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Abstract—Topological localization is a qualitative solution 
approach that can assist obtaining a faster quantitative metric 
solution by limiting the searchable space.  Consequently, its 
efficiency is an essential requirement in hierarchical 
localization frameworks. This paper presents a topological map 
generation method with a localization scheme. Good 
compromise of performance measures – accuracy, memory and 
processing time – indicates the method’s efficiency. The 
suggested implementations rely on information-theoretic 
selection of local features for node distinctive representation, 
and a visual codebook for compression. Testing the proposed 
approach on the COLD database, a recent specific 
benchmarking database for robotic topological mapping and 
localization, reveals its customization according to the vision 
sensor and environment characteristics. The approach 
guarantees over 90% localization accuracy with more than 
50% overhead reduction, and is suitable for application in 
highly unstructured cluttered environments that are influenced 
by dynamics and illumination variations. 

I. INTRODUCTION 

AP building and self localization are fundamental 
problems in mobile robots research. Building a 

reliable environment model is crucial for efficient localiza-
tion. According to [1,2], the difficulty of map building arises 
from: (i) Size of the environment; (ii) Noisy perception and 
actuation; (iii) Perceptual ambiguity due to environment 
places similarities; (iv) Cycles mapping and loop closing; (v) 
Unstructuredness and dynamics of environments.  

Traditionally, maps are classified into metric and 
topological. They are further classified according to the way 
they are indexed, being location-based or feature-based. 
Metric maps are volumetric, in the sense that they offer a 
label for every possible location in the environment (e.g. 
occupancy grids). Topological maps are graph-like 
structures that define the environment as set of significant 
places with interconnections between them. Grid maps have 
the advantage of providing fine metric pose estimation, but 
on the account of extra overhead in storage, computation 
and maintenance requirements. 

On another side, most of the current metric localization 
approaches work probabilistically, fusing motion models 
with visual or range observations [3]. Recently, hybrid maps 
[4,5] and integrating topological information [6] have been 
introduced as hierarchical structures. Initial topological node 
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localization shrinks the metric search space either to a single 
space or a distribution over it, providing better memory and 
time management suited for large environments. Obviously, 
reliable topological localization is critically required within 
those hierarchical frameworks. Visual scene and object 
recognition algorithms are often used to find a solution as a 
place recognition problem. Such solution should be robust 
against perceptual aliasing and scene variability. Besides the 
global localization, efficient place recognition solves 
important related issues, such as loop closing [7] and lost or 
kidnapped robot situations [3]. Another important aspect is 
that it introduces context and semantics into the system. 

The goal of this work is to build reliable and efficient 
topological maps, with minimal but relevant information to 
support hierarchical localization. Efficiency implies that the 
map information is robust for recognition and discriminative 
for accurate place identification. The small size of the map 
assists faster performance and real-time implementation 
adequacy. A realization for those objectives was achieved 
through a system that has been developed and tested on long 
terms in the indoor office environment of Automation Lab at 
Heidelberg University [8,9]. The system depends on highly-
selected distinctive features acquired from an information-
theoretic evaluation, and creates a codebook for features 
compression. Using a single perspective camera, the system 
showed high performance with 96% localization accuracy 
and more than 90% reduction for the extracted features.  

In this paper, the proposed method is further tested on a 
recently-constructed standard benchmark database (COLD), 
primarily targeted for robot topological localization and 
mapping. Omnidirectional sensor images subject to varying 
conditions of illumination and scene dynamics are used. The 
benchmarking study is relevant for the evaluation and 
validation of the proposed method. Comparisons between 
the two databases are highlighted, and the efficiency of the 
proposed method is explicitly presented in terms of 
localization accuracy, map storage and computational costs.  

The paper continues next with a review on the related 
work in section 2, the proposed method and its components 
description in section 3, an overview over the COLD 
database  in section 4, the experimental work in section 5, 
and finally with discussion and conclusions in section 6. 

