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Abstract— We propose a new minimum uncertainty planning
technique for mobile robots localizing with beacons. We model
the system as a partially-observable Markov decision process
and use a sampling-based method in the belief space (the space
of posterior probability density functions over the state space)
to find a belief-feedback policy. This approach allows us to
analyze the evolution of the belief more accurately, which can
result in improved policies when common approximations do
not model the true behavior of the system. We demonstrate
that our method performs comparatively, and in certain cases
better, than current methods in the literature.

I. INTRODUCTION

We present a new method for finding minimum uncertainty
paths for mobile robots. This problem has previously been
considered in [1]–[3] for the specific case of finding mini-
mum uncertainty paths for mobile robots localizing with bea-
cons. We consider the same scenario, but compute policies
using a new approach that models the system as a partially-
observable Markov decision process (POMDP) whose cost
criterion minimizes uncertainty in the robot’s position. Since
computing optimal policies for this problem is intractable
[4], we use a sampling-based method to construct a belief-
feedback policy.

Most methods for dealing with uncertainty while plan-
ning robot motions construct plans in a configuration space
that has been augmented to represent uncertainty. Such
approaches necessarily restrict the type and degree of uncer-
tainty that can be considered, since uncertainty is represented
by an a posteriori probability function on the state space
(beliefs). Typically, the posterior is assumed to be Gaussian,
parameterized by mean and covariance. In contrast, our
approach operates directly in the belief space (i.e., the
space of all possible posteriors). We represent beliefs using
particle filtering methods, thus allowing the consideration of
arbitrary posteriors, given an appropriate number of particles.
This capability is essential, e.g., when robots operate in
environments that contain obstacles, or when uncertainty is
sufficiently large to cause difficulty with data association.

Furthermore, typically, methods that plan in the (possibly
augmented) configuration space do not consider variation
in possible future observations. This is because considering
multiple future observations at each stage causes an expo-
nential growth in the number of sample paths that must
be considered. To cope with this, it is typical to consider
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only the maximum-likelihood (ML) observations at future
stages. We utilize hyper-particle filtering [5] which allows
us to account for uncertainty under many possible sequences
of observations the robot may encounter, rather than com-
mitting to the ML contingency. We heuristically explore
the belief space using local policies, and optimize over a
graph representing these trajectories through the belief space.
Since we are optimizing in the belief space, if a sufficient
number of observations are sampled, those trajectories will
be representative of the evolution of the POMDP, not just
one contingency.

We consider a standard model for a mobile robot with lo-
calization beacons (Section III). The robot has configuration
in SE(2) and a probabilistic motion model. Observations,
correlated with state, arise from a set of noisy beacons, where
the accuracy and precision of measurements from a beacon
improve as the robot moves closer to the position of the
beacon. Given start and goal configuration, the objective is
to minimize an uncertainty measure along the path to the
goal.

This system can be modeled as a POMDP with continuous
state, control, and observation spaces. We demonstrate that
by using our POMDP planning method, originally proposed
by the authors in [6], we can find policies comparable to
and, in some cases, better than other existing methods. This is
the case even when restrictive assumptions are imposed (e.g.,
Gaussian noise, no obstacle constraints). In short, our method
is better able to evaluate uncertainty in portions of the space
where the transition functions exhibit nonlinear behavior and
the approximation of the belief as a Gaussian distribution
is not faithful to the true pdf. Furthermore, our proposed
method can be generalized to find minimum uncertainty
plans for robot systems with more complicated configuration
spaces or with non-Gaussian process and observation models.

A. Related Planning with Uncertainty Research

Consideration of uncertainty created by an uncertain pro-
cess model was first combined with sampling-methods in [7]
to predict the behavior of a system. Rather than just predict-
ing, in [8]–[10], attempts were made to extend sampling-
based algorithms to plan for systems with uncertainty. The
work in [8] considers uncertainty in the robot’s motion
model, while [9], [10] consider uncertainty in the map of
the environment. The Sampling Hyperbelief Optimization
Technique [11] also constructs a graph based representation
of trajectories for uncertain systems. However, it differs from
these other methods by operating in the space of probability
function over the belief space.
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Other work in the robotics community generates plans
to minimize uncertainty for specific robot tasks. The active
localization algorithms of [12] and [13] make robot local-
ization more effective by specifically considering expected
uncertainty of the localization algorithm while planning the
next control the robot will receive. These algorithms generate
a control to minimize uncertainty at the next stage, and do
not optimize over a path or specify a goal position.

