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Abstract—Recently, research fields of augmented reality and
robot navigation are actively investigated. Estimating a relative
posture between an object and a camera is an important
task in these fields Visual markers are frequently used to
estimate a relative posture between an object and a camera,
but the usage of visual markers spoils a scene. In this paper,
we propose a novel method for posture estimation by using
kernel regressions and high frequency markers that do not
spoil a scene. The markers are embedded in an object’s texture
in the high frequency domain and it is hard for people to
notice the markers. We observe changes of spatial frequency of
object’s texture by using a high-definition camera to estimate
the current posture of an object. We show the effectiveness of
our method by experimental results with both simulated and
real data.

I. INTRODUCTION

In recent years, research fields of augmented reality and
robot navigation are actively investigated. In augmented
reality, many methods have been proposed to provide useful
information to users by CG images superimposed on a real
images at geometrically right position[1]. In robot navigation
systems, visual information from a camera is very important
because a camera is a passive sensor. Therefore, there are
many researches that estimate a current position and/or
a movement path from an image sensor[2]. In the above
research fields, estimating a relative position/posture between
a camera and an object is still important problem.
Various methods for estimating a relative posture have

been proposed until now. These methods are separated into
two types: vision based[3] and special purpose sensor based
method[4], [5]. GPS, gyro sensor, and magnetic sensor are
often used as a special purpose sensor for estimating a
posture. Kanbara et al. proposed a system using a GPS
and a small inertial navigation sensor to compensate the
disadvantages of both sensors[4]. Matsuda et al. proposed
a system using a small inertial navigation sensor and a
vision sensor[5]. In general, a method using multiple sensors
achieves the high accuracy of posture estimation, but a
systems is tend to be complicated.
Vision based approach estimates a relative posture from

visual information retrieved by feature extraction and/or edge
detection. Oe et al. proposed a method for posture estimation
by using natural feature points from an omnidirectional
image sequence[3]. Lepetit et al. proposed a method for
posture estimation by using the correspondence between
image feature points and those of a CAD model[6]. The
above methods, however, use prior knowledge of an object
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and/or environment, so it is difficult to apply the methods in
unknown environment.

Marker tracking approach is also used for posture esti-
mation of an object. Kato et al. proposed a method for
posture estimation in real time by using rectangle marker
in an image[7]. As an application of this research, Habara
et al. proposed a system that provides user’s location in an
indoor environment[8]. Marker tracking approach requires
that visual markers should be fixed at an object, so it spoils
a scene. To avoid the above problem, recursive reflection
materials are used as invisible markers[9], but the cost of
the materials is still a problem. Tenmoku et al. proposed a
method for posture estimation by using a special designed
poster[10]. Sato et al. proposed a coded wall paper for pos-
ture estimation[11]. These methods take into consideration
of scene, but the design of posters or wall papers is highly
restricted.

In this paper, we propose a novel method for posture
estimation by using kernel regressions and high frequency
markers that do not spoil a scene. The markers are embedded
in an object’s texture in the high frequency domain and it is
hard for people to notice the markers because of the ability
of human eyes. We observe changes of spatial frequency of
object’s texture by using a high-definition camera to estimate
the current posture of an object. We show the effectiveness
of our method by experimental results with both simulated
and real data.

II. PROBLEM SETTINGS

In this research, relative posture between a camera and a
object is estimated from a image embedded visual markers in
the high frequency domain. We explain the problem settings
in this section. As shown in Fig. 1, relative posture of an
object in the marker coordinate system Om−XmYmZm can
be represented by the translation matrix dT and the rotation
matrix parametrized by rotation angles (θx,θy,θz)T in the
camera coordinate system Oc−XcYcZc. In this research, we
assume that object rotation can be decomposed as R =
Rx(θx)Ry(θy)Rz(θz), and we also assume that the initial
posture is (θx,θy,θz)T = (0,0,0)T . d is the relative depth
between the current posture and the initial posture.

The proposed method can estimate the relative rotation
parameter (θx,θy,θz)T and the relative depth d from visual
changes of an object in the high frequency domain caused
by posture change of an object embedded visual markers.
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Fig. 1. Coordinates and problem settings

III. RELATIVE POSTURE ESTIMATION

A. Marker Embedding

The outline of marker embedding is shown in Fig. 2. When
an image is transformed with 2D Fourier transform, the
lowest frequencies usually contain most of the information.
We embed visual markers in the high frequency domain,
which does not influence its appearance so much because of
the ability of the human eye. Visual markers are embedded in
an elliptical shape in a certain interval in the high frequency
domain as shown in Fig. 2, and then a marker image
is acquired by the inverse 2D Fourier transform. Relative
posture is estimated by observing frequency changes in a
marker image caused by object’s posture changes. Unlike
the conventional researches[13], [14], [15], we need not
the assumption or the prior knowledge of characteristics of
object texture because of the above approach. Therefore, the
proposed method can use printed materials embedded visual
markers as marker images without the knowledge of texture
information of the printed materials. Moreover, our method
uses high frequency domain which is insensitive for human
eye, and has the advantage that marker images used in our
method do not spoil a scene.

