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Abstract— Terrain modeling remains a challenging yet key
component for the deployment of ground robots to the field.
The difficulty arrives from the variability of terrain shapes,
sparseness of the data, and high degree uncertainty often
encountered in large, unstructured environments. This paper
presents significant advances to data fusion for stochastic
processes modeling spatial data, demonstrated in large-scale
terrain modeling tasks. We explore dependent Gaussian pro-
cesses to provide a multi-resolution representation of space
and associated uncertainties, while integrating sensors from
different modalities. Experiments performed on multiple multi-
modal datasets (3D laser scans and GPS) demonstrate the
approach for terrains of about 5 km2.

I. INTRODUCTION

Large-scale terrain mapping is an essential problem in
a wide range of applications, from space exploration to
mining and more. For autonomous robots to function in
such high-value applications, an efficient, flexible and high-
fidelity representation of space is critical. The key challenges
in realizing this are that of dealing with the problems of
uncertainty, incompleteness and handling highly unstructured
terrain. Uncertainty and incompleteness are virtually ubiq-
uitous in robotics as sensor capabilities are limited. The
problem is magnified in a field robotics scenario due to
sheer scale of the application (for instance, a mining or space
exploration scenario).

State-of-the-art surface mapping methods employ repre-
sentations based on tesselations. This process, however, does
not have a statistically sound way of incorporating and
managing uncertainty. The assumption of statistically inde-
pendent data is a further limitation of many works that have
used these approaches. While there are several interpolation
techniques known, the independence assumption can lead to
simplistic (simple averaging like) techniques that result in
inaccurate modeling of the terrain. In [1], a Gaussian process
based terrain modeling approach is proposed that provides
a multi-resolution representation of the terrain, incorporates
uncertainty in a statistically sound way and handles spatially
correlated data in an appropriate manner.

Typically, sensory data is incomplete due to the presence
of entities that occlude the sensors view. This is compounded
by the fact that every sensor has a limited perceptual ca-
pability i.e. limited range and limited applicability. Thus,
most large-scale modeling experiments would ideally require
multiple sensory snapshots and multiple sensors to obtain
a more complete model. These sensors may have different
characteristics (range, resolution and accuracy). The problem
is in fusing these multiple and multi-modal sensory datasets -
this is the theme of the paper. Terrain data can be obtained us-
ing numerous sensors including 3D laser scanners and GPS.
3D laser scanners provide dense and accurate data whereas a

GPS based survey typically comprises of a relatively sparse
set of well chosen points of interest. Experiments reported
in this work use datasets obtained from both these sensors
to develop an integrated picture of the terrain.

The contribution of this work is a novel approach to
fusing multiple, multi-modal datasets to obtain a compre-
hensive model of the terrain under consideration. The fusion
technique is generic and applicable as a general Gaussian
process fusion methodology. The fusion approach is based
on the underlying principles of Gaussian processes and is
thus well founded. Experiments conducted using large/real
datasets obtained from GPS and laser scanner based surveys
in real application scenarios (mining) are reported in support
of the proposed approach.

II. RELATED WORK

State-of-the-art representations used in applications such
as mining, space exploration and other field robotics sce-
narios as well as in geospatial engineering are typically
limited to elevation maps ([2] and [3]), triangulated irregular
networks (TIN’s) ([4] and [5]), contour models and their
variants or combinations ([6] and [7]). Each of these methods
have their own strengths and preferred application domains.
The former two are more popular in robotics. All of these
representations, in their native form, do not handle spatially
correlated data effectively and do not have a statistically
correct way of incorporating and managing uncertainty.

Gaussian processes [8] (GP’s) are powerful non-parametric
learning techniques that can handle these issues. They pro-
duce a scalable multi-resolution model of the data under
consideration. They yield a continuous domain representation
of the data and hence can be sampled at any desired
resolution. They incorporate and handle uncertainty in a
statistically sound way and represent spatially correlated
data in an appropriate manner. They model and use the
spatial correlation of the given data to estimate the values
for other unknown points of interest. In an estimation sense,
GP’s provide the best linear unbiased estimate [9] based on
the underlying stochastic model of the spatial correlation
between the data points. They basically perform an inter-
polation methodology similar to Kriging [10] – a standard
interpolation technique used in the mining industry. GP’s
thus handle both uncertainty and incompleteness effectively.