The Belief Roadmap planner (BRM) [1], [2], [14] and the
method of [3] have similar goals and environment models to
our work. Like [1], [14], we use a sampling-based planner,
e.g., [15], in the robot’s workspace to heuristically construct
a set of local policies. However, [1]–[3], [14] restrict the
set of possible policies to make the optimization procedure
feasible and commit to a particular representation of belief
(Gaussian). These methods use Extended and Unscented
Kalman Filters to approximate the representation of belief as
a multi-variate normal distribution over the state space. We
differ by using a sequential Monte Carlo representation that
can more closely model the true pdf, if a sufficient number of
particles are used. Furthermore, the above methods control
the growth of possible future belief states by considering
only the ML observation when evaluating policies. The main
advantage of our method is that we explicitly attempt to
characterize many possible future observations at every stage,
and can in some cases better gauge the costs different policies
will incur.

There is a large volume of work related to solving both
discrete and continuous POMDPs. We refer the reader to
[6] for citations that are directly related to the POMDP
optimization algorithm we utilize. Particularly relevant to
our method is [16], which discusses POMDP optimization
in continuous spaces.

II. POMDP MODEL AND OPTIMIZATION

In this section, we briefly review POMDPs, primarily to
establish notation and provide the background necessary to
motivate the method to approximate the value function. For
a more thorough discussion of the POMDP model see [17]
or [18].

A. POMDP Framework

A POMDP is comprised of a state space X , set of
controls U , a process model, set of observations Y , and
sensor or observation model. The belief bt is the posterior
probability function over X conditioned on the information
state at t, a set containing the initial pdf and all controls and
observations prior to stage t. We rely on the belief to act as
a sufficient statistic of the information state [19]. In practice,
we usually cannot represent the exact pdf, so bt will refer to
an approximation of the exact belief in the belief space Pb,
the space of all pdfs over X . Using this quantity as the state
vector of the POMDP, we can treat the original system as
an MDP evolving in the belief space.

This process has both a transition probability function
that corresponds to Bayesian prediction, and a transition
observation function that corresponds to Bayesian update.

Putting these together, we arrive at the belief transition
operator for the POMDP

bt+1 = φy,ubt. (1)

For a more detailed discussion of MDP’s with continuous
state variables, refer to [20]. The belief transition operator
φy,u functions as the process model for the belief space
MDP and observations are the random variable in the process
evolution.

We consider cost functions that are separable into a one-
stage cost function cb : U × Pb → R and a terminal cost
function cbt̄ : Pb → R. Although different formulations of
cost are available, we consider an infinite-horizon total cost
criterion with retirement option. Thus, the cost under policy
π is

J(b0, π) = E

[
t̄∑
t=1

cb(π(bk−1), bt) + cbt̄(bt̄)

∣∣∣∣∣b0
]

where the expectation is taken over the joint pdf over the
sequence of observations from stages 1 to t̄. At every stage,
the policy may choose to “retire” with cost specified by
cbt̄(·), where t̄ denotes the a priori unknown retirement stage.

B. Switched Policy Optimization

Our minimum-uncertainty robot planning method is an
anytime policy-improvement algorithm based on an approx-
imation of the stochastic Hamilton-Jacobi-Bellman (sHJB)
equation. Our approach will involve utilizing a set of local
policies that specify multi-stage trajectories through the
hyperbelief space. We choose the policy to be a switched
policy whose modes and switching conditions are defined
by a set of local policies. We model the robot system as a
partially-observable Markov decision process (POMDP) and
use a diffusion-based approach to explore the search tree
with each expansion following a trajectory of a particular
local policy. The algorithm builds a directed graph in the
belief space, representing the evolution of the POMDP. This
data structure is used to compute both a switched policy and
the expected cost to the system under this policy. However,
since we are using closed-loop feedback control policies at
every stage, this is not a straightforward conversion of the
original POMDP to a temporally abstracted POMDP using
macro-actions. To avoid the computational intractability of
optimizing the policy control by control [4], we optimize
the policy in a coarse fashion.

