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Abstract— In this paper, we investigated the locomotion of a
quadruped robot whose front and rear bodies are connected by
a roll joint. The legs of the robot are controlled by nonlinear
oscillators with phase resetting. Based on numerical simulations,
we showed that the robot produces various gait patterns
through dynamical interactions among the robot mechanical
system, oscillator control system, and environment and estab-
lishes gait transition induced by the change of the roll joint
stiffness. In addition, we demonstrated that a hysteresis with
respect to gait pattern occurs during the gait transition similarly
to humans and animals, and we examined the mechanisms of
the hysteresis from a dynamic viewpoint.

I. INTRODUCTION

Humans and animals create adaptive walking in diverse
environments by cooperatively and skillfully manipulating
their complicated and redundant musculoskeletal systems.
They walk on level ground, up or down slopes, fast or
slowly, and turn left or right. Some animals crawl, walk
quadrupedally or bipedally, run, hop, leap, and jump, depend-
ing on the situation. One objective in robotics is to reproduce
such locomotor behaviors and elucidate the mechanisms in
motion generation and control. Furthermore, exploiting such
findings in various fields is crucial, which have attracted
many researchers to develop various legged robots and
control systems.

As a characteristic of adaptive walking behaviors, humans
and animals change their gait pattern depending on loco-
motion speed, e.g., walk and run for humans and walk,
trot, and gallop for quadrupeds. In addition, experimental
studies have shown that they normally show a hysteresis
with respect to gait pattern, where the gait transition occurs
at different locomotion speeds depending on the direction of
speed change [9], [14], [16], [20], [25], [26], [32]. Although
gait transition has been investigated from various viewpoints
such as mechanics, energetics, kinematics, and kinetics [10],
[15], [25], [32], the evidence concerning the determinant for
the transition is still inconclusive.

In our previous works, we developed a locomotion control
system for legged robots using nonlinear oscillators with
phase resetting [1], [2], [30], inspired by the functional roles
in central pattern generators (CPGs) that have great contri-
bution to generating adaptive locomotion [13], [24], [27],
as used to develop locomotion control systems for various

legged robots [17], [18]. Our control system generates the
robot motions based on rhythm information using oscillator
phases and regulates them by resetting the phases based
on touch sensor signals, which modulates locomotor rhythm
and phase. Numerical simulations and hardware experiments
showed the effectiveness of improving robustness against
disturbances and environmental variations [1], [2]. In addi-
tion, mathematical analyses based on simple walking models
demonstrated the usefulness of our locomotion control sys-
tem [3], [4]. Despite so simple control system that it just uses
the joint angle and touch sensory information, the robots es-
tablish adaptive behavior similar to humans and animals. For
example, a biped robot autonomously changes the gait cycle
duration depending on the environmental situations [1] and
modulates duty factors and phase relationship between the
legs during turning behavior [2] as humans [8]. A quadruped
robot changes the gait pattern from walk to trot depending on
locomotion speed [30]. These adaptive behaviors result from
dynamic interactions among the robot mechanical system,
oscillator control system, and environment. Although the
control system is simple, such obtained adaptabilities are
notable.

In this paper, we improved the locomotion control system,
and based on numerical simulations we examined dynamic
characteristics of locomotion in a quadruped robot whose
front and rear bodies are connected by a roll joint. We
show that the robot creates various gait patterns through
dynamical interactions among the robot mechanical system,
oscillator control system, and environment and establishes
gait transition between the walk (crawl) and trot patterns
induced by the change of the roll joint stiffness, where
a hysteresis appears similar to humans and animals. In
addition, we investigated the mechanisms of the hysteresis
from a dynamic viewpoint.

II. QUADRUPED ROBOT

Figure 1 shows a schematic model of the quadruped robot
composed of two bodies and four legs. Each leg consists of
two links connected by pitch joints. The bodies are connected
with the other by a roll joint (waist joint). Each joint is
manipulated by a motor. A touch sensor is attached to the
tip of each leg.
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Fig. 1. Schematic model of quadruped robot

TABLE I

PHYSICAL PARAMETERS OF QUADRUPED ROBOT

Link Parameter Value
Body Mass [kg] 1.0

Length [cm] 10.0
Width [cm] 10.0

Upper Leg Mass [kg] 0.1
Length [cm] 8.0

Lower Leg Mass [kg] 0.1
Length [cm] 8.0

The legs are enumerated from Leg 1 to 4. The leg joints are
numbered Joints 1 and 2. To describe the robot configuration,
we introduce angles θi

j (i = 1, . . . , 4, j = 1, 2) and θw

for the rotation angles of Joint j of Leg i and waist joint,
respectively.

