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Abstract— The world we live in is labeled extensively for
the benefit of humans. Yet, to date, robots have made little
use of human readable text as a resource. In this paper we
aim to draw attention to text as a readily available source
of semantic information in robotics by implementing a system
which allows robots to read visible text in natural scene images
and to use this knowledge to interpret the content of a given
scene. The reliable detection and parsing of text in natural scene
images is an active area of research and remains a non-trivial
problem. We extend a commonly adopted approach based on
boosting for the detection and optical character recognition
(OCR) for the parsing of text by a probabilistic error correction
scheme incorporating a sensor-model for our pipeline. In order
to interpret the scene content we introduce a generative model
which explains spotted text in terms of arbitrary search terms.
This allows the robot to estimate the relevance of a given scene
with respect to arbitrary queries such as, for example, whether
it is looking at a bank or a restaurant. We present results from
images recorded by a robot in a busy cityscape.

I. INTRODUCTION

Text, by design, is a rich source of semantic information
which often cannot be inferred otherwise from the current
vantage point, or at all, using our senses alone. Human-
readable text is plentiful in man-made environments. Out-
doors, street signs, bus stops, and shop fronts all provide
good quality text that is rich in information about func-
tion and location. Shop fronts are particularly rich in text
which provides information about the nature of the shop
and is potentially queryable using internet search resources
to determine the shop location. Street signs can provide
important navigational cues. Indoors, where GIS and/or GPS
information may be denied or unavailable, text can provide
similarly vital clues. Oftentimes, objects and places are
labelled directly: key words like “push” or “pull” can be
indicative of doors, areas are marked as “kitchen”, and so
on. However, despite its apparent utility, text has so far been
largely ignored as a source of information for robots. In
this paper we describe an approach to enable autonomous
agents to leverage this valuable and under-exploited resource
to determine the relevance of a given scene with respect to
an arbitrary query. For example, a restaurant might (in the
best case) be indicated by the observed word “restaurant”,
but it may also be indicated by synonyms such as “bistro”
or words that denote the cuisine (“Chinese”, “Thai”) or the
food specialty (“seafood”, “pizza”, “steak”). We describe a
generative probabilistic model which explains spotted text
with respect to a search term and thus enables a robot to
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Fig. 1. A typical example output of our text-spotting pipeline. P-values
indicate the value of the posterior probability p(w|z). See Section II-D for
details.

Fig. 2. The data acquisition robot used in this work. Images were captured
using the Bumblebee camera mounted on a pan-tilt head.

establish a direct connection between a place in a map and
an abstract semantic concept.

The core of our system consists of a text-spotting engine
which robustly detects and parses text in the environment
(see, for example, Figure 1). Despite the long history of
automatic text recognition, the application beyond printed
documents remains an active research problem (e.g. [1]–[4]).
The challenges with wild text include the lack of contrast
between text and its background, the rich diversity of fonts
and character sizes, highly variable horizontal and vertical
alignment of characters and related words, and perspective
distortion due to non fronto-parallel viewing.

The contributions of this work consist of a robotic system
which exploits a valuable but thus far unused navigational
and informational resource using vision and optical character
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recognition (OCR). A generative model is introduced, which
explains the subject of a scene in terms of detected text.
The remainder of this section describes related prior work.
The core components of the text-spotting engine, text de-
tection and OCR are described in Section II. The generative
probabilistic model used to select images relevant to arbitrary
search terms is described in Section III. Experimental results
are presented in Section IV. We conclude in Section V.

A. Related Work

The potential of exploiting human-readable text in robotics
has been recognised by several researchers in the past.
However, to the best of our knowledge no prior art exists
where text-spotting in natural scene images has been imple-
mented and deployed in a robotics context. The use of OCR
with robots is suggested, but not implemented, in [5]–[7].
In [5] a small robot with onboard DSP-based computation
is proposed that would read signs and licence plates. It is
not clear how far this work has progressed. The authors
of [6] discuss OCR and propose its application to robotic
navigation. In [8] a book-manipulation robot uses OCR to
confirm the title of the book to be taken from a shelf. The
authors of [9] describe an indoor mobile robot that performs
OCR, although the extracted text is not utilised. More recent
work has explored the exploitation of direction signs in
robotics. In [10] the authors approach this task using object
recognition techniques predicated upon a prior knowledge
of a set of signs of interest. Signs are recognised by virtue
of the geometry of their constituent parts. Crucially, neither
text detection, parsing nor understanding are brought to bear.
In contrast, our work aims to enable the recognition and
understanding of any text in a scene, which provides for
a much broader spectrum of applications of which sign-
following is but one. No prior knowledge of signs of interest
is assumed.

