
  

  

Abstract— This paper proposes an energy control method 
for the dynamic walking of a planar biped, allowing obstacle 
crossing. This approach was tested in simulation on a 
numerical model of the HYDROÏD robot of the Laboratoire 
d’Ingénierie des Systèmes de Versailles, and achieved a 
dynamic walking with a 1.3 m/s maximum speed and the 
crossing of an obstacle thanks to inertia forces, by leaning with 
the front foot on the obstacle. The propulsion energy of the 
system is produced by the rear leg, endowed with four actuated 
degrees-of-freedom (hip, knee, ankle, toes), and controlled by a 
force control using four degrees-of-freedom in the non singular 
case, and three degrees-of-freedom in the singular case. 

I. INTRODUCTION 
he most performant humanoid robots concerning the 
walking are currently PETMAN, ASIMO [1], QRIO [2], 
HRP-2 [3], KHR-3 (HUBO) [4], WABIAN-2LL [5], 

WABIAN-2 [6] , BHR-02 [7], JOHNNIE [8], LUCY [9]. 
These robots move preferably on flat and structured (regular 
slopes, stairs) terrain and most of them have a very low 
speed compared to the human one. Nevertheless, in 
comparison with a wheeled vehicle, one of the main 
advantages of a walking machine lies in its capacity to cross 
some obstacles with various shapes and sizes in a non-
structured environment. To meet this objective, it is 
necessary to develop some algorithms for the dynamic 
obstacle crossing for biped systems. It is worth noting that 
we define the « dynamic crossing » term by the crossing of 
an obstacle, leaning on it and using the system inertia in 
order to surmount it. Although this kind of motion seems 
simple and natural for human beings, its achievement in the 
robotics field presents a real challenge. 

Indeed, how could we control our robot so that it crosses 
the obstacle without falling, i.e. so that its energy would 
neither be too low, in which case it would risk falling 
backwards, nor too high, which would induce an 
uncontrolled forwards fall? 

The papers about dynamic obstacle crossing of non 
negligible size are scarce. We can cite Sabourin [10] who 
started to investigate this issue in the case of an obstacle of 
low height (15 mm) and with point contacts between the feet 
and the ground. Furthermore, the energy contribution for the 
dynamic walking and for the dynamic obstacle crossing 
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needs to be discussed, because during the walking many 
ways to inject energy exist: thanks to the propulsion of the 
rear leg in double support phase and at the end of the stance 
phase, the hip traction during the stance phase, the 
inclination and the acceleration of the torso, the leg transfer 
and also to the twisting motion of the pelvis, etc… In order 
to succeed in crossing a relatively high obstacle, for example 
a rock or a low wall, amongst the energetic inputs indicated 
above, the propulsion in double support phase by the rear leg 
with active toes is predominant. 
  So as to generate the energy, according to the theorem of 
energy conservation, we will propose a force control of the 
rear leg, servoed on the total mechanical energy to provide, 
with four degrees-of-freedom (hip, knee, ankle, and toes) or 
with three degrees-of-freedom (hip, ankle and toes) in the 
singular case when the rear leg is stretched. A continuous 
transition from the first system to the second will also be 
proposed. 
 Firstly we briefly introduce a modelling of the HYDROÏD 
robot used to test the obstacle crossing, and then we explain 
the control method and its integration in a global walking 
control strategy. Lastly, results are presented, concerning 
forces, velocity and motor torques so as to size the sagittal 
actuators of HYDROÏD. 

II. MODELLING 
In order to test the energy control, a planar simulator 

inspired by HYDROÏD robot designed at LISV [11][12] was 
developed using ADAMS software for simulating the 
dynamical behaviour of multi-body systems. The kinematic 
structure of the simulator involves nine rotational joints with 
axes normal to the sagittal plane of the robot: one rotational 
joint between the pelvis and the torso, and four revolute 
joints in each leg (hip, knee, ankle, toes). The robot mass is 
about 70 kg. The leg masses are negligible compared with 
the masses of the pelvis and of the torso.  

III. PROPULSION BY CONTROL OF PROPULSION ENERGY 

A. Assumption of energy conservation during the stance 
phase and total mechanical energy target 
 
The control that we now introduce is based on the 

assumption of mechanical energy conservation during the 
stance phase.  