We introduced this algorithm in [6], and demonstrated its
effectiveness in planning the policy of a team of mobile
robots attempting to perform a coordinated task, manipulat-
ing (extinguishing) a stochastic process that loosely models
the spread of a fire. Please refer to [6] for more details on
this algorithm and research publications related to the core
optimization algorithm.

III. PROBLEM MODEL

In this section, we discuss the robot model and how it
is simulated during policy optimization. Because the system
has continuous X , Y , and U , we cannot finitely parameterize
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Pb and, in general, there is no exact representation of belief
that does not grow in complexity with the number of stages
executed. We represent a belief by a set of particles, an
established procedure for approximating a function [17],
[21]. With this approximation, we work with a pmf over
a finite set of support points from the belief pdf, but do not
discretize the state, observation, or control spaces, i.e., the
support points are neither fixed nor representative of a region
of the state space.

A. Robot and Environment Model
We use the model used in [3], [14], a mobile robot with

configuration in SE(2), moving through an environment
with multiple beacons that provide increasingly reliable
measurements with decreasing distance to the beacon. We
denote the robot’s state as x ∈ SE(2), with x = [x1, x2, x3]
where [x1, x2] ∈ R2 is the robot’s position and, x3 = θ ∈ S1

is the robot’s orientation. The robot’s transition model is
a discrete version of the standard unicycle model, with
additive linear Gaussian noise on the system input, e.g., the
desired translational and rotational movement. The noise is
a random vector drawn from a stationary, mean zero normal
distribution with a diagonal covariance matrix.

Noisy measurements of the position of the robot come
from a collection of distance beacons. At every stage, the
robot receives a measurement from every beacon in the
workspace, but the quality of the information conveyed
varies with the robot’s distance from the beacon. Specifically,
the ith beacon reports a measurement yi that is a random
variable with distance-dependent bias in mean and distance-
dependent variance. We model the dependence as a linear
function, specifically

µib(d) = µmb d+ µbb, σib(d) = σmb d+ σbb

where d = ||p− pib||2 and pib ∈ R2 is the location of the ith

beacon. Thus, the measurement from the ith beacon is mod-
eled as a random variable drawn from N (µib(d), σib(d)), a
normal distribution with mean µib(d) and variance σib(d). An
observation yt consists of a random vector of measurements,
where the ith entry is yi.

This is not a linear Gaussian system, and the belief over
the state space with respect to the information history will
typically not be a normal pdf. In fact, using the approxi-
mation of a normal pdf is often poor because although all
disturbances are drawn from normal distributions, the process
model is nonlinear. This will cause the distance between the
belief and any normal distribution to increase as t increases.
Although the pdf of measurements is normal along the line
extending from the beacon to the robot, when extending
the pdf P [xt|yt] over the workspace, level sets of constant
likelihood form circles centered on the beacon. Thus, the
observations provide a circular distortion on the belief,
particularly when close to beacons. Other nonlinearities, e.g.,
obstacles in the workspace, compound this problem.

B. Belief Approximation and Transition Functions
We use a sequential Monte Carlo method [17], [21] and

approximate bt as a collection of weighted particles. The

particles are propagated through the POMDP’s transition
function using a particle filter to maintain an approximation
of the pdf over X in a manner consistent with the POMDP.
The particle-filtered representation is also a belief, but is not
equal to exact belief conditioned on the information state.

Let bt = {(x(i), w(i))}i=1,··· ,m be a collection of states
and associated weights, i.e., particles. We use the Monte
Carlo localization algorithm of [22], which was designed
for mobile robot localization, to approximate the belief. We
can approximate the probability transition function for a
particle x(i) by sampling the process model according to
the distribution of process noise. The probability observation
function re-weights every particle in the set according to
an observation yt. To re-weight the particle with x(i), we
must find the likelihood of yt conditioned on the state of the
system being x(i). For every x(i) in bt,

1) Compute the distance to every beacon. For the jth

beacon, this is d(i, j) = ||x(i) − xjb||2.
2) Compute the expected value (mean) of the random

vector yt, assuming x(i) refers to the true position of
the robot. Thus, for every beacon µjb = µmb d(i, j)+µbb
and µ(i)

y = E
[
yt|x(i)

]
= [µ1

b , µ
2
b , · · · , µNb ]′.

