
  

너무  

Abstract—Recently, many researchers have carried out 
works on audio-video integration. It is worth exploring because 
service robots are supposed to interact with human beings using 
both visual and auditory sensors. In this paper, we propose an 
audio-video method for sound source localization in reverberant 
environment. Using visual information from a vision camera, we 
could train our audio localizer to distinguish a real source from 
fake sources and improved the performance of audio localizer in 
reverberant environment. 

I. INTRODUCTION 
UMAN beings have several sensors to detect and 
understand real world where they live. They look by 

their eyes, hear by their ears, feel by their skin, taste by their 
tongues and smell by their noses. All these sensors are 
working together for our brain to imagine our surroundings 
vividly. Since each sensor has its advantages and also 
disadvantages, a combination of two or more sensors 
performs much more efficiently. Since eyes and ears are the 
most important sensors of human sensors, many researchers 
have tried to design a system where audition and vision are 
working together. Lathoud et al. provided a corpus of 
audio-visual data, called “AV16.3” [1]. It was recorded in a 
meeting room where 3 cameras and two 8-microphone arrays 
are equipped. It targeted researches on audio-visual speaker 
tracking. Busso et al. developed a smart room which can 
identify the active speaker and participants in a casual 
meeting situation [2]. They used 4 CCD cameras, an 
omni-directional camera and 16 microphones distributed in 
the room. They showed that complementary modalities could 
increase the smart room’s performance of identification and 
localization. With intelligent meeting room, mobile service 
robot is also a prospective research area of audio-video fusion. 
Lim et al. developed a mobile robot which can track multiple 
people and select the current speaker of them by sound source 
localization and face detection [3]. Their robot could 
associate sound event with vision event and make 
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audio-video information fusion using particle filter. Nakadai 
et al. designed a robot audition system for humanoid SIG [4]. 
SIG also associated auditory stream and visual stream to 
tracking people when they are speaking and moving. 

In this paper, we give another example of audio-video 
complementary system which is a little different from 
previous audio-video system in that it is not simply fusing 
two modalities but focusing on improving auditory 
performance with a help of vision. One of the most difficult 
problems of sound source localization is that the performance 
is easily messed up in the echoic environments. In a closed 
room, each wall, ceiling and floor cause to reflect sound 
waves. They make many fake sound sources and impede 
proper sound source localization. As you know, the reflected 
sound is almost the same as the original sound contrary to the 
other interfering noises. It is why reverberant condition is 
worse than noisy condition. 

In this paper, we propose a method of sound source 
localization in a reverberant environment using visual 
information. Our motivation is simple and natural. If we see 
some sound sources by our eyes, we can learn how to 
distinguish real sound sources from virtual sound sources, 
and finally adapt our ears to an echoic room. In the proposed 
method, we train a neural network as a verifier which would 
validate the result of the sound source localization in each 
frame. When a person is captured by a camera, this verifier is 
learning and when he speaks out of vision’s view, it would 
improve the performance of sound source localization. 

In the next section, we present our basic algorithm of sound 
source localization system. In the section III, we propose 
features and talk about how to verify them and how to train a 
neural network using visual information. In the section IV, we 
provide experimental results of the proposed method and in 
the final section, we conclude our method and mention about 
further work. 

II. SOUND SOURCE LOCALIZATION 

A. Microphone Array 
We’ve used a 3-microphone array system for sound source 

localization. We pursue a small and light system with smart 
and strong performance. Our microphone array is within 
7.5cm radius circle. We put 3 microphones on the vertices of 
equilateral triangle in the free field. We assume no obstacle 
from a sound source to each microphone, which means no 
HRTF (head related transfer function) is required and makes 
the localization very simple and its performance very even 
with no angle dependency. But its disadvantage is that the 
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smallest number of microphones which doesn’t suffer from 
the front-back confusion is three, while a system using HRTF 
needs just two. Fig. 1 shows our triangular microphone array. 