Recently, Gaussian processes have been applied in the
context of terrain modeling - see [11] and [1]. The former
work is based on using a non-stationary equivalent of a
stationary squared exponential covariance function [12] and
incorporates kernel adaptation techniques to handle smooth
surfaces as well as inherent (and characteristic) surface
discontinuities. It introduces the idea of a “hyper-GP”, using
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a stationary kernel, to predict the most probable length scale
parameters to suit the local structure. It also proposes to
model space as an ensemble of GP’s to reduce computational
complexity. The latter work [1], proposes the use of non-
stationary kernels (neural network) to model large-scale
discontinuous spatial data. It shows that using a suitable
non-stationary kernel can directly result in modeling local
structure and smoothness. It also proposes a local approxi-
mation methodology to address scalability issues relating to
the application of this approach to large-scale datasets. This
approximation technique is based on an efficient hierarchical
representation of the data. It compares performances of GP’s
based on stationary (squared exponential) and non-stationary
(neural network) kernels as well as several other standard in-
terpolation methods applicable to elevation maps and TIN’s,
in the context of large-scale terrain modeling. It proves that
the non-stationary neural-network GP is a very competitive
modeling option in comparison to standard interpolation
methods (including polynomial interpolation methods [13])
for dense and/or relatively flat data and significantly better
in the case of sparse and/or complex data.

Works from the graphics community that relate to this
work include [13] and [14]. The former develops an ap-
proach to obtain a smooth manifold surface for a point-
set through local polynomial approximations using a moving
least squares approach. The latter work develops an approach
to estimating the uncertainty of a point as the likelihood of
a surface fitting the point-set, passing through the point in
consideration. This too uses a local least squares approach.
Local weighting of points is done using Gaussian influence
functions. GP’s use the idea that any finite set of random
variables is jointly Gaussian distributed towards estimation of
the quantity of interest as well as its uncertainty. This is done
by conditioning the Gaussian distribution. The estimation
results in a weighted combination of the point-set or a local
neighborhood of the points. The uncertainty is computed
in a similar light to [14]; it looks at the local support
for a query point (points in the neighborhood and their
correlation to the query point). Additionally, GP’s provide
a non-parametric (data is neither lost nor modified), multi-
resolution (sample a continuous distribution at any desired
resolution), flexible (different kernels may be used, not just
Gaussian) representation which can be learnt through a
Bayesian learning framework that automatically handles the
model (parameter) selection problem effectively.

Data fusion in the context of Gaussian processes is re-
quired by the presence of multiple, multi-modal, incomplete
and uncertain datasets of the entity being modeled. Two
recent works that attempt this problem include [15] and [16].
The former bears a “hierarchical learning” flavor to it in
that it demonstrates how a GP can be used to model an
expensive process by (a) modeling a GP on an approximate
or cheap process and (b) using the many input-output data
from the approximate process and the few samples available
of the expensive one together in order to learn a GP for the
expensive process. The latter work attempts to generalize
arbitrary transformations on GP priors through linear trans-

formations. It hints at how this framework could be used
to introduce heteroscedasticity and how information from
different sources could be fused. However, specifics on how
the fusion can actually be performed are beyond the scope
of the work.