II. RELATED WORK 

Visual place recognition emerged as a useful tool for 
obtaining topological information about the robot’s position. 
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Several techniques have been proposed using panoramic 
vision [10,11], perspective vision [12], and sometimes 
combined with range sensors [13,14]. Panoramic cameras 
gained much popularity recently, as they provide larger field 
of view and create features that are invariant to the robot’s 
orientation. For place characterization, some of the applied 
techniques use global features such as color histograms 
[15,16], sequential composite lists [13], eigenspace 
representation [17], and frequency filter responses [10]. 
Other techniques are landmark-based or employ invariant 
local features such as [6,11]. Other than recognizing specific 
place instances, the semantic categories of places (e.g. room, 
doorway, corridor, kitchen, office, etc.) are recognized in 
[14,18] relying primarily on the use of classifiers.  

A highly important issue in image characterization is the 
quality and the size of the descriptors, especially for local 
descriptors. They can generate more than 1000 features per 
image, depending on how much detail an image contains 
[19]. This large size imposes a burden on the localization 
system, and may affect successive behaviors like tracking. 
Most of the current studies apply feature extraction, 
assuming that features are highly qualitative only, without 
paying attention to their size and their information content. 
Only few trials considered feature pruning [20], or features 
compression through visual vocabulary [9,21].  

Additionally, robustness to environment dynamic changes 
has taken little consideration [12,18]. From the point of view 
of vision-based solutions, it is important to provide 
robustness against illumination variations and changes 
introduced by human activity (people appearing in the 
rooms, objects and furniture being relocated or removed), 
which influence the appearance of places over time.  

The above two factors are regarded as a particular 
requirement in the context of qualitative mapping and 
localization, and are the main considerations of this paper. 

III. PROPOSED METHOD 

Our map building problem can be formulated as follows:  
Given: A mobile robot equipped with a single vision sensor, 
capturing image sequences I from a defined place set N of 
size n; A domain of features F extracted for N through a 
function g(I); Required: Construct an undirected graph 
topological map in the form of T:=(N,C), where C is a set of 
pairs indicating a spatial interconnection between node Ni 
and node Nj; i,j=1,…,n; and i ≠ j, with the minimal set fiF, 
that maximizes the node recognition probability P(Ni | fi); 
Constraints: No a priori environment specification (objects, 
landmarks); environment is influenced by scene dynamics 
and varying illumination. The solution to localization is to 
find the robot’s most probable position p; pN, using T. 

Fig. 1 introduces the idea behind the map generation and 
its realization for topological localization. The main modules 
are the feature evaluation and feature compression. They are 
applied on high-dimensional invariant local descriptors. 
These modules achieve a double benefit; the selection of 

best place discriminative features, and the reduction in the 
large number of features. Hence, they guarantee generating a 
small size relevant map. The two modules are calculated 
offline. A training dataset is required for the features 
evaluation. The output of the features evaluation is a set of 
feature clusters, which are fed into a codebook for 
compression.  The collected dataset is often subject to 
dynamic changes, since the visual appearance in indoor 
environments varies vastly (day and night, artificial light on 
and off, objects moved from their places). The heterogeneity 
of the dataset should increase the recognition robustness.  

Localization is modeled in the form of an image retrieval 
system, in which the robot’s location is identified by 
comparing the features extracted from the current scene to 
those of the previously captured place imageset stored 
beforehand in the database (map). The nearest match or 
matches identify the robot’s current position. The different 
components of the proposed architecture, with suggested 
implementations are explained in the following subsections. 

A. Feature Extraction and Matching 

The society of computer vision provides a wealthy set of 
algorithms for feature detection and description. Opposed to 
global image signatures, local features require excessive 
computation time. They are, however, more robust to 
illumination, clutter and occlusion, which are common 
indoor environment properties.  