B. Image Feature

As described in the previous section, visual markers are
embedded in a elliptical shape in the high frequency domain
of a marker image. Let α and β be lengths of the axes of the
ellipsoid, and θ1 and θ2 be a rotation angle and a phase of
the ellipsoid, respectively. α and β are parameters sensitive
to a relative distance between a camera and an object, so we
introduce the parameter γ = α

β which is robust for distance
changes. Five parameters, α,β ,γ,θ1andθ2, are used as image
features as shown in Fig. 3.
The process flow of the proposed method is shown in

Fig. 4. Figure 5 shows an example of power spectrum of a
marker image, and Fig. 6 shows an result of image processing
for marker detection. Ellipse detection is performed by
energy minimization of the following equation:

Q2 = (a · x2+b · y2+ c+2 f · x+2g · y+2h ·xy). (1)

Embedded markers

Fig. 2. Overview of marker embedding

Fig. 3. Features in the frequency domain

α,β , and θ1 can be calculated from the above parameters.
Phase parameter θ2 can be estimated from the maximum

angle of the correlation between an ellipsoid in an input
image and one of the initial posture. We consider an indicator
function s(θ ) that becomes 1 if a marker exists in θ direction
and becomes 0 if a maker does not exist in θ direction.
Let s1(θ ) be an indicator function of the initial posture
and s2(θ ) be an indicator function of the current posture.
The correlation between s1(θ ) and s2(θ ) is defined and the
maximum correlation angle is estimated by the following
equation:

θ2 = argmax
Δθ

∫ 2π

0
s1(θ +Δθ ) · s2(θ )dθ . (2)

Input Image

Low-cut Filter

Binarization

Marker Detection

Parameter Estimation

Fig. 4. Process flow of parameter estimation
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Fig. 5. Power spectrum

Markers

Estimation result

Low frequency mask

Fig. 6. Estimation result

Even if the scales of two ellipsoids are different with each
other, we can estimate θ2 because of the indicator function
s(θ ).

C. Relative Posture Estimation by Kernel Regressions

Relative posture, θx,θy,θz, between a camera and an object
is estimated from image features, α,β ,γ,θ1,θ2, by kernel
regressions that map image features to posture parameters.
In this paper, we use a support vector regression (SVR)[16]
as a kernel regression. SVR is expressed by the following
equation:

y= f (x) =
D

∑
i=1

wiK(xi,x)+b, (3)

where D is the number of dimension of image features,
wi (i = 1, · · · ,D) is a weight, and b is an offset. We use
a polynomial kernel as a kernel function K:

K(x,y) = (s ·xTy+o)d, (4)

where s,o, and d are hyper parameters and are deter-
mined by a preliminary experiment. SVR outputs the dis-
placements Δθx,Δθy, and Δθz from the previous posture
θx,t−1,θy,t−1,θz,t−1 and image features: γ,θ1,θ2, and then
update the current posture θx,t ,θy,t ,θz,t
The relative depth between a camera and an object can be

estimated from the previous position because of the following
equation:

α1
α2

= k · d1
d2

, (5)

where d1 and d2 are depths in the previous and current
posture, respectively. α1 and α2 are image features in the
previous and the current posture, respectively.

IV. EXPERIMENTAL RESULTS

A. Hyperparameters

In order to use SVR for posture estimation, hyperparam-
eters s,o, and d should be determined in advance. There-
fore, we generated synthesized images rotated at random
with θx,θy,θz ∈ {0,10,20, . . . ,50,60} [deg], extracted image
features from the images, and then applied SVR learning
algorithm to the training data.
From this preliminary experiment, the number of dimen-

sion d has a larger effect to the training error than another
parameters, so s and o are fixed to be 1. Figures 7 and 8
show the results of the preliminary experiment. From this
result, the number of dimension d is fixed to be 5 for
posture estimation, and fixed to be 4 for depth estimation
in experiments in the following section.
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Fig. 7. Training errors of θx,θy,θz
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Fig. 8. Training error of d

B. Experiment with Simulation Data

Table II shows estimation errors (generalization errors) by
using training data in Table I. From this result, estimation
errors are about 5 degrees and are enough for posture
estimation.
In order to estimate various posture changes, we make

sequences of synthesized images rotated at random with
θx,θy ∈ [−60,60],θz ∈ [−180,180], and then SVR is learned
by this training data. Figures 9,10 and 11 show estimation
results of one sequence. RMSE of θx,θy,andθz in this
experiment are 3.08, 2.63, and 2.28, respectively. From the