We consider that during this phase the HYDROÏD robot, 
endowed with four active degrees-of-freedom per leg (hip, 
knee, ankle, toes) and with two masses of 30 kg each one 
concentrated at the pelvis and at the torso extremity, can be 
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modelled in the sagittal plane with a virtual inverse 
pendulum of constant length, with a concentrated mass in 
the middle of the torso segment, and having its rotation 
center at the ankle of the stance foot. 

 
 
 
 
 
 
 
 
 
 

 
 

Fig 1 : double support and single support phases 

This virtual pendulum has the following dynamic model: 

0sin =− θθ
L
g
obj

 (1) 

As illustrated in figure 1 simplifying HYDROÏD, if we want to 
reach a target altitude and speed of the virtual inverse 
pendulum when it is vertical, then using the assumption of 
energy conservation during the stance phase, it is possible to 
predict the amount of energy which should be supplied at the 
end of the double support phase, for example with a push of 
the rear leg. Thus we can write: 
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We wish to control the speed of the virtual inverse pendulum 
when this one is located at the top of its trajectory, named 
« objective position Pobj ». We consider that the top of the 
trajectory is reached when the inverse pendulum is in a 
vertical position. At the objective Pobj, the desired value of 
total mechanical energy of the virtual inverse pendulum is: 
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In figure 2, L1, L2 and L3 are constant structural lengths. The 
θ1

obj angle is the desired value of the inclination of the torso 
compared with the thigh. There might be a flexion θ2

obj of 
the knee of the front leg, which we can take into account 
within the calculation of the « Lobj » distance. Indeed, in the 
case of a fast walking on flat terrain, this flexion of the front 
knee may remain small (less than 10 degrees), but it is no 
longer negligible during the dynamic crossing of the 
obstacle. The «d» distance in figure 2 locates the interval 
between the ankle joint (considered as center of rotation of 
the inverse pendulum) and the level of “zero reference” for 
the calculation of the potential energy. 

Just before the “push phase” of the stance leg, the angles 
« θ1

ob j » and « θ2
obj » are measured, and their desired values 

are frozen. We get « Lobj
 » as follows: 

Lobj = d + Hobj (4) 

where « d » is the distance between the reference level for 
the calculation of the potential energy and the ankle rotation 
center, and therefore includes the height of the obstacle. 
The « Hobj » distance is obtained with the following 
expression: 
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Fig 2 : configuration of segments of the robot at the target 

B. Energy servo control of the propulsion force 
 
In order to reach the energy target, we create a propulsion 

force to propel the robot, that we need to control in 
magnitude and in orientation, to supply the necessary 
propulsion energy in the right direction. 
 

1) Control of the magnitude of the propulsion force  
 
As we wish to reach a particular speed at a vertical 

position of the inverse pendulum, which is equivalent to 
reaching some level of total mechanical objective energy, 
the magnitude of the propulsion force during the double 
support phase (written « Fprop ») is computed by a 
proportional controller on the total energy ET: 
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 By this means we achieve a high level « energy servo 
control » in order to propel the robot. 
In practice, in the simulation, the « kprop » gain was chosen 
with a value between 8 and 13 N/Joule for an established 
walking.We also employ a second important parameter 
during the propulsion phase: it is the angular threshold 
concerning the angle of the virtual inverse pendulum of the 
front leg, named « θStop », from which the energy servo 
control is stopped. The crossing of this threshold constitutes 
a safety mechanism allowing the propulsion of the rear leg 
to be stopped, because it is possible that the total desired 
energy is overestimated compared with the size and the mass 
of the robot for example.  
 

2) Control of the orientation of the propulsion force 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 3 : orientation of the propulsion force 

The orientation of the propulsion force is computed so 
that the force is always oriented towards the direction of the 
line defined by the pressure center of the rear foot (CoP) and 
the global system center of mass (CoM), located 
approximately equidistant from the masses of the pelvis and 
of the torso, as shown in figure 3. We write “θ mes

prop ” the 
measure of the inclination of the line (CoP-CoM), so we 
have: 

 
)sin(. θ mes

proppropprop FFx = (10) 

)cos(. θ mes
proppropprop FFy =   (11)  

C. Force control of the rear leg with two inverse 
kinematics 

We wish to achieve some control supplying the propulsion 
energy via the rear leg in order to regulate the propulsion 
force. We will write the Jacobian matrix of a four-degrees-
of-freedom leg, according to the parameters of figure 4, and 
by deriving the PO1  vector. 

