evaluated from θT
as θ5 = θT − θ1 + θ3.

D. Decision Equations for Multiple Solutions

The above joint solution gives 8 possible solutions for
each specified set of end-effector position and orientation.
Only one of the 8 multiple solutions is the desired solution.
To decide which one is the desired solution within the joint-
limit constraints, we define decision indicators such that their
positive value indicates the desirable solution.

To verify the inverse kinematic joint solution, we use the
complete 0◦ to 360◦ joint-variable space. In this case, the
decision indicators can have a negative value for joint angles
outside the desirable range. We determine the sign of these
indicators using the following decision equations, thereby
selecting a proper IK-joint solution to use,

KNEE = sign(z3 · (x3 × x4)) = sign(S4)

HIP = sign(z1 · (x1 × x2) = sign(S2)

ANKLE = sign(p′ · x5) = sign(C5ψ),

where xi, yi, and zi represent the unit vectors along the
principal axes of the coordinate frame i, p′ = p − lL5x6,
and p is the position vector of the transformation matrix
shown in Eq. (1), ψ = atan2(S4lL3, C4lL3 + lL4), and the
sign function is defined as:

sign(x) =

{
+1, if x ≥ 0;
−1, if x < 0.
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Similarly, decision equations are obtained for the arm,

SHOULDER = ARM · sign(z1 · (x1 × x2)) = ARM · sign(S2),
ELBOW = sign(z3 · (x3 × x4)) = sign(S4)

WRIST = ARM · sign(x4 · x5) = ARM · sign(C5)

where ARM is +1 for a right arm and −1 for a left arm.

IV. APPLICATIONS TO OTHER HUMANOID ROBOTS

We have applied the above closed-form joint solution to
other existing humanoid robots shown in Fig. 4 to illustrate
the generality of our joint solution.

HOAP-2 Humanoid Robot. Comparing the kinematic
structure of a HOAP-2 robot with a Hubo robot, the kine-
matic configuration of the leg joints is exactly the same
in both robots. Hence, the above leg joint solution can be
applied with the geometric link parameters from HOAP-
2 robot. The arms also have the same kinematic structure
except that the HOAP-2 robot has only four DOFs; it does
not have joints 5 and 6. Hence, we can apply the same joint
solution for the first 4 joints and putting θ6 = 90◦ and θ5 = 0
in the arm equations in finding the first four joint solution.

HRP-2 Humanoid Robot. The kinematic configuration of
the leg joints of an HRP-2 robot is similar to that of a Hubo
robot, with the only difference being that it has an offset
d3 between link coordinate frames 2 and 3. This difference
results in a small change in the link transformation matrix
2A3. The modifications change the joint solution slightly
for θ4, θ5 and θ6. For the joint configuration of the arms of
an HRP-2 robot, the only difference is that the joint axis of
joint 6 is rotated 90◦ as compared to that of a Hubo robot.
This can be easily taken into account by adding 90◦ to θ5.

ASIMO Humanoid Robot. The kinematic configuration of
an ASIMO robot is the same as a Hubo robot except that the
joint axis of joint one of both arms is slightly tilted upwards
by an angle α. This modifies the transformation matrix
B1A0, which has all constant entries and is independent of
joint angles. Multiplying [n, s, a, p] with B1A0 results in
a modified [n, s, a, p], which is then used as the input to
the above joint solution for an ASIMO robot.

V. COMPUTER SIMULATIONS AND VERIFICATION

To verify the closed-form IK-joint solution, computer
simulations were performed to validate the correctness of
the joint solution and decision equations for a Hubo robot.
Each joint angle is varied from 0◦ to 360◦ and we pur-
posely relaxed the joint-limit constraints. For each point in
the joint-variable space, forward kinematics is evaluated to
obtain the position and orientation of the end-effector as
in [n, s, a, p]. The decision equations are also evaluated
to obtain the decision indicators, which identify the corre-
sponding inverse kinematic joint solution that one should use
from the available 8 joint solutions. Then the [n, s, a, p]
matrix and the decision indicators are fed to the inverse
kinematics function, which in turn gives the joint angles
from our inverse kinematic joint solution. These joint angles
are compared with the values of joint angles that we have

inputed into the forward kinematics function to detect any
error. Our computer simulations showed that the closed-
form IK-joint solution is correct for a Hubo robot. Computer
simulations were also performed to verify the correctness of
the closed-form inverse kinematic joint solutions for other
humanoid robots discussed in this paper.

VI. CONCLUSIONS

This paper developed a consistent methodology for de-
riving a closed-form joint solution of a general humanoid
robot, and for a Hubo KHR-4 robot in specific. A novel
reverse decoupling mechanism method was developed by
viewing the kinematic chain of a limb of a humanoid
robot in reverse order, decoupling it into the positioning
and orientation mechanisms, and then utilizing the inverse
transform technique to derive a consistent joint solution for
the humanoid robot. Computer simulations have illustrated
the correctness of the joint solution for a Hubo KHR-4 robot.
The proposed approach has been applied to other existing
humanoid robots with similar kinematic structure.
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