
  

  

Abstract— A controller, based on integral nested sliding 
modes and super-twisting algorithm, is proposed for n-link 
robotic manipulator tracking problem. This controller has the 
robustness of nested sliding modes against matched and no 
matched perturbations, the capability of integral sliding modes 
to reduce the sliding functions gains, and the softness of control 
signals of super-twisting algorithm. The performance of the 
proposed algorithm is compared with integral nested sliding 
mode control via simulation. For this purpose, the application 
of both controllers in a two-link planar robot manipulator is 
presented. 

I. INTRODUCTION 

HE usual objective in robotic manipulators control is to 
command a desired response for the motion of its end 

effector. In order to design the controller, the kinematic or 
dynamic model of the manipulator must be obtained. Several 
dynamic model-based controllers have been designed to 
solve the robotic manipulator trajectory control problem as 
Computed Torque [1], Lyapunov Stability [2] and Passivity 
[2]. Common assumptions for the aforementioned strategies 
are that the model of the manipulator is completely known 
and the plant is not perturbed. Usually, these conditions are 
not fulfilled for practical implementations. 

Hence, the robustness of the controller to uncertainties 
and disturbances is fundamental to successfully solve the 
control objective. In [3]-[4] adaptive controllers were 
designed based in dynamic model of the manipulator. The 
neural control approach was studied in [5], where a 
controller composed of a linear feedback part and a neural 
control part was proposed. A fuzzy controller that ensures 
robust and global stability is proposed in [6], where a fuzzy 
control is obtained by blending nonlinear sub-controls 
designed for each fuzzy set and obtained via Lyapunov’s 
direct method.  

Among robust control methodologies for robotic 
manipulators, Sliding Mode Control (SMC) [7]-[10] is one 
of the most effective approaches because its robustness to 
matched perturbations. In addition, SMC is obtained from a 
simple procedure, which impacts in a low computational 
cost of a real implementation. However, standard SMC is 
not robust against unmatched disturbances. 
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In this work we design a controller on the basis of 
Nested Sliding Mode (NSM) [8], Integral Sliding Mode 
(ISM) and Super-Twisting algorithm [9] in order to achieve 
robustness to matched and unmatched perturbations, and 
ensure output tracking in a robotic manipulator. This 
Integral Nested Super-Twisting (INST) algorithm can 
guarantee the robustness of the system throughout the entire 
response starting from the initial time instance and reduce 
the sliding functions gains in comparison with NSM. In 
addition, the control signals of the proposed controller are 
smoother than in Integral Nested Sliding Mode Control 
(INSMC) [10], which presents high-frequency components 
in its control signal. 
   The structure of the document is defined as follows. First, 
the dynamics of an n-link robotic manipulator and its 
structural properties are formulated. Then, an INST 
algorithm for robotic manipulators is designed. The 
simulation results are obtained applying the proposed 
controller in a two-link planar robotic manipulator. In 
addition, a comparison between INST algorithm and 
INSMC is presented to verify the improvement in the 
performance of the proposed control strategy. Finally, some 
conclusions are given in section V. 

II. PROBLEM FORMULATION 

   Consider a non perturbed n-joint robotic manipulator 
system described by the following model: 

 ( )   ( , )   ( )  M q q C q q q g q τ+ + =  (1) 

where ( )q t  is an n×1 vector of joint angular positions, τ is 
the n×1 vector of applied joint torque, ( )M q is the n×n 

manipulator inertia matrix, ( ),C q q  is the n×1 vector of 

centripetal and Coriolis torques and ( )g q  is the n×1 vector 
of gravitational torques. This model has the following 
important properties: 

1) ( )M q  is a symmetric positive definite matrix for all 
nq ∈ℜ . 

2) There exists a unique matrix ( ),C q q  such that 

( ) 2 ( , )M q C q q−  is skew symmetric. 

Defining 1y q= , 2y q=  as the state variables and 
adding a perturbation term 1 2( , , )λ y y t  due to external 
disturbances, parameters variation and model uncertainties, 
we obtain the following state-space representation 
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 ( , )  ( )   ( , , )λ
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y y
y f y y b y u y y t

, (2) 

where 1y  is the output of the system and u τ=  is the vector 
of the torques applied to the joints of the robot, 2 1 2( , )f y y  
and 2 1( )b y  are continuous vector functions. 