3) Re-weight each particle by the likelihood of yt under
P
[
yt|x(i)

]
. Thus, w(i) is the likelihood of yt under

a normal distribution with mean µ
(i)
y and diagonal

covariance matrix with the quantity σmb d(i, j) +σbb on
the jth entry of the diagonal.

Finally, bt is normalized so that
∑
i w

(i) = 1.

C. Local Policies

The local policies πxg ∈ Π with goal configuration xg ∈
X are a parameterized class of self-stopping, belief-feedback
policies, where xg is the target position the robot attempts to
attain. Each local policy consists of a belief-feedback policy
πxg : Pb → U and a stopping function axg : Pb × Z+ →
{0, 1}. Given a goal position xg ,

uT = atan2(x2
g − Eb

[
x2
]
, x1
g − Eb

[
x1
]
)− Eb

[
x3
]

uD = min(||[Eb
[
(x1, x2)

]
− (x1

g, x
2
g)||2, uD,max)

where u = [uD, uC ]′ refers to the control action that is
specified by the policy. Please note that the superscripts refer
to components of the vector, and not exponents or moments.
Essentially, this class of policies drives the expected value
of the robot’s position towards a desired goal position in the
workspace. The policy stops when the mean of the belief gets
sufficiently close to the target point, less than εφ or after the
policy has executed a set number of stages tmax.

D. Observation Sampling Function

Since observations are not available at planning time,
we optimize the policy based on sampling Y based on the
likelihood conditioned on belief, P [yt|bt]. Consider the ith

component of the random vector yt. Using the law of total
probability, we can compute the exact (continuous) belief as
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Algorithm 1: Expand Method
Input: b - belief state to expand,

π - local policy to use at b
Output: c - expected cost to go using π,

β - destination hyperbelief

c← 0, t← 0, α← 1, βf ← ∅, β0 = {(b, 1)}
while α > 0 do

t← t+ 1
(ct, βt)← HyperParticleFilter(βt−1, π)
c← c+ αct, α′ ← α
foreach (b(i), w(i)) ∈ βt do

if π.a(b(i), t) = 1 then
α′ ← α′ − αw(i)

βt ← βt {(b(i), w(i))}
βf ← βf ∪ {(b(i), αw(i))}

Normalize weights of βt to 1
α← α′

Return (c, βf )

shown in (2). With a particle-filtered representation of bt,
this pdf is best approximated by (3).

PΓmt

[
yit = y|bt

]
=

∫
x∈X

PΓmt

[
yit = y|x

]
Pbt [x] dx (2)

≈
∑
j

PΓmt

[
yit = y|x(j)

]
w(j) (3)

where Γmt is the distribution governing the noise random
vector in the observation model. Sampling from this distribu-
tion can be accomplished by sampling x(j) with probability
w(j). Then, sample yit from PΓmt

[
yit|x(j)

]
.

IV. MINIMUM UNCERTAINTY PLANNING

In our planning method, one of the main points of empha-
sis was the integration of domain knowledge into the planner.
The assumption of problem-specific domain knowledge is
particularly applicable in robotics, i.e., often the local struc-
ture of nearly optimal trajectories is known. The combination
of local policies with hyper-particle filtering allows us to
develop temporal abstraction, which can be used search the
reachable belief space in depth and produce effective policies
without requiring an impractical amount of computation.

The core idea of this method is to use paths prescribed
in the workspace for deterministic robots as a heuristic, but
to evaluate the effects and to plan in the belief space using
value function approximation. We begin with a graph in the
workspace, where each vertex corresponds to a point in R2.
One of these vertices should be located at the mean of the
position for the initial belief b0.

The policy and belief sampling function is implemented as
a queue data structure. When a new belief bi is added to B,
it is mapped to a vertex in the workspace graph by choosing
the vertex whose position in the workspace is closest to the
mean of the position of the belief. Then, for every outgoing
edge from that vertex, we add the tuple (bi, πxg ) where xg

(a) Possible terminal belief using M2 (b) Possible terminal belief using M3

Fig. 1. Notable belief states

is the location of the target vertex. Initially, the queue is
populated by adding b0 to B. When the queue is empty, the
algorithm terminates.