TABLE I

TRAINING DATA

Training data range of posture

Set 1 θx ∈ [0,60],θy ∈ [0,60],θz ∈ [0,60]
Set 2 θx ∈ [0,60],θy ∈ [0,60],θz ∈ [−60,0]
Set 3 θx ∈ [0,60],θy ∈ [−60,0],θz ∈ [0,60]
Set 4 θx ∈ [0,60],θy ∈ [−60,0],θz ∈ [−60,0]

TABLE II

ESTIMATION ERROR

parameter rooted mean square error [deg]

θx 4.00
θy 4.19
θz 1.04
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Fig. 9. estimation results of θx
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Fig. 10. estimation results of θy

results, the accuracy of posture estimation is enough for
virtual reality application. However, as shown in Figs. 12,
13 and 14, the sign of some results of posture estimation
is reversed. This is because the appearances of images are
almost same nevertheless the rotation angles are different as
shown in Figs. 15 and 16. In that case, the accuracy of the
proposed method becomes worse because γ,θ1 and θ2 are
almost equal if there is no difference between two images.

C. Experiment with Real Data

We also conducted experiments in the real data to show the
effectiveness of our method. We made a B1 size wall paper
for this experiment as shown in Fig. 17. The markers of a
motion capture system are attached to the wall paper, and
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Fig. 11. estimation results of θz
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Fig. 12. estimation results of θx
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Fig. 13. estimation results of θy

motion data from a motion capture system are used as true
values. The specification of a camera used in this experiment
is shown in Table III. The wall paper is moved at the distance
about 3000 [mm] from the camera. Figures 18, 19 and 20
show estimation results of posture parameters, and Fig. 21
show estimation results of the distance between a camera
and an object. The rooted mean square errors of estimated
parameters are shown in Table IV. From the experimental
results, posture parameters, θx,θy, and θz, can be estimated
within ±3.3 [deg], and the estimation error of the distance
is about ±2.3×102 [mm]. Estimation error of the distance
becomes worse if the distance between a camera and object
becomes small. This is because visual markers are shifted
to the lower frequency domain and visual changes in the
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Fig. 14. estimation results of θz
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Fig. 15. (θx,θy,θz) = (20,30,40)

Fig. 16. (θx,θy,θz) = (−20,−30,40)

lower frequency domain are smaller than those in the higher
frequency domain.
We have also conducted another experiment with the

training data in Table I. Figure 22 show examples of pos-
ture estimation. From this figure, the accuracy of posture
estimation is enough for applications of augmented reality.
We investigate estimation errors between true rotation Rtrue
and predicted rotation R by Frobenius norm. The values of
Frobenius norm in simulation data and real data are shown
in Table V.
From this table, the scaling factor m of estimation error of

rotation matrix in the real experiment can be estimated by

Markers for motion capture system

Fig. 17. Wall paper used in this experiment

TABLE III

CAMERA SPECIFICATION

device FOVEON X3 (CMOS)
size 20.7 × 13.8 [mm]
focal length 200 [mm]
image size 2640 × 1760 [pixels]
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Fig. 18. Estimation results of θx

the following equation:

m=
1.49×10−2
0.959×10−2 � 1.55. (6)

Let ermse be a rooted mean square error of an axis, estimation
error of rotation angle can be calculated as follows:

e= arccos(1−m · (1− cos(ermse))). (7)

By the above calculation, the estimation error in real scene
can be estimated as shown in Table VI.
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Fig. 19. Estimation results of θy

TABLE IV

EVALUATION OF ESTIMATION RESULTS IN REAL IMAGES

parameter rooted mean square error

θx 3.32 [deg]
θy 3.03 [deg]
θz 0.77 [deg]
d 2.25 ×102 [mm]
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Fig. 20. Estimation results of θz
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Fig. 21. Estimation results of distance

V. CONCLUSION AND FUTURE WORK

This paper proposes a method for relative posture esti-
mation by using visual markers which are embedded in an
object’s texture in the high frequency domain, and we show
that relative posture can be estimated by kernel regressions.
We embedded visual markers as an elliptical shape in this
experiment, but our method does not restrict an elliptical
shape. Our method requires one of parametric shape or
pattern for posture estimation. In future work, we investigate
the best shape for embedding which is robust for motion and
focal blur.

TABLE V

FROBENIUS NORMS OF ESTIMATION RESULTS

||Rtrue−R|| f
simulation 0.959×10−2
real scene 1.49×10−2

TABLE VI

PREDICTION VALUES OF ESTIMATION ERRORS

estimation parameter rooted mean square error

θx 4.98 [deg]
θy 5.22 [deg]
θz 1.34 [deg]

Fig. 22. examples of posture estimation results: input image (left) and
superimposed image (right)
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