Throughout the development of the controller we will 
use the following assumptions: 

A1) The unmatched 1( , )u y tλ  and matched 

1 2( , , )m y y tλ  perturbation terms, which will be defined later, 
are bounded by known positive scalar functions: 

1 1 1

1 2 2 1 2

( , ) ( , )

( , , ) ( , , )
u

m

y t y t

y y t y y t

λ β
λ β

<

<
 

A2) The sign function can be approximated by the 
sigmoid function as shown by the following limit: 

( ) ( )lim ,
ε

ε
→∞

=sigm S sign S  

Figure 1 shows the approximation for various values of ε , 
which defines the slope of the sigmoid function for every s . 
The sigmoid function used in this work is 

( ) ( ), tanhε ε=sigm s s  

 
Fig. 1. Sigmoid function for various values of parameter ε. 

 
A3) [ ]2 1( )rank b y n= , where n  denotes the degrees of 

freedom of the manipulator. 

 Let 1 ( )refy t  be a twice differentiable function, but with 
unknown derivatives, which represents the desired trajectory 
of the joint positions vector. The considered problem is to 
design an Integral Nested Super-Twisting Algorithm that 
ensures output trajectory tracking in presence of the 
perturbations of the system due to external disturbances, 
parameters variation and model uncertainties. 

III. INST ALGORITHM FOR ROBOTIC MANIPULATORS 

Let 1 ( )refy t  be a twice differentiable function, but with 
unknown derivatives, and define the output tracking error as  

 1 1 1 ( )refe y y t= − . (3) 

Then, its derivative yields 
 1 2 1( , )ue y y tλ= +  (4) 

where 1( , )u y tλ  is the unmatched term defined by the 
following equality 

 1 1( , )u refy t yλ = − . (5) 

Defining the pseudo-sliding function 1 ∈ℜns  for the first 
block (4) as 

 1 1 1s e z= + , 1 1(0) (0)z e= −  (6) 

where 1z  is the integral variable that will be defined later, 

the dynamics of 1s  can be obtained of the form 

 1 2 1 1( , )us y z y tλ= + + . (7) 

Considering 2y  as virtual control in (7), we propose  

 2 2,0 2,1ref ref refy y y= +  (8) 

where 2,0refy  is the nominal part of the control and 2,1refy  
is the control which will be designed to reject the 
perturbation term [7]. To obtain 2y  and replace it in (7) we 
must define the error variable and the sliding function for 
the second block as 

 2 2 2 2 2 2 2 2, , (0) (0),= − = + = −refe y y s e z z e  (9) 

with 2z  as the integral variable. From the equation (9) we 
obtain 

 2 2 2 2refy s y z= + − . (10) 

Then, using (8) and (10), the first transformed block (7) 
becomes as  

 1 2 2 2,0 2,1 1ref ref us s z y y z λ= − + + + + . (11) 

Now, choosing 1z  of the form 

 1 2 2 2,0( )refz s z y= − − +  (12) 

with the initial condition 1 1(0) (0)z e= − , and defining 

2,0refy  as follows 

 2,0 1 1refy c e= −  (13) 

where 1c 0> , the dynamics for 1z  and 1s  are represented 
as 

 
1 2 2,0

1 2,1

 ref

ref u

z e y
s y λ

= − −
= +

. (14) 

The second part 2,1refy  of the virtual control is selected of 
the form 

 2,1 1 1 1( )refy k sigm sε= −  (15) 
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where 1 0>k . 

Proceeding with the second block, its dynamics can be 
obtained by differentiating (9) along the trajectories of the 
system (2) as: 

 2 2 1 2 2 1 2 2( , ) ( ) ref ms f y y b y u y z λ= + − + +  (16) 

where 2refy  is defined as 

 
{ }

2 1 1 2,1 1 2

1 11 1 1 1 tanh ²( ) ... 1 tanh ²( )

ε

ε ε

= − −

= − −
ref ref

n

y k Py c y

P diag s s
 (17) 

with 1 11 1... T
ns s s= ⎡ ⎤⎣ ⎦ , and the matched perturbation 

term mλ  is given by 

 ( )1 1 1 1 2( , , )λ ε λ λ= − + +m uc k P y y t . (18) 

Designing 0 1u = u +u  we obtain 

2 2 1 2 2 1 0 2 1 1 2 2( , ) ( ) ( ) ref ms f y y b y u b y u y z λ= + + − + +  (19) 

and we choose 2z  as follows 

 2 2 1 2 2 1 0 2( , ) ( ) refz f y y b y u y= − − +  (20) 

with 
 2 2(0) (0)z e= −  (21) 

to ensure sliding mode occurrence from initial instance. 
Then, choosing 

 ( )1
0 2 1 2 1 2 2 2 2( ) ( , ) refu b y f y y y c e−= − + −  (22) 

where 2c 0>  and using (20), the equation (19) is reduced to 

 2 2 1 1( ) ms b y u λ= + . (23) 
To induce sliding mode in (23) we design the second 

part 1u of the control law using the super-twisting algorithm 
as 

 
( )