This policy choice assumes that, often, the majority of
the probability density, when projected onto the workspace,
congregates around vertices. In the context of the model
we have explored, this assumption remained valid, but it
is possible for a system with more stochasticity that this
heuristic may produce undesirable results. At that point,
heuristics based on data structures built for the configuration
space will most likely not produce effective belief-feedback
local policies.

New beliefs are added to B as a result of the Expand
operation. This operation evaluates the effect of using πxg

at bi. We use an augmented version of hyper-particle filter-
ing [5], which is shown in Algorithm 1. The belief bi is
propagated through φy,u, i.e., (1), where u is chosen by πxg

and y is sampled using the observation sampling function
(Section III-D). This occurs for multiple particles, in parallel,
producing an estimate of the expected cost and hyperbelief
resulting from using the πxg at bi. Note that particles in
the hyper-particle filter may trigger the stopping condition at
different stages, so additional bookkeeping is required.

V. EXPERIMENTAL RESULTS

We tested our approach using a mobile robot simulation.
After a short discussion of our experimental procedure,
we present a very small example that demonstrates how
a particle-filtered representation of belief and a POMDP
approach is able to improve results over an approximated-
Gaussian search of the roadmap. Next, we present larger
examples that one might find in a realistic mobile robot
scenario.

For purposes of comparison, we evaluated three methods.
Method M1 selects the distance optimal path through the
graph, and is provided for a baseline comparison with a
plan that does not explicitly consider uncertainty. Method
M2 approximates the belief state as a Gaussian random
vector using the Extended Kalman Filter and samples the ML
observation at every stage. This produces the same result as
the method of [14]. Finally, our proposed method is referred
to as M3. From each method, we generate a belief-feedback
policy. Using s sample path simulations, i.e., starting from
b0 we apply uk generated by the appropriate policy and
sample yk with probability specified by PΓm [yk|bk], we
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(a) Path chosen by M1 (b) Path chosen by M2 (c) Nominal path chosen by M3

Fig. 2. Approximated Gaussian, ML observation estimates of covariance.

(a) Environment 2 (b) Environment 3 (c) Environment 4

Fig. 3. Workspaces, beacons, and roadmaps for experiments.

then are able to evaluate the effectiveness of the policies by
comparing the mean and variance of the costs of the sample
paths.

We compared the three methods using a cost function that
measures uncertainty at the goal,

Jπ(b0) = E
[
||ΣN ||2F

∣∣b0]
where Σk is the sample covariance matrix of [x1, x2]′ condi-
tioned on bk, ||·||2F denotes the square of the Frobenius norm,
which in this case is equal to the sum of squared eigenvalues
of the matrix, and N is the retirement stage. Many other cost
metrics are available and can be used interchangeably this
metric in our method.

Consider the example roadmap pictured in Fig. 2. The
points represent roadmap vertices and the lines represent
edges. The starting belief has the robot beginning at the
leftmost vertex, with probability 1. The desired goal is
the rightmost vertex. The beacon is represented by the red
square. Fig. 2(a)-(c) show the covariance estimates along the
graph paths chosen by M1, M2, and M3, respectively. When
close to a beacon, a measurement may have the effect of
splitting a uni-modal probability distribution into a multi-
modal one. This is demonstrated in Fig. 1(a), picturing a
final belief from a sample path simulation using the M2

optimal path. However, taking a path near to the beacon,
but sufficiently far to minimize the nonlinear effects of the
observation avoids this difficulty, e.g., Fig. 1(b). In fact, M3

recognizes this during the planning process and decides to
(nominally) use the path pictured in Fig. 2(b). This improves
performance of µ3, σ

2
3 = (3.471, 4.054) versus µ1, σ

2
1 =

(4.046, 6.605) and µ2, σ
2
2 = (4.428, 18.065), where µi, σ

2
i

are the mean and variance of the costs of the sample path

simulations using the policy specified by Mi.
A larger example is shown in Fig. 3(a)-(b). These exam-

ples highlight the same problem with nonlinearities close
to beacons as the small example. For the environment
of Fig. 3 (a), we have, µ3, σ

2
3 = (4.921, 14.092) versus

µ1, σ
2
1 = (5.186, 18.029) and µ2, σ

2
2 = (6.166, 42.275).