For the numerical simulation, we derived the equation of
motion of the robot model using Lagrangian equations and
solved the equation of motion using the fourth order Runge-
Kutta method with step size of 0.1 ms. Table I shows the
physical parameters.

III. LOCOMOTION CONTROL SYSTEM

The locomotion control system consists of a motion gen-
erator and a motion controller (Fig. 2A). The motion gen-
erator is composed of a gait generator, a rhythm generator,
and a trajectory generator, which generates the desired leg
motions based on the desired locomotion speed and gait
pattern. The gait generator creates basic gait pattern by the
phase relationship between the leg movements. The rhythm
generator produces basic locomotor rhythm and phase for the
leg motions using four oscillators (Leg 1 · · · 4 oscillators)
and touch sensory information (Fig. 2B). The trajectory
generator creates the desired leg joint trajectories based on
the oscillator phases. The motion controller consists of motor
controllers that manipulate the joint angles by motors based
on the desired trajectories.

A. Trajectory generator

In this control system, we use four oscillators (Leg 1 · · · 4
oscillators). Leg i oscillator (i = 1, . . . , 4) generates the
desired joint motions of Leg i. First, we introduce φi (i =
1, . . . , 4) for the phase of Leg i oscillator.
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Fig. 2. Locomotion control system (A: architecture of control system, B:
rhythm generator with four oscillators)

The desired motions of the leg joints are designed by
the desired trajectory of the leg tip relative to the body
in the pitch plane, which consists of the swing and stance
phases (Fig. 3). The former is composed of a simple closed
curve that includes an anterior extreme position (AEP) and
a posterior extreme position (PEP). It starts from point PEP
and continues until the leg tip touches the ground. The latter
consists of a straight line from the landing position (LP)
to point PEP, meaning that this trajectory depends on the
timing of foot contact in each step cycle. Distance between
points AEP and PEP is given by D. Nominal duty factor
β is given by the ratio between the stance phase and step
cycle durations when the leg tip touches the ground at AEP
(LP = AEP). These two desired trajectories provide desired
motion θ̂i

j (i = 1, . . . , 4, j = 1, 2) of Joint j of Leg i by
the function of phase φi of Leg i oscillator, where we used
φi = 0 at point PEP and φi = φAEP(= 2π(1 − β)) at point
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Fig. 3. Desired leg trajectories composed of swing and stance phases.
When leg tip lands on ground, trajectory changes from swing to stance
phase. When leg tip reaches point PEP, trajectory moves into swing phase.
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Fig. 4. Footprint diagram for walk (crawl), trot, and pace pattern, where
right and left legs move out of phase in each body (forelegs in red and
hindlegs in blue)

AEP.

B. Gait generator

The desired motions of the leg joints, designed by the
oscillator phases, are the same among the legs. Therefore, the
gait pattern is determined by the phase difference between
the oscillators, which is given by matrix Δij (0 ≤ Δij < 2π)
as follows;

Δij = φi − φj , i, j = 1, . . . , 4 (1)

where Δij = −Δji, Δij = Δik + Δkj , and Δii = 0
(i, j, k = 1, . . . , 4) are satisfied. Therefore, the gait pattern
is determined by three parameters such as [ Δ12, Δ13, Δ34 ].
For example, [ Δ12, Δ13, Δ34 ] = [ π, π/2, π ] is satisfied for
the walk (crawl) pattern, [ Δ12, Δ13, Δ34 ] = [ π, π, π ] is
satisfied for the trot pattern, and [ Δ12, Δ13, Δ34 ] = [ π, 0, π ]
is satisfied for the pace pattern (Fig. 4).

The gait generator produces the basic relationship between
the oscillators Δij based on the desired gait pattern.

C. Rhythm generator

The rhythm generator creates the basic rhythm for the
locomotor behavior by using four oscillators (Leg 1 · · · 4
oscillators) that produce rhythmic behaviors by following
phase dynamics

φ̇i = ω + g1i + g2i, i = 1, . . . , 4 (2)

where ω is the basic oscillator frequency that uses the same
value among the oscillators, g1i (i = 1, . . . , 4) is the function
regarding the gait pattern shown below, and g2i (i = 1, . . . , 4)
is the function arising from phase resetting by touch sensor
signals given below.