This paper builds on the work presented in [1]. It extends
the GP terrain modeling approach to handle multiple multi-
modal datasets by developing a data fusion methodology. It
treats the data fusion problem as one of (a) modeling each
data set using a GP and (b) formulating the data fusion prob-
lem as a conditional estimation problem wherein estimation
of a GP is improved using information from other GP’s
- through learning auto-covariances and cross-covariances
between them. This idea has been inspired by recent machine
learning contributions in GP modeling ([17] and [18]), the
latter approach being based on [19]. In kriging terminology,
this idea is akin to co-kriging ([20]). This formalism is used
to demonstrate data fusion of multiple multi-modal terrain
datasets by casting the problem as a conditional estimation
problem given multiple dependent GP’s. It is also used to
demonstrate simultaneous modeling of both elevation and
color of terrain data. Experiments are performed on large-
scale terrain data obtained from real mining scenarios. The
scale of the experiments represents a first of its kind in the
context of the topic. Towards ensuring the scalability of the
approach, approximation methods have been used in both the
learning and inference stages. The contribution of this work
is thus a novel method of fusing multiple multi-modal large-
scale datasets (terrain data, in this case) into an integrated
model using GP’s. Note that this work develops only the
fusion methodology. The registration of individual datasets
to a common reference frame is assumed given for this work.

III. APPROACH

A. Gaussian processes

Gaussian processes ([8]) (GP’s) provide a powerful frame-
work for learning models of spatially correlated and un-
certain data. GP regression provides a robust means of
estimation and interpolation of elevation information and
can handle incomplete sensor data effectively. GP’s are non-
parametric approaches in that they do not specify an explicit
functional model between the input and output. They may be
thought of as a Gaussian probability distribution in function
space and are characterized by a mean function m(x) and
the covariance function k(x,x′) where

m(x) = E[f(x)], (1)
k(x,x′) = E[(f(x) − m(x))(f(x′) − m(x′))], (2)

such that the GP is written as

f(x) ∼ GP(m(x), k(x,x′)). (3)

The mean and covariance functions together specify a
distribution over functions. In the context of the problem
at hand, each x ≡ (x, y) and f(x) ≡ z of the given data.
The covariance function models the relationship between the
random variables corresponding to the given data. Although
not necessary, the mean function m(x) may be assumed to

1216



be zero by scaling the data appropriately such that it has
an empirical mean of zero. There are numerous covariance
functions (kernels) that can be used to model the spatial
variation between the data points. The most popular kernel
is the squared-exponential kernel given as

k(x,x′) = exp

(
−1

2
(x− x′)T Σ(x− x′)

)
(4)

where k is the covariance function or kernel; Σ =[
lx 0
0 ly

]−2
is the length-scale matrix, a measure of how

quickly the modeled function changes in the directions x
and y. The set of parameters lx , ly are referred to as the
kernel hyperparameters. Gaussian process regression uses
the idea that for a GP, any finite subset of random vari-
ables is jointly Gaussian distributed. Thus, any finite set of
training (evaluation) data and test data are jointly Gaussian
distributed. This idea, shown in Equation 5, yields the
standard GP regression Equations 6 and 7 which respectively
represent the posterior/expected-value/mean-value and the
variance/uncertainty in the prediction.[

z
f∗

]
∼ N

(
0 ,

[
K(X,X) + σ2

nI K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
(5)

f̄∗ = K(X∗, X)[K(X,X) + σ2
nI]−1z. (6)

cov(f∗) = K(X∗, X∗)−
K(X∗, X)[K(X,X) + σ2

nI]−1K(X,X∗).

(7)
For n training points and n∗ test points, K(X,X∗) denotes

the n × n∗ matrix of covariances evaluated at all pairs of
training and test points. The terms K(X,X), K(X∗, X∗) and
K(X∗, X) can be defined likewise. σ2

n represents the noise
variance in the observed data, it is learnt along with the other
GP hyperparameters. The function values (f∗) corresponding
to the test locations (X∗) given the training inputs X , training
outputs z and the covariance function (kernel) are given by
Equation 6 and their uncertainties, by Equation 7. A detailed
report on Gaussian process modeling of large-scale terrain
data (individual datasets which may be from any sensor) is
presented in [1].