Note that not only is the mean lower for M3, using M2

will also result in a higher variance, i.e., the cost along that
path with vary more with respect to different sequences of
observations.

For the environment of Fig. 3 (b), the M2 nominal path
through the graph (the path closest to the beacons) is, in
fact, optimal. This is reflected by the similarity between
µ2 and µ3, with µ2, σ

2
2 = (2.749, 4.278) versus µ3, σ

2
3 =

(2.695, 3.306) as compared to µ1, σ
2
1 = (3.473, 6.568). The

mean for M3 is slightly lower, due to the fact that the policy
produced is a true belief-feedback policy. For different belief
stages, e.g., belief states with means centered on different
sides of a vertex, the policy may choose to take different
graph paths. This greater amount of freedom allows the robot
to reduce the cost, slightly in this case.

Consider the example environment shown in Fig. 3(c), an
environment with obstacles. The start configuration is in the
lower left corner, and the goal is on the far right. We assume
collisions prevent the robot from moving forward, and this
causes the Gaussian approximation of belief to be even less
useful. In this environment, we evaluate policies not only
based on µi and σi, but also on the probability of failure pfail

i

that corresponds to the goal not being achieved in 200 stages.
We will discuss two cases with varying levels of process
noise.

For both cases, the path through the graph chosen by
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M1 and M2 is the one that weaves through the two narrow
passages in the workspace. In the case with very little process
noise, M3 chooses the same nominal path. For this example
we have µ3, σ

2
3 = (1.984, 1.910), pfail

3 = 0, as opposed
to µ2, σ

2
2 = (0.868, 0.199) but with pfail

2 = 0.225. These
results can be explained by M3 attempting to move the robot
between the obstacles, but when the policy becomes more
uncertain of being able to navigate the passage it is able
to take an alternate route. These alternate routes are more
uncertain so the average uncertainty increases. However,
M2 fails frequently, but when it succeeds the results are
good. One would expect similar mean and variance for M3

on the sample paths that successfully navigate between the
obstacles.

When we increase the amount of process noise, M3

recognizes that it is frequently unable to navigate the first
narrow passage, and attempting to do so typically causes the
uncertainty to increase before taking an alternate route. Thus,
M3 nominally chooses the lower path around the first set of
obstacles, then moves up to the middle route to take the
second narrow passage, which is closer to the beacons. This
results in µ3, σ

2
3 = (0.848, 0.206), pfail

3 = 0.088, as opposed
to µ2, σ

2
2 = (0.881, 0.370), pfail

2 = 0.203. The penalty for
the robot failing to reach its target can also be increased as
a design decision, causing M3 to nominally take the lower
path through the entire graph to the goal.

VI. CONCLUSION

In this paper, we proposed a method to find minimum
uncertainty paths for mobile robots using a POMDP value
function approximation method. We discussed a general ap-
proach to generating belief-feedback policies using switched
policies with fixed modes, and applied this method mobile
robot navigation localizing with beacons. We demonstrated
the performance of our method in simulation.

Our method excels, primarily, by considering observations
besides the ML contingency, which required a parameteriza-
tion of the belief that was more faithful to the true pdf. This
allowed us to model nonlinear distortion to the belief, which
is encountered in regions near beacons and around obstacles
in the environment. Finally, the plan delivered is a true belief-
feedback policy, meaning that the policy uses a different
strategy from different beliefs, even if the projection of the
two beliefs onto the configuration space is nearly identical.

Our proposed techniques can be generalized to find min-
imum uncertainty plans for robot systems with more com-
plicated configuration spaces and non-Gaussian process and
observation models, or to minimize cost objectives other
than uncertainty. However, these systems may require other
heuristics (rather than a workspace roadmap) to generate
policies to explore the belief space. Developing these tech-
niques for a general robot system is an interesting future
direction for this work.

Although other techniques that optimize based on ap-
proximation techniques less faithful to the true POMDP
may be faster, our method has demonstrated that it can
generate a policy that improves system performance in a

reasonable amount of time. As computing becomes faster,
smaller, more parallel, and less expensive, this difference in
planning times will become less significant in comparison to
the performance gains that can be achieved on the physical
robot system.
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