Images are represented by distinctive features extracted 
using Scale Invariant Feature Transform (SIFT) [19]. The 
transform combines a scale invariant feature detector and a 
gradient distribution descriptor. The detector is based on 
Difference-of-Gaussians (DOG) acquired in successive scale 
space decompositions. Interest points’ locations (keypoints) 
are identified and described by gradient histograms within a 
16x16 local neighborhood. For each keypoint, a 128-
dimensional vector is generated relative to its scale. The 
descriptor is invariant to scale and rotation, and slightly 
affected by illumination change, noise and small distortions.  

Fig. 1. Map generation idea with its realization for topological localization.
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Despite the descriptor’s richness and robustness, its high 
dimensionality and huge size are an obvious disadvantage.  

Matching is performed using a cosine distance and a 
voting scheme. A keypoint selective matching by imposing a 
threshold provides better matching for the recognition [19]. 

B. Outliers Detection and Elimination 

Outliers exist in every data gathering process. The goal of 
this module is to eliminate fraud features (e.g. unstable 
scene features that appear temporarily, surfaces reflectance 
due to light), which reduce feature quality, and which may 
lead to potential misrecognition.  

To detect outliers, a clustering technique using k-means is 
applied. Normally, inlier data belong to large and dense 
clusters, while outliers either do not belong to any cluster or 
form very small clusters [22]. The assumption holds true, 
since objects are normally composite and images contain 
lots of redundant features. Besides, stable features will 
appear in the image set that belong to the same scene. For 
this, keypoints associated with images that belong to the 
same place are clustered, and the extremely small clusters 
are removed. Though the used image matching criterion is 
robust to a big extent to outliers, it is recommended to 
preserve only consistent features in the map. 

C. Information-Theoretic Features Evaluation 

In order to increase the localization accuracy, places are 
marked, as far as possible, in a unique separable way. In 
other words, each place is characterized by information that 
makes it recognizable and distinguishable from all other 
places. Perceptual aliasing is reduced this way, making 
localization more reliable. Hence, an information-theoretic 
approach using an entropy measure is applied to evaluate the 
features with respect to their utility for categorization. The 
output of this evaluation is which keypoint sets give the best 
performance and how many approximately are sufficient. 

A training dataset consisting of {Keypoint–Class} tuples 
is constructed, from which the conditional entropy of a 
Class given a Feature Category is calculated. The Class 
information is encoded in terms of higher level 
representation by clustering keypoints of images that belong 
to the same place, similarly as in the outlier detection. The 
extraneous redundant features that are mostly present in rich 
scenes, and which may refer to an exact, a part of or a 
characteristic appearance of an object, augment this 
processing. The clustered features, referenced as ‘keypoint 
clusters’ in fig. 1, will easily form the codewords of the 
visual codebook later. The Feature Category is the true 
realization of the keypoints variation, and is obtained 
through a histogram by sampling the entire keypoints in the 
dataset. K-means algorithm is used for clustering both the 
Class information and the Feature Category. 

The entropy of recognizing a Class O, given a sampled 
Feature Category fi is calculated through the posteriors: 

)|fP(o). f|P(o) H(O|f iki
k

ki 2log  (1) 

for every k=1,…,Ω, where Ω is the number of instantiations 
of the classes, and i=1,…,Ψ, where Ψ is the number of 
instantiations of the feature categories. 

Equation (1) distinguishes the quality of keypoints. Those 
keypoints that tend to appear equally likely among the 
different classes and image categories are less informative, 
and encounter high entropy values. On the opposite side, the 
keypoints whose occurrence is bound to few classes and 
image categories deliver more information (distinguishable 
in terms of categorization) and encounter low entropy 
values. Accordingly, a decision regarding each keypoint 
(Feature Category), whether it is useful for categorization or 
not, can be taken based on the information that it delivers 
(i.e. if entropy is low). 