 
B. Angle-TDOA Map 
From our assumption of no HRTF, we can easily calculate 

TDOAs (time delay of arrival) between microphones by 
geometric relations. TDOA is determined by the position of 
sound source and actually it depends on almost only the 
direction of sound source [5].  

We can survey the relation between the azimuth angle of 
sound source and TDOAs which is given by (1). 
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, where soundv  is the speed of sound in the air. 
 
After surveying, we can get a TDOA map of source angle. 

We call it Angle-TDOA Map and denote it as (2). 
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Angle-TDOA Map is the essential part of TDOA-based 

sound source localization method. Its inverse map tells us 
where the sound source from measured TDOAs. 

 

C. Cross-Angle-Correlation function 
Generally, TDOAs are measured by cross-correlation or its 

variations such as GCC (generalized cross-correlation) and 
CPSP (cross-power spectrum phase) [6]. In our localization 
system, we use cross-correlation in a unique way. We 
intermingle cross-correlation with Angle-TDOA Map. We 
call the intermingled result Cross-Angle-Correlation 

function. 
Cross-correlation is to compare two signals crossing all 

possible time delays. By Cross-Angle-Correlation, we want 
to compare two signals crossing all possible source angles. It 
is possible by composite function of cross-correlation and 
Angle-TDOA Map. 
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, where LCr , CRr , and RLr are cross-correlation functions. 
 
We integrate these functions of (3) in the way of (4) and 

call the integrated result Cross-Angle-Correlation function. 
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Fig. 2 shows an example of Cross-Angle-Correlation 

function. While Cross-Correlation gives us time information 
of the detected sound, Cross-Angle-Correlation gives us 
spatial information of the detected sound.  

 
As you can see from Fig. 2, Cross-Angle-Correlation 

function has high values at directions from which sound is 
coming but it is somewhat blurred depending on the temporal 
characteristic of sound. Also, it is most likely that in a very 
short time interval, only one sound source among multiple 
sound sources is dominant to the other sources and can be 
detected by the original Cross-Angle-Correlation[7]. 
Therefore, instead of Cross-Angle-Correlation, we take a 
Gaussian function located on the maximum point of 

 
Fig. 2. An example of Cross-Angle-Correlation (bottom)  

and the power of signal (upper) 
※ 1. Simulated signal : angle 0 / sampling rate 16kHz 

2. Frame : shift 15msec / length 20msec 

 
Fig. 1. Arrangement of 3-microphone array 
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Cross-Angle-Correlation function for each frame.  
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III. REAL SOURCE VERIFICATION 

A. Visual Information: Face Detection 
We want our sound source localization system to learn how 

to distinguish real sources from fake sources. Vision camera 
can give us useful information. We assumed that we are 
interested in only human voice and determined to use face 
detection module to get visual information. It is a good 
approach because other sound from a dog, TV or a vacuum 
cleaner is considered as interfering noise in the situation of 
human-machine interaction. 

 

 

Intelligent Media Lab, Postech provided us face detection 
module [8]. It can process about 23 frames per second and tell 
us the number of detected faces and their rectangular regions 
in the picture. From it, we can know the angles of which 
people are standing [9]. 

 

B. Sound Feature Extraction 
We want to make a feature that could characterize the 

direct-path sound and reflected sound. We took notice of 
Precedence effect [10]. It is a well-known phenomenon which 
explains how human being improves his sound source 
localization in a reverberant environment. According to 
Precedence effect, in the human auditory system, lagging 
spatial cues (such as interaural time/level difference) are 
suppressed if its leading signal arrived 25-35msec earlier than 
it and its signal is not 10dB stronger than its leading signal. It 
is a simple but effective solution. 

There are two criteria of Precedence effect relevant with 
the time and power. It says that a reverberant condition can be 
handled enough well using just a rule relevant with time and 
power. For this reason, we made a delta-power filter which 
has a time parameterγ  and a power parameterδ . 
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, where pΔ is a power increment, and
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transformed Cross-Angle-Correlation by Gaussian function 
at the nth frame. 