( )

1
1 2 1 2

2

( ) σ μ

μ

−= − +⎡ ⎤⎣ ⎦
= −Σ

u b y Nsign s

sign s
 (24) 

where { }21 2,...,ρ ρ= nN diag s s  with [ ]2 21 2= T
ns s s , 

and σ , ρ , Σ  are designing parameters. Using (13), (15), 

(22) and (24), the dynamics of the variables 1s  and 2s  are 
derived as follows 

 
( )

1 1 1 1

2 2 2

 ( )

 ρ

ε λ

σ μ λ

= − +

= − + +
u

m

s k sigm s

s s sign s
 (25) 

while the tracking errors, 1e  and 2e , dynamics are obtained 
from (4), (8)-(10), (13), and (22), respectively, of the form  

 1 1 1 2 2,1

2 2 2 2 1 1

 

 ( ) .

λ
λ

= − + + +

= − + +
ref u

m

e c e e y

e c e b y u
 (26) 

Now, establishing the conditions for the super-twisting 
algorithm as 

 

( )

2 1 2 2

2

1 , ( , , )2
5 42 ,
2 2

y y t s ρρ β α

ασ ασ α σ
σ α

= =

+> Σ >
−

, (27) 

and the following set of conditions, for the part of the 
controller based in INSM, as 

 
1

1

1

, 1 0
1

, 0u u u

k

d s d

β δ
δ

λ

> > >
−

≤ >
 (28) 

we can enunciate a theorem as follows: 
Theorem 1. If the assumptions A1), A2) and A3) hold, 

the conditions (29) and (30) are satisfied, and the control 
law 

( )
( )

1
2 1 2 1 2 2 2 2 2 2

2

( ) ( ( , ) )refu b y f y y y c e s sign s
sign s

ρσ μ
μ

−= − + − − +
= −Σ

is constructed; then a solution of the error dynamics (28) is 
asymptotically stable. 

Proof: 
Defining a candidate Lyapunov function [11] for the 

dynamics of 2s  as 

 ( )2 2
TV s P= Ψ Ψ  (29) 

where 

 

1 2
2 2 2

2

( ) ,

41 .
2 2

T s sign s s

P
σ σ

σ

⎡ ⎤Ψ = ⎣ ⎦
⎡ ⎤Σ + −

= ⎢ ⎥−⎣ ⎦

 

It is demonstrated in [11] that the derivative of (29) is given 
by 

 

[ ]

2 11 2 1 2
2 2

2

2

1 2

1

2
2 1

2 , 2
2 2

T Tm

T T

V Q q
s s

Q

q q

λ

σ σσ
σ

σ σ σ

= − Ψ Ψ + Ψ

⎡ ⎤Σ + −
= ⎢ ⎥−⎣ ⎦

⎡ ⎤⎛ ⎞ −= Σ + = −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 

and that 2V  is negative definite under conditions (27). So, 
we can conclude that 2s  converges to zero in finite time.  

Proceeding with first block - dynamics of 1s - we can 
define a candidate Lyapunov function as 

 1
1 1 12

TV s s= . (30) 

The derivative of (30) is of the form 

 ( )1 1 1 1 1( )ε λ= − +T
uV s k sigm s . 

It is demonstrated in [10] that 1s  converges to a vicinity of 
zero bounded by 
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1

2ln

2

δ
δ

ε

−⎛ ⎞
⎜ ⎟
⎝ ⎠Ω = . 

and that 1s  converges to zero in finite time if A1, A2 and 
condition (28) hold. Therefore, from (14) and (23) we obtain 

 
2,1

1 1( )
ref u

m

y

b y u

λ
λ

= −

= −
. 

Hence the system (26) can be reformulated as 

 1 1 1 2

2 2 2

 
 

= − +
= −

e c e e
e c e

 (31) 

and, if 1 0c >  and 2 0c > , a solution of (31) tends 
asymptotically to zero, provided then  

1lim ( ) 0
t

e t
→∞

= . 

and Theorem 1 is proved. 