D. Visual Codebook Generation 

Since the main objective is to obtain a small size relevant 
feature map, a visual codebook (CB) [23] is applied to 
compress the domain of the selected low-entropy clusters 
obtained in section 3.3. A codeword entry in the CB is 
represented by the centroid of each keypoint cluster, with a 
reference to the related images. In the localization process, 
no clustering is needed. Only the extracted keypoints are 
matched against the codewords of the CB. Since a CB 
preserves only one value on behalf of the keypoint cluster 
elements, the size of the preserved map features is again 
much more reduced than the low-entropy feature map. 

IV. COLD DATABASE DESCRIPTION 

COLD (COsy Localization Database) [24] is a large-scale, 
testing environment for evaluating vision-based localization 
systems aiming to work on mobile platforms in realistic 
settings. The database provides a large versatile set of image 
sequences acquired at 3 different laboratory environments in 
European cities (Saarbruecken, Freiburg and Ljubljana), and 
under different natural variations. Similar place categories or 
room functionalities are found in all of the three databases. 

Perspective and omnidirectional video sequences were 
recorded using three different mobile robot platforms. Laser 
range scans and odometry data were also captured for most 
of the sequences. In each laboratory, data was acquired in all 
rooms using the same camera setup. The acquisition process 
is done under different weather and illumination conditions 
(cloudy, sunny, night), and across a time span of 2-3 days. 
Dynamic changes like people wandering around and missing 
or newly added objects were introduced. Since the COLD 
database provides an ideal and flexible testbed for assessing 
localization and recognition algorithms robustness, we use 
an exemplar part to validate our proposed method in the next 
section. Example images are shown in fig. 2. 

V. EXPERIMENTAL RESULTS 

COLD-Saarbruecken omnidirectional extended sequences B 
are used for experimentation. In each video, the robot 
navigates in 5 different functional areas in about 34 seconds; 
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corridor, 1-person office, kitchen, bathroom and printer area. 
A topological map from 9 different places among those 
categories is constructed (fig. 2). The resolution of an 
omnidirectional image is 640x480 pixels, which accounted 
for a 1003x199 slightly distorted image when unwrapped.  

Each place is represented by 3-9 images according to the 
existing amount of variation due to scene dynamics, lighting 
conditions, or different robot pose. For feature evaluation, a 
database is constructed with 49 images acquired from 3 
videos with the 3 different categories (cloudy, sunny and 
night).  A second database is constructed from 6 videos with 
another intensity variation for the performance evaluation. 
The test database has 52 images that are subject to severe 
dynamic variations (darkness, shadows, viewpoint change).  

Applying the SIFT feature extraction, the average number 
of keypoints extracted per image is 333 keypoints, each with 
128 dimensions. Assuming that a single number occupies 8 
bytes for storage, the map size becomes 15.92 Mbytes. As 
mentioned in section 3.1, the cosine distance is used for 
matching together with a threshold to discard apart distanced 
matches. The threshold value is set to 60% in keypoint to 
keypoint matching, and to 50% in keypoint to codeword 
matching. An identified place is determined by the overall 
keypoint or codeword majority votes. As a retrieval system, 
the accuracy of the localization was adopted in [8] to be the 
ratio of correctly identified place images, with insurance that 
60% of the correct images that reside in the database are 
retrieved (i.e. Precision measured at a Recall value of 60%).  

In the clustering-based outlier detection, 9% of the 
keypoints are eliminated after discarding small clusters (≤ 
5). To avoid discarding too many features from the images 
of locations with few detected features, the value of k is set 
to be a function of both the number of images per place and 

the average number of extracted keypoints per image. The 
filtered feature set had identical Precision-Recall 
performance behavior as the original features extracted by 
SIFT. This feature set is used for training in the next study. 

Different values for the real keypoint cluster variation 
parameter Ψ are investigated for the information-theoretic 
evaluation explained in section 3.3. Values between 100 and 
2000 are tested for a total of 14848 keypoints, and the 
consequent effect of eliminating keypoints of relatively 
high-entropy values is monitored. Fig. 3.(a-c) shows the 
measured Precision versus different high-entropy keypoints 
elimination percentages for Ψ = 100, 500 and 1512. The 
graphs maintain almost a constant Precision before it starts 
decreasing at 60% high-entropy features elimination. The 
500 cluster variation is considered ideal since it undergoes a 
smooth variation.  