 
A delta-power filter plays a role of a temporal memory for
( )ˆ ,R n θ

 
at increasing-power frames. If current power 

increment is larger than power parameter δ , ( )ˆ ,R n θ
 
is 

recorded on our filter and it fades out with γ -rate as frame 
goes on. With our delta-power filter, we can extract a feature 
in the way of (7). 

 

( ) ( ) ( ), ,
,

ˆ, ,n f n R nγ δ γ δ
θ γ δ

ζ θ θ⎧ ⎫= ⋅⎨ ⎬
⎩ ⎭

∑
                 

 

(7) 

 
We constituted a feature vector using (7) with various

( , )γ δ  combinations. Its dimension is about 10-20 depending 
on the experimental environment. This feature can indicate 
how much the spatial cues of current frame conform to the 
previous spatial cues of increasing-power frames. The spatial 
cues not conforming will be suppressed similarly as 
Precedence effect. 

The reason we tried to watch the increasing-power frames 
is that it is likely to come from the direct-path sound because 
reflected sound might lose its power and be difficult to make a 
striking power increment.  

 
Fig. 4. An example of face detection result 

 
Fig. 3. Transformed image of Fig.2 by Gaussian function 
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C. Verifier and its Training 
We took a neural network classifier as our verifier. Our 

training space is very simple – accept or reject. Therefore we 
minimized the structure of our network as one hidden layer of 
one node. For its training, we could get target values from the 
detected face position through vision camera. If the estimated 
source angle from audio conforms to the face position from 
video, the feature of that frame is trained valid and otherwise, 
invalid. The training procedure is given as follows.  

  
Verifier Training Procedure 
For each audio frame, 
1. Gather the information from audio and video 

A. Localize sound source from audio signal 
B. Read current face positions from the face 

detection module 
2. Make a feature vector 

A. Calculate a set of delta-power filters for various 
time and power parameters 

B. Make a feature vector from delta-power filters 

3. If no face is detected, no training 
Otherwise, do on-line training 
A. Decide the target value 

If audio conforms video, set valid 
Otherwise, set invalid 

B. Save the feature vector and target value  
C. Train the verifier with recent M-frame training 

data 
4. Verify the validity of the audio result of current frame 
 

IV. SIMULATION AND EXPERIMENT 

A. Simulation 
To test our proposed method, we simulated three 

reverberant environments by Roomsim program in MATLAB 
[11]. The selected rooms and its conditions are listed in Table 
I and Fig 6 shows the virtual room configuration used in 
Roomsim. 

 

 

 
Actually, Roomsim generates impulse responses for 

one-microphone or two-microphone arrays but our 
microphone-array has 3-microphones. Therefore, we 
generated an impulse response for each microphone and 
bound them together as an impulse response for a 
3-microphone array.  

The simulation scenario is shown in Fig. 7. Our vision 
system has its coverage of about ±20 degrees in its FOV 
(Field Of View). At the beginning, a source is detected at 5 
degrees by both audio and video sensors. At this time, our 
verifier is trained. Next, sources at 60, 150, and -120 degrees 
are sequentially detected by only audio sensor. At this time, 

 
 

Fig. 6. Configuration of virtual room in Roomsim 

TABLE I 
SIMULATED ROOM CONDITIONS 

Room RT60 
(sec) 

Absorption Rate of Wall 
125 
Hz 

250 
Hz 

500 
Hz 

1 
kHz 

2 
kHz 

4 
kHz 

Quiet- 
room 0.07 0.9 0.9 0.9 0.9 0.9 0.9 

Acoustic- 
plaster 0.62 0.10 0.20 0.50 0.60 0.70 0.70 

Plywood 1.12 0.60 0.30 0.10 0.10 0.10 0.10 
 

 
Fig. 5. An example of delta-power filters 

and extracted features of Fig.3 
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our verifier is tested. 