B. Multi-output / Dependent Gaussian processes

Multi-output Gaussian processes (MOGP’s or multi-task
GP’s) extend the GP approach outlined before to handle
multiple dependent outputs simultaneously. The main ad-
vantage of this technique is that the model exploits not
only the spatial correlation of data corresponding to one
output but also those of the other outputs. This improves
GP regression/prediction. Two works in this area that have
inspired this work include [17] and [18]. In [17], the shared
covariance function is learnt as a product of individual
covariance functions and an inter-task similarity matrix. The
work [18] uses the process convolution approach [19] to
derive closed form solutions to auto and cross covariance
functions for two dependent GP’s. The approach presented in

this paper integrates both of these ideas to allow for increased
flexibility in learning dependent GP models.

The objective is to model terrain data obtained as (x, y, z)
coordinates from multiple and multi-modal datasets. Given
the GP models of these datasets (as obtained above), the
objective would then be to estimate an elevation map at
any chosen resolution and any chosen region of the terrain
under consideration. This can be achieved by performing a
conditional estimation given the different datasets / their GP
models. In the context of GP’s, this amounts to conditional
GP regression. The problem can be specified as

E[ f∗(X∗) ] , var(f∗(X∗)) | Xi , zi , GPi , X∗ , (8)

where Xi = (xi, yi) and zi = zi are the given datasets, GPi

is the respective set of hyperparameters and i varies from 1
to the number of datasets available, henceforth denoted by
nt. This estimation will need to take into account both the
spatial correlation within each dataset as well as the spatial
correlation across datasets. Correlations between GP’s can
be modeled using auto-covariances and cross-covariances
between them. By performing GP regression that takes
this information into account, conditional estimation can be
achieved and this results in a fused elevation estimate given
the individual datasets.

The process convolution approach ([19]) is a generic
methodology which formulates a GP as a white noise source
convolved with a smoothing kernel. Modeling the GP then
amounts to modeling the hyperparameters of the smoothing
kernel. The advantage of formulating GP’s this way is that
it readily allows the GP to be extended to model more
complex scenarios, one such scenario being the multi-output
or dependent GP’s (DGP’s). The following formulation is
based on [19] and [18].

Given that one single terrain is being modeled, a single
Gaussian white noise process (denoted by X(s) and repre-
senting (x, y) information of the datasets) is chosen as the
underlying latent process. This process, when convolved with
different smoothing kernel (denoted by ki) produce different
datasets. For the purpose of this paper, the smoothing kernels
are assumed to be squared exponential kernel taking the
form shown in Equation 4. The result of this convolution
is denoted by Ui(s). The observed data is assumed to be
noisy and thus an additive white Gaussian noise N(0, σ2

i )
(denoted by Wi(s)) is added to each process convolution
output to yield the final observations (denoted by Yi(s) and
representing the z information of the datasets). Equation 10
shows the mathematical formulation of the process convolu-
tion approach,

Yi(s) = Ui(s) + Wi(s), (9)

Ui(s) =

∫
s

ki(s− λ)X(λ) dλ. (10)

The fusion GP regression will take into account data
from the individual datasets as well as the auto and cross
covariances between the respective GP’s that model them.
The auto-covariances and cross-covariances can be computed
through a convolution integral as the kernel correlation, as
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demonstrated in [18]. For two GP’s N(0, ki) and N(0, kj)
with length scale matrices Σi and Σj respectively, the auto
and cross-covariances are specified by Equation 11

KU
ij (x, x′) =

Kf ∗ |Σi + Σj |−
1
2 exp

(
− 1

2 (x− x′)T Σij(x− x′)
)
,
(11)

where Σij = Σi(Σi + Σj)
−1Σj = Σj(Σi + Σj)

−1Σi. KU
ii

represents the auto-covariance of the ith data set with itself
and KU

ij represents the cross covariance between the ith and
jth datasets, without considering the noise components of
the datasets. The Kf term in Equation 11 is inspired from
[17]. This term models the task similarity between individual
tasks. Incorporating it in the auto and cross covariances
provides additional flexibility to the dependent GP modeling
process. It is a symmetric matrix of size nt ∗ nt and is learnt
along with the other GP hyperparameters. The covariance
matrix term K(X,X) in Equations 6 and 7 is then specified
as

K =


KY

11 KY
12 . . . KY

1nt

KY
21 . . . . . .