Fig. 3.(d-f) shows the relation between Precision and 
Recall as a performance behavior for the retrieval process, 
and as a function of the different elimination percentages in 
fig. 3.(a-c). In order to demonstrate the effect of the feature 
evaluation, performances are also compared to original SIFT 
features after outlier detection (red curve). The relationships 
exhibit a dense bundle of curves, in which performance is 
close to and sometimes better than SIFT. Such bundle 
corresponds to the constant Precision level indicated in fig. 
3.(a-c).  This means that localization accuracy is almost like 
SIFT. The green curve is the one selected for the codebook 
generation. It has a filtering ratio of 52% for high-entropy 
features, and in other saying a 48% low-entropy feature set. 

Fig. 4 shows the localization performance of the 48% 
low-entropy features for Ψ = 100, 500, 1000, 1512, 2000 for 
the test database. The map contains on average 6886 
keypoints. Low cluster variations (100, 500) show better 
performances in comparison with the features extracted by 
original SIFT and after outlier detection (OD), as well as 
compared to the higher cluster variations which is an 
advantage. It is worth mentioning that the recognition is 
higher in the test database, with a value of 93% for the low-
entropy features (Ψ=100 and 500) versus 86% for SIFT.  

Fig. 5 shows the performance of five CB examples 
generated from the previous entropy-based feature sets. The 
map contains only 575 keypoints, equivalent to 12 times 
compression than the entropy-based feature map, and 28 
times than the SIFT map. Matching using the CB has much 
lower localization accuracy than the entropy-based features, 
as well as than SIFT (57-64%). In this case, the CB fails to 
achieve the expected high localization accuracy. 

Table (1) summarizes the localization performance of 
working modules versus different criteria. Measurements are 
obtained in Matlab/Windows environment on a P4, 3.2 GHz 
PC, with the databases residing on external disk storage, and 
are calculated as the average of the five studies carried out 
on Ψ. As indicated, an average reduction in the map size of 
57% is obtained for the qualitative entropy-based features, 
and  with  better  accuracy  than  the  original  SIFT  features 

Fig. 2. Nine-place example for 5 functional categories in Saarbruecken-
COLD Database (corridor, bathroom, kitchen, office room & printer area).
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TABLE I.  AVERAGE SYSTEM PERFORMANCE – MODULE VERSUS CRITERIA 

Module 
 
 

Parameter 

Original 
SIFT 
Alg. 

Original 
SIFT + 
outliers 

detection 

Entropy
-based 

Features 

Code-
book 

Map Size(Mbytes) 15.92 14.48 6.72 0.56 

Avg. KPs  per image 333 302 140 12 

Precision at 60% 
Recall (%) 

86.19 85.93 90.84 61.95 

Precision at 20% 
Recall (%) 

96.15 96.15 97.09 89.86 

Localization time (sec) 3.582 3.2271 2.2388 1.5440 

Memory reduction (%) - 9.07 57.77 96.47 
Localization time 
reduction (%) 

- 3.9 33.33 54.02 

 
(90% for entropy-based features versus 86% for SIFT). The 
codebook records 96% reduction, but at a lower accuracy. 
Localization time is also reduced for entropy-based features 
and codebook by 33% and 54% respectively compared to 
SIFT. This timing includes 1.271 seconds, which is the SIFT 
execution time on the specified machine. Excluding this 
timing, reduction in matching and retrieval times is linear 
with the storage reduction as presented in [8]. 

VI. DISCUSSION & CONCLUSION 

This work is concerned with generating efficient maps 
with the smallest set of relevant features that support 
discriminative place categorization for localization purposes. 
A method is proposed based on information-theoretic 
evaluation and selection of environment natural features and 

Fig. 3: (a-c) Average localization (Precision) versus different percentages of high-entropy features elimination (Histogram size for keypoint cluster 
variation = 100, 500 and 1512). (d-f) Average Precision-Recall performance for the different elimination percentages of 3.(a-c). The red curve is the 
performance of SIFT algorithm (reference). The green curve shows features elimination percentage of 52%, chosen for codebook generation. 