The locomotion speed is determined by the distance be-
tween points AEP and PEP, step cycle, and duty factor. To
achieve desired locomotion speed v, swing phase duration
Tsw is determined by

Tsw =
1 − β

β

D

v
(3)

In that case, oscillator frequency ω is given by

ω = 2π
1 − β

Tsw
(4)

Note that they are satisfied regardless of gait pattern.
1) Gait pattern control: Function g1i in (2) manipulates

the phase difference between the oscillators regarding the
gait pattern, given by

g1i = −
4∑

j=1

Kij sin(φi − φj − Δij), i = 1, . . . , 4 (5)

where Kij (i, j = 1, . . . , 4) is gain constant (Kij ≥ 0).
When we use a large value for Kij , φi − φj = Δij will be
satisfied. These interactions among the oscillators are shown
by the blue arrows in Fig. 2B.

2) Phase and rhythm modulation by phase resetting:
Functional roles of phase resetting to modulate motor com-
mands based on sensory information in generation of adap-
tive walking has been investigated [6], [23] and the resetting
mechanism has been used for legged robots [1], [2], [22],
[23], [30]. To create adaptive locomotor behavior through
dynamic interactions among the robot mechanical system,
oscillator control system, and environment, we modulated
the locomotor phase and rhythm by phase resetting based
on touch sensor signals. Function g2i in (2) corresponds to
this regulation. When the tip of Leg i lands on the ground,
phase φi of Leg i oscillator is reset to φAEP from φi

land at the
landing (i = 1, . . . , 4). Therefore, functions g2i is written by

g2i = (φAEP − φi
land)δ(t − tiland), i = 1, . . . , 4 (6)

where tiland is the time when the tip of Leg i touches the
ground (i = 1, 2) and δ(·) denotes Dirac’s delta function.
Note that touch sensor signals not only modulate the loco-
motion phase and rhythm but also switch the leg movements
from the swing to the stance phase, as described above.
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D. Motor controller

The motor controller manipulates the joint motions. For
the leg joints, it produces input torque ui

j (i = 1, . . . , 4,
j = 1, 2) for Joint j of Leg i based on desired joint trajectory
θ̂i

j generated by phase φi of Leg i oscillator, which is given
by

ui
j = −κi

j{θi
j − θ̂i

j(φi)} − σi
j θ̇

i
j , i = 1, . . . , 4, j = 1, 2 (7)

where κi
j and σi

j (i = 1, . . . , 4, j = 1, 2) are gain constants
and we used adequately large value for them to achieve the
desired motions. In contrast, it controls the waist joint with
the desired angle maintained at zero like a spring and damper
system. Therefore, input torque uw for the waist joint is given
by

uw = −κwθw − σwθ̇w (8)

where κw and σw are gain constants.

IV. NUMERICAL SIMULATION

A. Conditions for gait pattern

During the locomotion, the gait pattern is determined
by the phase relationship between the oscillators, which is
achieved by the interactions among the oscillators (5) and
the phase regulation by phase resetting (6). When we use
neither (5) nor (6), the phase relationship remains the initial
state and the gait pattern never changes. When all elements of
matrix Δij are determined based on the desired gait pattern
and large values are used for gain constants Kij in (5), the
robot will establish the desired gait pattern when the gait
pattern is stable. In contrast, when small values are used
for gain constants Kij , the robot can produce different gait
pattern from the desired due to the phase regulation by phase
resetting (6).

In this paper, we focused on the gait pattern, where the
right and left legs move out of phase in each body. That is,
we used

Δ12 = Δ34 = π (9)

and a large value for gain constants K12, K21, K34, and
K43. In contrast, we used zero for the other gain constants
Kij , which means that the phase relationship between the
forelegs and hindlegs, such as Δ13, has no constraint and
will be determined through locomotion dynamics. Under
these conditions, the gait pattern is determined by one phase
relationship, such as Δ13. For example, the robot establishes
the walk (crawl) pattern when Δ13 = π/2, the trot pattern
when Δ13 = π, and the pace pattern when Δ13 = 0 (Fig. 4).

The gait generator produces desired phase relationship
(9), which means two constraints. During the locomotion
in numerical simulations, the gait pattern determined by one
parameter, such as Δ13, will be obtained through dynamic
interactions among the robot mechanical system, oscillator
control system, and environment.

B. Change of waist joint stiffness

During animal locomotion, not only locomotion speed but
also physical conditions such as carrying weights affect the
gait transition [10]. Experimental studies in a quadruped
robot demonstrated that the waist joint stiffness has much
contribution to the gait transition [31]. In this paper, we
focused on the examination of the roles of the waist joint
stiffness in our quadruped robot model. We changed gain
constants κw and σw in (8) using parameter f as follows;

κw = κ0(2πf)2, σw = 2κ0ζ0(2πf) (10)

where κ0 and ζ0 are set to 0.05 and 1.0, respectively [5].