An important part of our system is the extraction of
text from natural scene images. This is an area of current
research interest (e.g. [1]–[4]). ICDAR1 has organised two
competitions (2003 and 2005) for the robust detection of wild
text based on a standard set of labelled images. The results
are summarised in [11], [12]. Other non-document OCR
applications include detecting text in television streams [13],
licence plate recognition [14]–[16], and assistive devices for
the visually impaired [17], [18].

II. THE TEXT-SPOTTING TOOL CHAIN

At the heart of our system lies a text-spotting engine.
Commonly, this problem is decomposed into stages: the
detection of text in the image, recognition of characters, and
the grouping of characters into coherent units of text (such
as words or sentences). With few exceptions (see, for exam-
ple, [3]) these individual steps are considered independent,
sequential processes and no information is shared between
them. Our text-spotting implementation follows this classical
approach to the problem. The principal elements are:

1International Conference on Document Analysis and Recognition

Fig. 3. Performance of a single boosted classifier after 1,000 rounds
of training using both the training partition of the ICDAR data and the
Weinman data.

1) Text detection. Determine regions of the input image
that are likely to contain text.

2) Layout analysis. Text regions with similar sized char-
acters that are close and aligned, horizontally or verti-
cally, are merged.

3) Optical character recognition (OCR). Convert these
image regions to character strings, typically words.

4) Text filtering and spelling correction. The output from
the OCR stage is very noisy, often containing spurious
characters and many character substitution errors.

A. Detecting Text in Natural Scene Images

The aim of this stage is to efficiently detect instances
of text in a given image. Boosting techniques [19] coupled
with an attentional cascade, introduced in [20], provide a
straightforward means to this end and have a successful
track record in text detection [2], [13], [21]. In this work we
apply GentleBoost [22] with the base classifiers consisting
of decision stumps operating on a set of Haar-like features.
These features are obtained by sliding predefined block
patterns over an image and computing features as functions
of statistics such as mean and variance of each of the
individual blocks.

Chen et al [2] note that image gradient information cap-
tures a distinctive characteristic of text. We follow [21] in
our selection of features and use feature channels based on x-
and y-gradient and gradient magnitude in addition to mean
and variance. We compute 22 features from each of five
feature channels giving a total of 110 feature dimensions
to be considered.

Two independent third-party data sets were employed for
training of our text detector. The first dataset is provided
publicly as part of the ICDAR 2003 challenge on robust
reading and text locating2. It consists of a training and a
test set each comprising 250 hand-labelled images drawn
from indoor and outdoor environments. Since our focus is
on outdoor applications we augmented these data with a
subset of the data used by Weinman [3] comprising 300
images taken in outdoor urban settings and including a higher

2http://algoval.essex.ac.uk/icdar/RobustReading.html
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Fig. 4. Stages of the text-spotting pipeline. (a) the original image, (b) with overlaid detection rectangles for scales 48, 57 and 69 (c) the text likelihood
map, (d) the detected text regions for this scale range.

proportion of natural scene clutter as well as instances of
multiple lines of text per label.

To investigate the efficacy of the features we trained a
single monolithic boosted classifier based on 450 positive
and 2,000 negative examples of text randomly sampled from
a combination of the training partition of the ICDAR data
and the complete Weinman data. The trained classifier was
evaluated using a hold-out set of 996 positive and 38,000
negative data sampled from the same datasets. The classifier
performance on the validation set after 1,000 rounds of train-
ing is presented in Figure 3. The number of training rounds
was set arbitrarily large, designed to guarantee convergence
to a stable validation error. Figure 3 indicates an adequate
separation of the classes.