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Recall 

P
re

ci
si

on

Entropy-based Features Performance - KP Cluster Variation =100

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Recall 

P
re

ci
si

on

Entropy-based Features Performance - KP Cluster Variation =500

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Elimination %

P
re

ci
si

on

Precision versus % Elimination - KP Cluster Variation =500

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Elimination %

P
re

ci
si

on
Precision versus % Elimination - KP Cluster Variation =100

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Elimination %

P
re

ci
si

on

Precision versus % Elimination - KP Cluster Variation =1512

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Recall 

P
re

ci
si

on

Entropy-based Features Performance - KP Cluster Variation =1512

(a) (b) (c) 

(d) (e) (f) 

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Recall

P
re

ci
si

on

Precision - Recall Plot / Test Database

 

 

SIFT (Ref.)
SIFT+OD

LEF(100 bin histogram)

LEF(500 bin histogram)

LEF(1000 bin histogram)

LEF(1512 bin histogram)
LEF(2000 bin histogram)

Fig. 4. Localization performance based on 48% low-entropy features. 
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attaching them to a topological map in compressed format. 
An implementation for the method was tested before in the 
indoor environment of Automation Laboratory at Heidelberg 
University [8,9], where a perspective camera of resolution 
640x480 is used. Wide-view images are obtained by the 
stitching of sequential images procedure, which generated 
1500x300 pixel images. The Heidelberg database showed 
very good performance using the proposed approach (96% 
accuracy with 90% reduction for the extracted features).  

In comparison to the COLD images, the increase in the 
visual field of omnidirectional camera comes at the cost of 
resolution. The image set contains less detail, not only due 
to the resolution, but also because the environment itself is 
less cluttered (e.g. large wall areas). The average number of 
features extracted per scene reveals this fact (333 for the 
COLD database versus 1000 for the Heidelberg database). 

Experimentations on the COLD database were successful 
too, but showed different performance. It was found that the 
selected features through the entropy measure outperform 
the original extracted SIFT features, recording a localization 
accuracy of 90.8%. It managed as well to reduce more than 
50% of the map size, and 30% of the localization time. The 
codebook module, however, didn’t provide high localization 
accuracy. This is because the images undergo severe 
illumination changes and contain less detail, a matter that 
only 12 features per image are insufficient to efficiently 
categorize the scene. Furthermore, the variation between the 
codewords was not that high, which led to misrecognition.  

It is important to mention that the choice of the number of 
clusters in clustering approaches is an important factor. This 
prevents the data from undergoing little or extra division, 
and hence misses or loses meaningful information content. 

Within our experimentations, the localization is judged as 
a retrieval system with the localization accuracy set to the 
Precision at 60% Recall. This puts a restriction that more 
than half of the images bound to the best match should be 
retrieved. This setting can be used to derive a probability 
distribution over places to be fused with filters for speeding 
up metric localization [3]. It is still also appropriate to set the 
accuracy to lower Recall values, and obtain a single place 
solution (best match), in case the recognition rate is high. 

The same tested database is assessed in [18] using Harris-
Laplace, SIFT and support vector machines. The authors 
report a recognition rate of 88% for the case that the system 
is trained and tested with the same weather conditions. 

In conclusion, a customized method using either feature 
evaluation and compression components, or using solely the 
feature evaluation component, provides substantial map size 
and time savings besides accuracy for localization purposes. 
The codebook performance is function of size and variation 
of the extracted features (i.e. environmental details). Within 
hierarchical localization frameworks, which suit large-scale 
environments, small size efficient maps can be constructed, 
and a reliable topological localization scheme can be safely 
integrated. This is our future work. 
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