...
...

...
...

...
KY

nt 1 . . . . . . KY
nt nt

 , (12)

where

KY
ii = KU

ii + σ2
i I (13)

KY
ij = KU

ij (14)

KY
ii represents the auto-covariance of the ith data set with

itself and KY
ij represents the cross covariance between the ith

and jth datasets. They also take the noise components of the
datasets into consideration and are obtained as in Equations
13 and 14 respectively. K(X∗, X) denotes the covariance
between the test data and the sets of input data (from the
individual datasets) that are used for GP regression. It is
given by

K(X∗, X) =

[KU
i1(X∗, X1) , KU

i1(X∗, X2) , . . . KU
i nt(X∗, Xnt)]

(15)
where i is the output to be predicted - it can vary from 1 to
nt. K(X∗, X∗) represents the a priori covariance of the test
points and is specified by

K(X∗, X∗) = KU
ii (X∗, X∗) + σ2

i . (16)

The noise term is added assuming the test points are as
noisy as the data points of the ith GP. Finally, z represents
the sets of z data corresponding to the training data taken
from each of the datasets,

z = [z1 , z2 , . . . , znt]. (17)

The hyperparameters of the system that need to be learnt
include nt ∗ (nt+ 1)/2 task similarity values, nt ∗ 2 length
scale values of the individual kernels and nt noise values
correponding to the noise in the observed datasets. In the
context of modeling a single terrain using multiple and multi-
modal datasets, for each point, the GP that is spatially closest

to the test point is chosen for performing GP regression. The
regression takes into account spatial correlation with other
datasets as described.

C. GP Learning and scalability considerations

The work [1] demonstrated GP learning and inference for
a single large-scale terrain data set. GP learning is based on
maximizing the marginal likelihood. GP inference is based
on the property of GP’s that any finite set of training and
test points would be jointly Gaussian distributed. Both GP
learning and inference are computationally expensive oper-
ations in that both require matrix inversion. This operation
is of cubic complexity (O(N3) , N being the number of
points in the data set) with respect to the number of points
in consideration.

This paper deals with the data fusion of multiple large-
scale terrain datasets. In [1], an approximate GP inference
method was introduced that was based on a moving-window
/ nearest-neighbor methodology and relied on an efficient
hierarchical representation of the data (a KD-tree was used).
GP inference was based only on the local neighborhood of
points resulting in a reduced complexity (O(m3) ,m << N ,
m being the number of points in the neighborhood of a query
point). This approximation method is also used here and
extended to handle multiple datasets for each GP regression
performed.

The work [1] used uniform sampling to select training
points from the data to be modeled as using the several
hundred-thousand data for learning would be computation-
ally infeasible. In this work, a GP learning approximation
is used that is based on the same nearest-neighbor approx-
imation idea that is used for GP inference. A small set
of training points are identified through uniform sampling.
The KD-tree is then used to select points in each of their
neighborhoods as training points. Thus, “patches” of data
are selected for training. The KD-tree representation of the
available data thus aides in both learning and inference. Once
the training data are selected, GP learning proceeds by using
the maximum marginal likelihood framework detailed in [1]
and using Equation 18.

log p(z|X, θ) = − 1
2z

TK(X,X)−1z
− 1

2 log |K(X,X)| − N
2 log(2π),

(18)
where z (Equation 17) and X represent the sets of data from
the multiple datasets available and N is the total number of
points across the different datasets that are in consideration.
K(X,X) is defined as specified in Equation 12.