In order to provide an efficient classification framework
with a suitably low false positive rate we deploy a cascade
of boosted classifiers rather than a single monolithic one. The
training was conducted using text regions randomly sampled
from a combination of the training partition of the ICDAR
data and the complete Weinman data. Each stage of the
cascade was trained using 400 positive and 1,000 negative
examples. The negatives were continuously sampled out of
a pool of 35,000 data. The validation set consisted of 1,046
positive and 5,000 negative examples. The final output of the
cascade yielded a detection rate of 79.4% while only 1.6 out
of a thousand detections are spurious.

B. Region extraction

The output of the previous stage are lists of rectangles,
one list for each scale, which are classified as containing
text, see Figure 4(b). A typical image will have hundreds of
rectangles at each of a number of scales. The rectangles are
overlapping and at each scale we look for rectangles that have
support, that is they overlap with at least N other rectangles
(we use N = 3). It is highly unlikely that wild text will
match the scale steps exactly so we consider the supported
rectangles in a sliding window of M adjacent scales (we use
M = 3). Each rectangle votes for the pixels that it contains
and the votes are tallied in a voting array the same size
as the original image, see Figure 4(c). The voting array is
thresholded at 25% of the maximum value and bounding
boxes for the regions are computed. The selected regions, at
this scale, are shown in Figure 4(d).

Good bounding boxes are important for success in subse-
quent stages of the pipeline and, while our current simplistic

approach to layout analysis allows for a reasonable number
of recognitions, it often results in bounding boxes that are
too tight or too loose.

C. Optical character recognition

Today OCR packages are very reliable for printed text
which exhibits high contrast, simple background, unifor-
mity in font and character size, and horizontal alignment
of characters — characteristics not shared by wild text.
We evaluated two open-source OCR packages: GOCR and
Tesseract [23] and chose the latter. Tessearct deals well with
skewed baselines which is advantageous when dealing with
perspective distortion due to non fronto-parallel viewing.

The main mode of failure is misrecognition of characters
and intercharacter spacing. Single character substitution er-
rors are common (eg. zero for oh, one for ell, five for ess).
Spaces can appear between adjacent characters, or spaces
between words are sometimes not seen — both cases are
problematic. The root cause is the wide range of fonts that
are found in outdoor signage.

D. Probabilistic Error Correction

The output of the OCR engine can be improved consider-
ably by constraining it to a set of meaningful words. A simple
dictionary check would discard any word not found. This
is unsatisfactory for the common case of single character
substitution errors. Instead we use probabilistic inference
over the true word present in the scene, w, given a possibly
erroneous detection, z , p(w|s).

Let Z denote the set of all possible OCR detections such
that z ∈ Z . Furthermore, let V denote the set of all terms
in the English language such that w ∈ V . We think of z
as a noisy translation of some unknown generating word w.
The posterior distribution over all words in the set V can be
expressed as

p(w|z) =
p(z|w)p(w)

p(z)
(1)

=
p(z|w)p(w)∑
w∈V p(z|w)p(w)

. (2)

Evaluation of this expression requires the determination
of p(z|w) — the distribution of text detections given a
correctly spelt and complete observation-generating word w.
Intuitively, the “closer” z is to a word, the more likely that
word is to explain the detection. We use the Levenshtein edit
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Fig. 5. Examples of wild text found by the robot. The annotations are the raw Tesseract output without any error correction applied.

Fig. 6. Examples of wild text found by the robot after error correction. P-values indicate the value of the posterior probability p(w|z).

Fig. 7. Examples of incorrect detections of wild text due to texture words. P-values indicate the value of the posterior probability p(w|z).

distance φ(z, w) to capture this sense of distance between
detected text z and word w and write

p(z|w) = α e−αφ(z,w). (3)

Here α is a free parameter encoding the accuracy of the text
detection system. For the results presented in this paper α
was set by hand using random spelling mistakes. No data
contained either in the training or test sets were used. In
future work we intend to learn this parameter from a large
training set. Finally, Equation 2 requires the specification of
the prior probability of a given word w occurring in a scene.
We use word frequencies obtained from the British National
Corpus [24], a collection of approximately 100× 106 words
encompassing ca. 130, 000 unique terms.