 
Fig. 8 shows an example of our simulation, that is, the 

simulation result in the Plywood room environment. Fig. 8-(a) 
shows how sound source localization in a reverberant 
condition is confused. Although a large number of results are 
still distributed around the directions of real sources, the 
results from fake sources are too many for us to make 
decisions clearly on where is the sound source. Fig. 8-(b) 
shows a desired result of verification. Frames with error less 
than 5 degrees are passed and others are blocked. Fig. 8-(c) 
shows the result of our verification method. It shows a good 
performance comparing to the desired result. Only from 0 to 
200 frames, it blocks almost frames, but it is because the 
verifier went through an adaptation time at the beginning.  

 
All simulation results are listed in Table II. “Hit” means 

verification accords with the desired and “Miss” means 
verification discords with the desired at a frame. In detail, 
there are two kinds of Miss, the one is when an invalid frame 
is passed and the other is when a valid frame is blocked by our 
verifier. According to the simulation results, our method 
shows a good performance. Its hit rate is higher than 85% and 
up to 92.44%. An interesting point is that its performance 
doesn’t depend on the acoustic conditions. This upholds that 

our approach is reasonable and successful. 

 
B. Experiments 
Our algorithm was implemented on a robot system which 

consists of a robot head we made and a Peoplebot platform of 
MobileRobots Inc. Its head has 2 vision cameras (but we used 
just one camera) and 3 microphones positioned on the 
vertices of a triangle within a circle of 7.5cm radius.  

 
In addition to simulations, we performed a real experiment. 

The scenario of our experiment is similar to the simulation 
except the difference in the source angles. At first, a person 
speaks at 0 degree. At this time, the vision camera can detect 
him and our verifier is trained. Next, he moves to 90, 180, and 
-90 degrees sequentially and says words. While he moves, he 
is out of the field of camera view and the verifier refines the 
result from the audio sensor. This experiment was done in a 
large hall of 19.5x9.1m2 where RT60 was measured about 
0.6sec. 

 
  Its result is given by Fig. 11 and Table II. Fig. 11-(a) 

shows how rough the acoustic condition is in the hall and Fig. 
11-(c) shows that the proposed method can effectively handle 
the fake sources in a reverberant environment. According to 
the Table II, its hit rate in a real hall is 87.77% as good as 

 

 
 

Fig. 10. Real Experiment in a Large Hall 

    
 

Fig. 9. Robot platform 

 
TABLE II 

SIMULATION & EXPERIMENT RESULTS 

Room Hit [frames] Miss [frames] 
Pass invalid Block valid 

Quiet- 
room 

1313 
(88.48%) 

89 
(6.00%) 

82 
(5.53%) 

Acoustic- 
plaster 

1385 
(86.51%) 

88 
(5.50%) 

128 
(8.00%) 

Plywood 1480 
(92.44%) 

28 
(1.75%) 

93 
(5.81%) 

Real-Hall 2197 
(87.77%) 

195 
(7.79%) 

111 
(4.43%) 

 
(a)Localization from audio 

 
(b)Desired result of verification 

 
(c)Localization result after verification 

 
Fig. 8. Simulation Result in Plywood room 

 
 

Fig. 7. Simulation Scenario 
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those of simulation results. 
 

 

V. CONCLUSION 
By this work, we tried to develop a multi-modal system in 

which audio sensors and video sensors cooperate with each 
other. Especially, we want audio sensors to perform better 
using the information from video sensors. We designed a 
verifying algorithm which can adapt audio sensors to the 
reverberant environments by a visual learning procedure. We 
showed its effectiveness through simple simulations and a 
real experiment. 

For a future work, we are going to merge the proposed 
method into an audio-video speaker tracking algorithm and 
implement it on our robot platform. 
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(a)Localization from audio 

 
(b)Desired result of verification 

 
(c)Localization result after verification 

 
Fig. 11. Real Experiment Result in a Hall 
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