The KD-tree based nearest-neighbor GP approximation
method enables GP inference using multiple large datasets.
In order to ensure the scalability of the overall approach, a
block-learning procedure is adopted to learn the GP models.
Instead of learning with all training points at once, this work
uses blocks of points in a sequential marginal likelihood
computation process within the optimization step. The block
size is pre-defined and depends on the computational re-
sources available. The KD-tree based block learning guaran-
tees that multiple large datasets can be handled using even
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limited computing resources. As a result, the GP learning
space complexity remains cubic in the number of points,
however, points being selected in local neighborhoods results
and learning being performed in blocks results in a reduced
time complexity. In experiments conducted (see [21]), The
KDT based block learning was significantly faster than the
uniform sampling based block learning approach to GP
learning, for a given number of points and an approximate
error margin. This was attributed to two reasons - (1) the
KD-tree based point selection is faster than a simple uniform
sampling - because it uses an efficient hierarchical represen-
tation of the data and (2) learning of hyper-parameters for
local neighborhoods is faster than learning them for a widely
spread data set - because the same set of hyperparameters
would fit well with an entire group of data rather than a
single data point.

IV. EXPERIMENTS

The experiments described here demonstrate data fusion
for multiple single and multi-sensor terrain datasets. The
technical report version of this paper [21] additionally de-
scribes experiments that demonstrate the MOGP/DGP con-
cept, demonstrates data fusion of overlapping and non-
overlapping datasets, evaluates the usefulness of the GP
learning approximation and finally demonstrates the data
fusion of multiple single-sensor terrain data sets. In all cases,
the mean squared error (MSE) between the prediction and the
ground truth is used as the performance metric. Datasets are
split into three parts - training, test and evaluation. The first
part is used for learning the GP model, the second part is used
for MSE computation only (it provides the ground truth) and
finally, the first and third parts together (essentially, all data
not in the second part) are used to perform GP regression at
the MSE test points as well as any other query points.

A. Simultaneous elevation and color modeling

Fig. 1. Small section of a single RIEGL laser scan from Mt. Tom Price,
Australia. The data set has 151,990 points with both elevation and color
(RGB) data.

This experiment aims to demonstrate the MOGP idea in
the context of modeling both elevation and color of real
terrain data. The squared exponential kernel was used. A

small section of a RIEGL laser scan taken at Mt. Tom Price
mine is used for this experiment. The dataset has 151990
points spread over 27.75 m X 52.75 m X 11.48 m . This
dataset has both color (RGB) and elevation information for
each point.

Fig. 2. A squared exponential kernel based MOGP being used to
simultaneously model and predict elevation and color (RGB) data at 100,000
test points taken from the Tom price data set (see Figure 1). 2550 points
were used for training each task (elevation, red, green and blue).

Figure 2 demonstrates the ability of the presented approach
to simultaneously model elevation and color or real terrain
data. The RGB and z data of 2550 points were used to
train a four-task MOGP as described in Section III. GP
learning used the KD-tree block learning procedure described
in Section III-C. GP inference used the KD-tree based local
approximation method introduced in [1]. This GP was tested
on 100000 points uniformly selected from the data set.
The test points were different from the training ones and
used exclusively for testing. The MSE between the known
(ground-truth) elevation and color values and those predicted
by the GP are computed. The MSE values obtained were
0.0524 sqm for elevation and 0.0131, 0.0141 and 0.0101
squared units for red, green and blue respectively. Clearly,
these values demonstrate the ability of the MOGP/DGP
formalism to simultaneously model multiple aspects of the
terrain being modeled. Also, it must be noted from Figure
2 that even the shades of grey (see Figure 1) are very
effectively reproduced in the GP output. Note also that the
scalability of the approach is demonstrated in that learning
4 tasks using 2550 points each is akin to learning a single
GP with 10,200 data points. This was learnt in 2.75 hours
using a stochastic (simulated annealing) and gradient-based
(quasi-Newton) optimization, from random starting points.
GP inference for the 100,000 points took just about 12.25
minutes.