 
Fig 4 : notation for the writing of the inverse kinematics 

The joints of the hip, the knee, the ankle and the toes are 
respectively located at points O1, O2, O3 and O4. The point P 
is a contact point of the toe with the ground, where the leg 
applies the vector of desired torque and forces (Cz, Fx, Fy). 
The lengths L1, L2, L3 and L4 are respectively the length of 
the thigh, the shinbone, the foot and from the center of 
rotation of the toe part to the P point. The model is setup 
under the following way: 

 
qJX .=  i.e.:                       (12) 

 
We write ci = cos(qi) and si = sin(qi), cij = cos(qi+qj) and sij 
= sin(qi+qj)… Dimension of the Jacobian matrix is 3x4: 
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Using the Jacobian transposed, we get the model linking the 
joint torques and the propulsion forces applied at the point P, 
with the following form: 

FJ T .=τ  (14) 
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With : 
      

                 (15)  and                  (16) 
 
 
where «τ1», «τ2», «τ3» et «τ4» are respectively the joint 
torques of the hip, the knee, the ankle and the toes creating 
he propulsion force, and F is the vector of desired torque and 
forces in the operational workspace. In our case, the « Cz » 
desired value is equal to zero because we don’t wish to 
create some torque from the leg on the ground, but only a 
propulsion force.  

However, the inverse kinematics presented above is not 
convenient in the case where the rear leg is stretched, i.e. 
when the hip, knee and ankle joint centers are lined up. This 
kind of singular configuration of the subsystem {hip, knee 
and ankle} is quickly reached during the rear leg propulsion 
phase. Furthermore, by creating the propulsion force, the 
presented inverse kinematics has the disadvantage of 
performing non-anthropomorphic motions, for example by 
causing some hyper-extension of the rear knee, that is 
completely impossible for human beings. 

That is why a second inverse kinematics was developed. 
In this second one, the knee joint is considered as locked on 
its articular limit, and the three torques hip, ankle, torques 
are computed in order to produce the propulsion force. In the 
case where the knee is locked, we have dq2/dt = 0. It is worth 
noting that the q2 angle is not necessarily equal to zero. With 
this second model, the Jacobian matrix of the inverse 
kinematics is a 3x3 dimension matrix: 
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We get our inverse kinematics for the computation of the 
torques of the hip, the ankle and the toes: 
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This inverse kinematics is very useful to control the 
propulsion force if the three rotational joints hip, knee and 
ankle are lined up.  

IV. GLOBAL CONTROL OF THE WALKING 
The control of the walking is driven by a finite state 

machine partially printed on figure 5, for only one leg. We 
will now describe this finite state machine succinctly.  

The simulation starts in the state « initialization » where 
the right foot is moved forward with a quasi stretched front 
leg, by bending the rear knee and toes. 

Then, the robot enters the state of double support: 
« L_Push ». The left leg is torque-controlled thanks to 
equation (14) and then (18), in order to create the propulsion 
force with the high level energy servo control. The right 
stance leg ensures the horizontality of the pelvis with the hip 
joint, and the knee is locked in constant position so as to 
avoid leg bending. The end of this propulsion state is 

reached as soon as the inverse pendulum achieves the « θStop 
» angle. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 5 : state machine for a half step  

In the « L_Delay1 » state, the robot waits until the normal 
contact force comes below a threshold « FFootUp », thanks to 
the inertia of the system generated by the propulsion force. 
Below this force threshold, the robot starts the swing leg 
transfer.  

In the « L_LegRotation » state, the left foot is 
transferred, while the right stance leg maintains the 
horizontality of the pelvis, while locking the right knee. The 
right stance ankle turns passively, and reduces the energy 
consumption. The desired value of the left hip is built with 
an interpolation; boundary conditions allow satisfaction of 
the desired step length.  

The next « L_FootDown » state, with a period of 
« TFootDown » allows bending of the thigh of the right rear leg, 
and stretching of the left leg before the contact with the 
ground. The right side hip continues to ensure the horizontal 
inclination of the pelvis. 