III. RELATING TEXT TO SUBJECTS

We now derive a model which explains the subject of an
image in terms of the detected text it contains. Importantly,
because of the use of a large corpus of text, we need not limit
ourselves to a finite set of subjects chosen a-priori. We apply
this model to execute subject searches in which a robot will
return a list of places and views which relate semantically to
the search term. Specifically, we require that searching for the
subject mobile phone would return geographic coordinates of
views containing text like “nokia”, “samsung”, “broadband”,
etc. — evidence that the scene captured in an image has
something to do with mobile phones. Note that we do not
expect or demand flawless text detection since, due to the

detector model introduced in Section II-D, we can handle
incorrect detections like “nqkio”, “smssag”, or “roodbond”.

Given a corpus of images, let Z denote the set of all
detections of text throughout the corpus. Furthermore, let
S denote the set of all possible scene subjects. Our goal is
to explain a particular subject term s ∈ S with respect to
a given particular text detection z ∈ Z . In a probabilistic
sense we can express this as the task of finding the posterior
probability of the search term given the detection

p(s|z) = p(z|s)p(s)
p(z)

. (4)

The partition function p(z) is the probability distribution over
all possible detections and can be expanded in terms of a
marginalization over subject terms of the joint distribution
p(z, s). If we take all subjects to be equally likely, Equation 4
reduces to

p(s|z) =
p(z|s)p(s)∑
s∈S p(z|s)p(s)

(5)

=
p(z|s)∑
s∈S p(z|s)

. (6)

The term p(z|s) is the likelihood of the OCR returning a
string z when the underlying scene subject is s. We leverage
the detector model introduced in Equation 3 to account for
the noise in the detection and parsing of text. We introduce
a layer of now hidden variables w ∈ V , where once again V
denotes the vocabulary of the English language and each w
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lunch taxi bank

Fig. 8. Images related to the query subjects lunch, taxi and bank.

is a word. By marginalising over the V our desired likelihood
term p(z|s) can be expanded in terms of the hidden words

p(z|s) =
∑
w∈V

p(z|w, s)p(w|s). (7)

If we take detection noise to be independent of subject,
we can express the likelihood p(z|s) as

p(z|s) =
∑
w∈V

p(z|w)p(w|s), (8)

which requires the determination of the detector model
p(z|w). The remaining term in Equation 8 is p(w|s) —
the probability of a bonafide word w occurring in a corpus
of words on subject s. We assume an internet connected
robot and launch a web search for the subject string s. The
words in the returned documents are aggregated into a single
subject document. For the results presented here we searched
the websites of the BBC News, the New York Times and
the Guardian Newspaper. The construction of the subject
document allows p(w|s) to be estimated directly by counting
the number of times word w occurs.

IV. EXPERIMENTAL RESULTS

We used the robot Marge, an iRobot ATRV-JR equipped
with a variety of sensors (Figure 2). Images were captured
with a Bumblebee stereo head that provides 1024 × 768
greyscale images with a 60 deg field of view. Only images
from the left camera in the stereo pair are considered here.

Figures 5 - 7 show a small selection of typical results of
applying our text-spotting pipeline to the collected dataset
of 941 images3. Figure 5 presents the raw OCR output
before error correction is applied. Note that a number of
words are misspelt and that, for the middle two frames,
the bounding box has truncated a word. Figure 6 shows the
same scenes with successfully corrected words. Our system
recovers some of the misspelt words or discards those that
were truncated. As well as the extracted words the system
provides a confidence level p(w|z) — computed as per
Equation 2 — as to how well the inferred word w explains
the observation z . This posterior probability over generating
words provides a natural and intuitive way of thresholding

3Full-size versions of all the results presented here, an
extended set of results, the labelled data used for evaluation
(Figure 9) as well as other resources for text-spotting in
robotics can be found at [http://www.robots.ox.ac.uk/ mo-
bile/wikisite/pmwiki/pmwiki.php?n=Main.TextSpotting].