C. Hysteresis in gait transition

To investigate the effects of the waist joint stiffness in
locomotor behavior, we gradually increased or decreased pa-
rameter f in (10) during locomotion. We examined what gait
pattern, represented by phase difference Δ13, emerges and
how the gait pattern changes through locomotion dynamics.

Figure 5 shows the result, where we used the following
parameters: D = 6.6 cm, β = 0.75, K12 = K21 = K34 =
K43 = 10.0, and v = 0.22 m/s. Figure 5A displays the
phase difference between right foreleg and right hindleg Δ13,
plotted when the right hindleg touches the ground. Figure 5B
shows the footprint diagram during the locomotion (also see
the supplemental movie for the generated locomotor behav-
iors). When we used high joint stiffness, phase difference
Δ13 is near π/2, implying that the walk (crawl) pattern is
created. In contrast, when we used low joint stiffness, phase
difference Δ13 is close to π, meaning that the trot pattern is
produced. When the joint stiffness changes, phase difference
Δ13 varies from π/2 to π or from π to π/2, indicating that
the gait pattern changes between the walk (crawl) and trot
patterns. In particular, when we increased the joint stiffness,
the trot pattern changed to the walk (crawl) pattern around
f = 4.5. On the other hand, when we decreased the joint
stiffness, the walk (crawl) pattern changed to the trot pattern
around f = 2.7. This means that the gait transition occurs
at different joint stiffnesses depending on the direction of
stiffness change, that is, a hysteresis with respect to gait
pattern appears.

D. Stability characteristics in hysteresis

The hysteresis in gait transition obtained in the previous
section suggests the coexistence of two different gait patterns
over a range of the waist joint stiffness. That is, two different
attractors exist in the same condition [7]. Since the gait
pattern was determined by one parameter, such as Δ13, as
explained in Section IV-A, stability analysis related to Δ13

shows their existence. Therefore, to investigate the dynamic
characteristics in the hysteresis, we calculated the return map
of the phase difference Δ13 using f = 4.0 in (10).

Figure 6 shows the results, where we plotted the relation-
ship between the phase difference Δ13n for nth step and
the phase difference Δ13n+5 for n + 5th step. This figure
shows that the return map intersects with the diagonal line
(Δ13n+5 = Δ13n) at three different points. In particular,
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the return map intersects with the diagonal line near π/2
and π, and the slopes of the return map at the intersections
near π/2 and π are 0.22 and 0.53, respectively. That is, the
eigenvalues of the periodic locomotion dynamics are 0.74
near π/2 and 0.88 near π, which are less than 1 and larger
than −1. This means that there are two different attractors;
one is near Δ13 = π/2 and implies that stable walk (crawl)
pattern exists, and the other is close to Δ13 = π and indicates
that stable trot pattern also exists. These results conclude that
two different attractors exist in this physical condition of the
waist joint stiffness (f = 4.0) and the obtained hysteresis is
attributed to this dynamic property.

V. CONCLUSION

In this paper, we investigated the locomotion of a
quadruped robot driven by nonlinear oscillators with phase
resetting based on numerical simulations. We showed that
it changes the gait pattern depending on the waist joint
stiffness and shows a hysteresis with respect to gait pattern
during the gait transition similar to humans and animals
despite so simple and different mechanical and control
systems. Many simulation studies for the locomotion of
humans and animals have demonstrated that a hysteresis
occurs during the gait transition through dynamic interactions
among the musculoskeletal system, nervous system, and
environment [19], [28], [29]. The investigation of hysteresis
is expected to provide the clues to clarify the mechanisms
in motion generation and control strategy.
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In robotics, the changes in gait patterns induced by the
changes in physical conditions have also been investigated
using various legged robots. For example, the walking be-
havior of passive dynamic walking [21] leads to a chaotic
motion through consecutive period-doubling bifurcations as
the slope angle increases, calculated based on the simple
mathematical model [11], [12]. The gait of a multilegged
modular robot, whose bodies are connected by yow joints,
changes from straight to meandering walk through Hopf
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bifurcation by changing the yaw joint stiffness [5]. In contrast
to humans and animals, a hysteresis does not appear during
these gait transitions of the robot systems. It is because
different attractors corresponding to gait patterns do not exist
in the same condition and only one gait pattern is stable.

The hysteresis with respect to gait pattern obtained in this
paper was produced through dynamical interactions among
the robot mechanical system, oscillator control system, and
environment. A hysteresis is a typical characteristic for non-
linear dynamical systems. Toward understanding the transi-
tion mechanisms in locomotion dynamics, the mathematical
modeling to explain the essence and the verification using
hardware experiments in the real world should be conducted
in future studies.
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