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where the magnet is totally covered by the MMT, the friction 
force is higher than the drive force. Thus, the MMT does not 
move in this region in spite of the magnet movement. When 
the distance reaches to 513.0 μm, the drive force exceeds the 
friction force and the MMT starts following to the magnet. 
This simulation result is corresponding to the measured dead 
band amount mentioned above (543.0 μm).  
From this result, it can be determined that the dead band is 

caused by the static friction. This simulation can predict the 
drive force, the required force to drive the MMT and the dead 
band amount respectively and helps designing the magnetic 
microactuators to avoid dead band. And now that it is clear 
that the cause of the low positioning accuracy and 
controllability is the static friction, next stage is how to reduce 
the friction on the MMT. 

III. LOW FRICTION DRIVE UNITS 
 Figure 4 shows the magnetic flux density distributions by 

an FEM analysis for φ1.0 x 1.0 mm under the φ1.0 x 0.05 mm 
Ni MMT. As shown in the figure, the direction of the 
magnetic flux density around Ni MMT is vertically aligned 
and thus the large magnetic force to downward direction is 
applied. This makes the friction on an MMT by conventional 
drive larger. Two effective drive methods to reduce the 
friction on an MMT are proposed as following. 
  
(a) Two-tiered magnetic drive (TMD) 
In order to reduce the friction, the vertical force on an MMT 

has to be reduced. Figure 5(a) shows the concept of two-tiered 
magnetic drive (TMD). The magnetic sheet, which is 
embedded in a microfluidic chip, counters the magnetic flux 
of the drive magnet by applying magnetic flux in reverse 
direction. Since an MMT is subject to both of upward and 
downward force, it leans in a microchip and thus the contact 
area between the MMT and the grass substrate is significantly 
reduced. In order to minimize the vertical force on an MMT, 
it would be better to use the magnet sheet and the drive 
magnet with the similar magnetic strength. 
Figure 5(b) shows the FEM result for φ1.0 x 1.0 mm under 

the φ1.0 x 0.05 mm Ni. Comparing with Figure 4, the 
magnetic flux around the MMT, which is aligned along the 
vertical direction, decreases. Much reduced downward force 
and smaller contact area makes the friction drastically 
reduced.  
  
(b)Horizontal polar driving unit (HPD) 
Another way to reduce the vertical force on the MMT is that 

the MMT is set such that the permanent magnet pole is 
parallel to the driving direction of a magnet that has the same 
size as the MMT. Here we describe the driving method of the 
MMT in such setup as the horizontal polar drive (HPD). 
Figure 6 shows the concept and the FEM result of HPD. The 
magnetic flux flows in a circular pattern through the MMT, 
and its direction is aligned to the driving direction. As a result, 
there is considerably less magnetic flux in the vertical 
direction around the center of the MMT as compared to that 
shown in Figure 4. This implies that magnetic power with a 
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cloning technique is required for high-throughput production 
of processed cells with high quality and homogeneity [14]. 
The approach to enucleate oocytes in a microfluidic chip 
using hybrid MMTs was conducted previously [15], but it 
was quite difficult to develop the automation system since the 
positioning error between the stage and the MMT was too big 
to control. Besides, it was difficult to handle continuously 
moving cell due to the slow response of the MMT against the 
drive stage. Here, we have conducted the enucleation process 
on a chip with fast response by HPD. 
Figure 10 shows the design of the microfluidic chip for the 

enucleation of oocytes. The cutting blade has to have enough 
power to cut the oocytes and precise positioning is required to 
aim at the target properly. Two MMT blades made by Ni, 
whose young’s module is enough higher than oocyte’s (50 
GPa), is set in polydimthysiloxane (PDMS) chip to cut off the 
oocytes at the middle of the chip. The oocytes are put in from 
inlet port and flow in 200 μm height and width of the channel. 
The channel height is set lower at the intersection of the 
channel and the MMT pathway not to escape oocytes from 
the cutting blades by squeezing them. The channel width to 
the outlet narrows to 50 μm to prevent the oocytes from 
evacuating without cutting. 
The Ni based MMT fabrication process is shown in Figure 

11.  At first, the sacrificial layer (LOR 5B, Tokyo Ohka 
Kogyo Co., Ltd.) is coated on Si wafer. Then Cr-Au is 
sputtered on this wafer (thickness = 300 nm). Next, the 
photoresist (KMPR 3035, Nippon Kayaku Co., Ltd.) is coated 
on the substrate. After the exposure, the KMPR pattern is 
developed. Finally the Ni was grown by the electroplating (= 
50 μm). After removing the photoresist and sacrificial layer, 
the Ni parts can be collected and cleaned by ultrasonic. The 
tip of the blade for enucleation has been sharpened to cut off 
oocytes easily and 1000 μm length square part has been 
designed to make an MMT powerful enough to cut oocytes.  
  
  
  

The center of the square part is not aligned to the blade axis to 
avoid interfering with each stage and magnetic field. The 
thickness of the MMT is 50 μm to have enough clearance in 
the channel.  
  

 
  
  

 
Fig.12. Enucleation of oocytes process in microfluidic chip by MMT 
with horizontal polar drive
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