IV. SIMULATIONS 

The controller designed in this work was applied to a 
two-link planar robot manipulator with perturbations due to 
external disturbances, model uncertainties, parameters 
variation and the load that the robot manipulates. Also, the 
INSMC [10] defined as 

1 1
2 1 2 1 2 2 2 2 1 2( ) ( ( , ) ) ( ) ( )− −= − + − −ref b bu b y f y y y c e K b y sign s

where 

{ }
2 1 2,1 2

1 11 1 1 tanh ²( ) ... 1 tanh ²( )
ε

ε ε
= − −

= − −
ref a ref a

n

y K P y c y
P diag s s

 

was simulated for comparison purposes. 
The following terms define the state-space model, as in 

(2), of the robot manipulator with two degrees of freedom 

 ( ) ( )
( )

11
2 1 2 1 1 2

2 1 1

( , ) ,
( )

f y y M y N y y
b y M y

−−= −
=

, 

 ( ) 11 12
1

21 22

m m
M y

m m
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, 

 ( )
( ) ( ) ( )( )
( ) ( )( )

2
1 2 2 2 2 2

1 2 2
1 2 2 2 1

- 2 1 2 - 2
,

1 sin 2

L L M y y y
N y y

L L M y y

⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟
⎝ ⎠

, 

 ( )( )
( )

2
22 2 2

12 21 22 1 2 2 1

2
11 1 1 2 12 22

cos 2

2

m L M
m m m L L M y

m L M M m m

=
= = +

= + + −

, 

where 1 2 1, ,L L M  and 2M  are the lengths and masses of the 
first and second links, respectively. The values of these 
manipulator parameters used in both simulations were 

1 2 1 210 ,   1 ,   1 ,   1 M kg M kg L m L m= = = = ; 
To fulfil all the design conditions, the control parameters for 
INST algorithm were adjusted to 

1 1 2 15,   6, 80,   15,   10,   6σ ε= Σ = = = = =K c c , 
and the control parameters for INSMC were set to  

7,   35,   4,   4,   20ε= = = = =a b a bK K c c . 
The perturbations terms used in both simulations are 

    4 5cos(2 )
2sin(.5 ) 5 3sin( )u m

t
t t

λ λ⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦

, 

and the references for the angular joint positions are  

[ ]1 2sin(2 ) 2 3cos( )= + T
refy t t . 

The results obtained from simulation can be evaluated 
based on figures 2-11. The tracking response for joint 1 is 
shown in Fig. 2 and Fig. 3, for INST and INSMC 
respectively. It can be noted that the objective of control is 
fulfilled for both cases. However, the performance for INST 
is less oscillatory than INSMC. This can be seen too in the 
tracking response for joint 2 in Fig. 4 and Fig. 5. The 
performance of the controller is satisfactory, since the 
proposed algorithm rejects the external disturbances, model 
uncertainties and parameters variations in the model.  
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Fig. 2. Tracking response for joint 2 (INST). 

 
Fig. 3. Tracking response for joint 2 (INSMC). 
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Fig. 4. Tracking response for joint 1(INST). 

 

 
Fig. 5. Tracking response for joint 1(INSMC). 
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Fig. 6. Tracking errors (INST). 
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Fig. 7. Zoom in to the tracking errors (INST). 
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Fig. 8. Phase portrait of the tracking errors (INST). 

 

0 1 2 3 4 5 6 7 8 9 10
-2000

-1500

-1000

-500

0

500

1000

Time (s)

C
on

tro
l v

ar
ia

bl
es

 (N
m

)

 u1 (--) u2 (solid)

 
Fig. 9. Input controls for joint 1 and joint 2 (INST). 
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Fig. 10. Input controls for joint 1 (INSMC). 

 

 
Fig. 11. Input controls for joint 2 (INSMC). 

 
The convergence of the tracking errors is shown in Fig. 

6, and in more detail in Fig. 7, where the errors converge to 
a neighbourhood of zero. This also can be observed in Fig. 8 
where the phase portrait of the tracking errors is shown. 
These figures also allow us to observe that the settling time 
for the error variables is low. 

The control variables, for INST algorithm, can be 
observed in Fig. 9. The control variables for INSMC are 
depicted in Fig. 10 and Fig. 11. Clearly, the control variables 
for the proposed controller are smoother than INSMC. 
Moreover, the magnitude of the control signals is lower. 

 

V. CONCLUSIONS 

An Integral Nested Super-Twisting (INST) algorithm 
for rigid robotic manipulators is designed, by the 
combination of nested, integral and super-twisting SMC 
concepts.  

The proposed algorithm is robust against matched and 
no matched perturbations due to external disturbances, 

model uncertainties and parameters variations; and the 
inclusion of the Super-Twisting algorithm in the control law 
results in smooth control variables. This is a good feature, 
since high frequency components in the control signals may 
causes undesirable effects on the plant when a real-time 
implementation of the controller is developed. 

The INST controller demonstrates a satisfactory 
performance in output tracking problem of robotic 
manipulators, moreover it obtains a reduced steady tracking 
error in comparison with standard SMC.  
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