lunch taxi bank
term p(s|z) term p(s|z) term p(s|z)
restaurant 0.0186 telephone 0.0112 barclays 0.1131
barclays 0.0052 queue 0.0092 george 0.0060
queue 0.0035 february 0.0051 street 0.0047
children 0.0033 street 0.0042 february 0.0043
keep 0.0032 over 0.0024 telephone 0.0041

TABLE I
THE TOP 5 WORDS EXTRACTED FROM THE DATASET RANKED BY

LIKELIHOOD. WORDS RENDERED IN BOLD EXCEED THE THRESHOLD.

system output. Figures 6 - 8 only show detections with a
confidence greater than 90%.

The failure cases shown in Figure 7 provide examples of
what we call texture words. In these cases, scene texture such
as fences, vertical window edges, brickwork, architectural
features and adornments, etc. elicit a positive response from
the text detection stage and OCR zealously assigns characters
— typically, letters from the set “ILETUCMWA”.

We applied our subject-relevance model, querying in turn
for the subjects lunch, taxi and bank. In the first instance
the output of the system consists of a ranking of all the
terms extracted from the corpus of images based on the
posterior probability p(s|z). The top five returns per subject
are shown in Table I together with the probability of the topic
given the observed word. In every case the system manages
to successfully extrapolate from the query to semantically
related terms. We apply a threshold at 1%. The images
corresponding to our query terms are shown in Figure 8. The
collection of a subject document relevant to a query incurs
a computational expense. In practice this information can be
cached and provides an ever growing body of knowledge
for the robot. For particular problem domains the relevant
subject documents can be pre-retrieved.

Figure 9 provides a quantitative performance analysis of
our text-spotting engine when applied to a corpus of 300 city-
centre images recorded with a hand-held camera. The corpus
contains 3,935 manually labelled words. Depending on the
threshold on the word posterior, our system achieves recall
rates between 6-8.8% with precision in the range 60-94%
while constantly outperforming the uncorrected OCR output.
While adequate precision is achieved, the relative recall
figures are low (on average one word per frame). However,
text does not occur uniformly throughout an environment:
some scenes contain no text at all while, in others, text is
abundant. Our experiments indicate that the amount of text
correctly retrieved in practice is sufficient to perform tasks
such as the determination of scene relevance.
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Fig. 9. Precision-recall curve for text retrieved using our system from
a corpus of 300 city-centre images taken with a hand-held camera. The
red star indicates performance without error correction. The blue dots
indicate performance as the results are thresholded according to the posterior
probability p(w|z). Note the difference in scale ranges.

Our system does not presently return individual word
boundaries but rather detections and parsings of blocks of
text. Accordingly, 100% detection recall could be achieved
trivially by drawing a bounding box around an entire image,
though in the majority of these cases the OCR would fail. To
exclude this as a factor in our analysis we have verified that
in 75% of cases the areas of the detections are commensurate
with those of the hand-labelled annotations. The overall
largest bounding box recovered spanned ca. 60% of the
image area.

V. CONCLUSIONS

We have described a robotic system that is capable of
detecting and reading wild text, a rich source of seman-
tic information indigenous to man-made environments. Our
work demonstrates the potential of this resource for robotics
applications by investigating query-based navigation where
an arbitrary, abstract search term is related to relevant scene
images and, by extension, places in a map.

This is early work in the field of literate robotics and our
work is progressing on several fronts. Firstly, we are inte-
grating the system presented here into a 3G-connected robot
that can implement these techniques online. Secondly, we are
constantly seeking to improve our text-spotting capability.
In particular, we are investigating means to improve the
performance of the OCR step, which is currently exhibiting
a very high error rate. We are also investigating opportunities
to improve performance by exploiting the contiguous nature
of the workspaces traversed by robots and the additional
sensor modalities available in this domain. Thirdly, we are
investigating a variety of robotics applications including
text-based localisation — where textual clues are used in
conjunction with an internet-based geocoding service — as
well as the integration of textual cues into object detectors.
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