B. Fusion of multiple multi-modal datasets

This experiment demonstrates data fusion of multiple
multi-sensor data (RIEGL laser scanner and GPS survey)
acquired from a large mine pit. Three datasets of the same
area and of different characteristics were acquired from Mt.
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Fig. 3. Three multi-sensor datasets (a GPS survey and two laser scans)
overlaid on one another for a clearer picture of the site in consideration.
The points in blue represent Laser scan 1 (over 850,000 points spread over
2146.6 m x 2302.1 m x 464.3 m), the points in red represent the second
laser scan (about 400,000 points spread over 1416.6 m x 2003.4 m x 497.8
m) and finally, the points in green represent the GPS survey data (a sparse
data set consisting of 34,530 points spread over 1437.2 m x 1879.5 m x
380.5 m).

Tom Price mine in Western Australia. The first was a dense
wide area (2146.6 m x 2302.1 m x 464.3 m) RIEGL laser
scan comprising of over 850,000 points. The second was
sparse GPS Survey having only about 34,530 points spread
over 1437.2 m x 1879.5 m x 380.5 m. The third data set was
a dense (about 400,000 points) RIEGL laser scan spread over
a relatively smaller area as compared to the first scan (1416.6
m x 2003.4 m x 497.8 m). Figure 3 depicts the three datasets
overlaid on each other to clarify the overall picture of the
terrain in consideration.

The objective was to demonstrate the benefits of GP
data fusion using these datasets. The sparse GPS data is
first modeled alone, then fused with the first laser data set
and then the pair are fused with the third data set (laser
data). The results of the fusion process are summarized in
Table I. The results indicate the root mean squared error
(RMSE) and average change of uncertainty for a set of
test points from the first data set over successive steps of
the fusion process. Figures 4 and 5 depict the surface map
and uncertainty estimates obtained after fusing the GPS data
with the two laser scanner datasets. As shown in Table I,
the uncertainty decreases with each successive fusion step.
Thus, the required condition for fusion occurs. Further, it
is observed that the RMSE also reduces with each fusion
step. This justifies the benefits of data fusion in such a
context. The uncertainty/RMSE reduction is more significant
when the sparse GPS data is fused with the first dense laser
scan. When the second dense laser scan is also fused, the
gain in information is less than before. This is intuitive
and expected. Note that the experiment here uses test points
selected in patches (200 patches of 50 points), rather than
a simple uniform point sampling. As demonstrated in [1],
this deliberately reduces the influence of nearby points to

observe the robustness of the underlying model in predicting
elevation. The RMSE increases with the size of patches -
this is intuitive and expected. For the same datasets, a simple
uniform sampling of 10,000 test points yielded RMSE values
in the range of about 3m. These values could be further
improved by finding better solutions through the optimization
process.

Fig. 5. Uncertainty (in meters) of the predicted elevation map obtained
from the GP fusion of the GPS data and the two laser scanner datasets.
Fringe areas that are not well supported by the individual datasets observe
high prediction uncertainty.

V. CONCLUSION

This paper demonstrated the use of the multi-output /
dependent Gaussian processes (GP’s) in the context of fus-
ing multiple multi-modal terrain datasets. This was done
by casting the GP data fusion problem as a conditional
estimation using several Dependent GP’s. This formalism
can also be used to demonstrate how color and elevation of
the terrain can be simultaneously modeled using GP’s. Large-
scale experiments using real sensor data (3D data using both
GPS as well as Laser scanners) taken from a mining sce-
nario were used to demonstrate the approach. The approach
presented in the paper has been specifically developed for
large-scale applications - GP approximation methods have
been developed in both learning and inference stages. The
paper demonstrated a generic method of performing GP data
fusion and the experiments validated the approach at a scale
not attempted before in this field.
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(no cases of increase in uncertainty)
GPS data, Laser data set 1 9.45 -0.59

& Laser data set 2 (no cases of increase in uncertainty)

Fig. 4. Output of GP Fusion algorithm applied to the Tom Price datasets (GPS data and the two laser scanner datasets). The test data comprises of 1
million points. The surface map of the output elevation map is depicted in the image.
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