In « L_Delay2 », we are waiting for the contact of the left 
foot with the ground, and the impact is damped. After that, 
the exit transition of the « L_Delay2 » state is reached, the 
machine enters the « R_Push » state, which is the beginning 
of a new half step, reversing the functions of the both legs. 

V. RESULTS 
We now present some results from the simulations done in 

ADAMS: some videos of a fast dynamic walking and of a 
dynamic walking with obstacle crossing are attached to this 
paper. 
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A. Fast dynamic walking 

 

 

 

 
Fig 6 : 3 steps of dynamic walking, during 2.5 seconds  

The small pictures of the figure 6 show an extract of fast 
dynamic walking, for a period of 2.5 seconds. Figure 7 
indicates the achieved speed, with a velocity peak of 1.3 m/s 
and a mean speed of 0.8 m/s. 

 
Fig 7 : pelvis velocity in the case of a fast walking 

B. Dynamic walking with obstacle crossing 

 

 

 
Fig 8 : dynamic obstacle crossing 

The crossing of an obstacle of height 10 cm (approximately 
9% of the total robot size) was simulated, as illustrated by 
the screenshots in figure 8. 

C. Results curves at the obstacle crossing 
1) Forward velocity 

In figure 9, the horizontal velocity of the pelvis shows some 
significant decrease between 5 and 7.5 seconds, 
corresponding to the obstacle crossing, this causes some 
slowdown of the robot, but it does not stop it, because a new 
walking is subsequently established at a mean speed of 
approximately 0.6 m/s. The peak of 1.1 m/s stems from the 
descent of the obstacle: the robot is getting some additional 
kinetic energy. 

Fig 9 : measure of the pelvis velocity 

2) Contact forces 
It is also interesting to show the contact forces measured 

between the feet and the ground on figure 10. 

 
Fig 10: normal contact feet/ground forces 

The obstacle crossing takes place between 5 and 6.7 
seconds, in the stabilization area of the oscillations. Just 
before the 7th second, the highest impact peak arises from the 
landing of the foot on the ground, on stepping off the 
obstacle. 
 

3) Actuator torques in the simulation of obstacle 
crossing 

In order to design the actuators of the HYDROÏD robot, we 
need to examine the sagittal joint torques. We draw in figure 
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11 the four joint torques of the left rear leg, creating the 
propulsion force to climb onto a 10 cm obstacle. 

 

 
Fig 11 : the four actuators torques of the rear stance leg 

We can notice that during the obstacle crossing, the ankle 
motor torque has the highest torque of all, with an absolute 
value of 76 Nm. The knee torque has a peak at 5.385 
seconds, when the knee reaches the joint limitation: the rear 
leg is then almost fully stretched. The toe torque remains 
low (less than 3 Nm). Table 1 makes a comparison between 
the different maximum torques of the left leg (which 
produces the propulsion so as to overcome the obstacle), and 
the right leg in the case of a walking on a flat terrain.  

joint Left hip Left knee Left ankle Left toe 
|max torque| [Nm] 31 26 76 2.7 

 Right hip Right knee Right ankle Right toe 
|max torque| [Nm] 39 25 57 1.4 

Tab 1 : comparison between max torques  

Finally, we can specify that during the stepping down from 
the obstacle, the robot has sufficiently kinetic energy for the 
propulsion force to be required for only a very short time (7 
milliseconds). 

VI. CONCLUSION AND FUTURE WORK 
Our high level energy control of the propulsion energy 

allowed us to achieve a fast dynamic walking with n steps, 
and our numerical model also succeeded to cross an 
obstacle. Our method, based on the total mechanical energy 
with a force control of the rear leg, will be further applied on 
HYDROÏD robot, thanks to the new actuator technology which 
will be installed on the prototype. Many possibilities for 
future works exist. We would like to apply the propulsion 
with the rear leg also during the stance phase, in the case of 
high speed, and to control explicitly the energy supply with 
some traction of the hip of the front leg during the crossing 
of the obstacle, in order to decrease the propulsion force. It 
will be necessary to adapt some parameters such as the « 
θStop » angle or the « kprop » gain of the energy controller, 
according to the desired speed of the robot. Lastly, this work 
sets up a preliminary phase before simulating a three-
dimensional dynamic walking. 
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