
Environmental Field Estimation of Mobile Sensor Networks Using
Support Vector Regression

Bowen Lu, Dongbing Gu and Huosheng Hu

Abstract— This paper presents a distributed algorithm for
mobile sensor networks to monitor the environment. With
this algorithm, multiple mobile sensor nodes can collectively
sample the environmental field and recover the environmental
field function via machine learning approaches. The mobile
sensor nodes are able to self-organise so that the distribution
of mobile sensor nodes matches to the estimated environmental
field function. In this way, it is possible to make the next-step
sampling more accurate and efficient. The machine learning
approach used for function regression is support vector regres-
sion (SV R) algorithm. A distributed SV R learning algorithm is
used for on-line learning. The self-organised algorithm used for
deployment is based on locational optimisation techniques. In
particular, Lloyd’s algorithm for optimising centroidal Voronoi
tessellations (CV T) is used to spread mobile sensor nodes over
the monitored environment. The environmental field function is
simulated in static and dynamic settings and the demonstration
on the simulated environments shows the proposed algorithm
is effective.

I. INTRODUCTION

Sensor networks can answer queries about environment by
sampling the environment over a large region. A network of
mobile sensor nodes spreading out over the highly interested
area is able to model the environmental field function.
Spreading out a network of mobile sensor nodes is so-
called coverage control of mobile sensor networks. The
environmental field function or sensory distribution function
is known a prior in research work of coverage control in [1],
[2] where the locational optimisation techniques, particularly
Lloyd’s algorithm for optimising centroidal Voronoi tessella-
tions (CV T) are used. Recent research in this area concen-
trates on simultaneously environmental function learning and
coverage control. For example, the environmental field func-
tion is represented by using a radial basis function (RBF)
network and the coverage control is implemented by using
Lloyd’s algorithm in [3]. The environmental field function
is represented by using a RBF network and the coverage
control is implemented by using flocking algorithms in [4].
The environmental field function is approximated by using an
inverse distance weighting interpolation method and updated
by using a Kalman filter in [5]. The environmental field
function is modelled by using a spatial temporal Gaussian
process and a flocking algorithm is used for the coverage
control in [6]. The environmental field function is modelled
by a spatial-temporal model and then estimated by a Kriged
Kalman filter in [7].

The authors are with School of Computer Science and
Electronic Engineering, University of Essex, Wivenhoe Park,
Colchester, UK. blv@esssex.ac.uk,dgu@essex.ac.uk,
hhu@essex.ac.uk

Support vector regression (SV R) is an approach to solve
problems of function regression. As SV R learning is formu-
lated as a constrained quadratic optimisation problem, it can
find a global minimum. Using kernel methods for function
regression over sensor networks has recently been studied
[8]. It was reported in [9] where a Gaussian kernel function
is adopted and the minimisation problem of kernel methods
is converted into a linear equation problem. The distributed
solution lies in the use of a bump function to glue local
estimates to approximate the global estimate. In [10], the
minimisation problem of kernel methods is converted into a
linear equation problem and the distributed solution builds on
a distributed application of Gaussian elimination. Specially,
a message passing algorithm with the running intersection
property is used for Gaussian elimination. In [11], the learn-
ing algorithm of kernel methods is viewed as an application
of successive orthogonal projection algorithms, in which
sensor nodes perform a local computation in sequential order.
In [12], the minimisation problem of kernel methods is
solved by using an incremental sub-gradient method due to
its additive structure. A two-step message passing process is
required to visit every sensor in the network.

In this paper we propose to use SV R for function re-
gression over sensor networks. As the core of SV R is
a constrained quadratic optimisation problem with additive
structure, the incremental sub-gradient method [12] can be
used. Alternatively, least square SV R [13] can be used
to convert the minimisation problem into a linear equation
problem and Gaussian elimination [10] can be applied to
solve the linear equations. However, both of them ask for
constructing a path in the sensor networks for message pass-
ing. This paper proposes to use a gradient based approach
to SV R for distributed computation purpose. The gradient
based approach uses the kernel mapping to map nonlinear
data in low dimensional space into linear features in high
dimensional space [14], [15]. Although the gradient based
approach is proposed working in sequential, it can also work
in parallel. However, it is not possible to apply this algorithm
directly in sensor networks due to the fact that the iteration
in the algorithm requires that each node obtain training data
from all other nodes. In addition, sensory measurements from
adjacent places are often highly precise and remote places
are often not, we adopt a kernel function with finite support
in the gradient based approach to implement distributed
computation. As long as the communication range between
neighbour nodes is large than the finite support of the kernel
function, the iteration in the gradient based approach can be
computed in a distributed way.

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 2926

Mobile sensor networks are required to be able to self-
organise based on the estimated environmental field function.
The purpose of self-organisation is to maximise the possi-
bility of monitoring the environment more accurately and
efficiently. The locational optimisation is an efficient means
to distribute the mobile sensor nodes so that more sensor
nodes can be located in the area where the environmental
field function has higher values. Higher values from an
environmental field function usually indicates the region
of interest, particularly, higher pollution concentration in
a pollution monitoring case. Lloyd’s algorithm used for
optimising (CV T) was used in [1] for coverage control.
In this paper, we also use Lloyd’s algorithm as an adaptive
controller for deployment of mobile sensor networks.

In following sections, Section II presents the gradient
based distributed SV R algorithm. Section III applies CV T
algorithm for coverage control of mobile sensor networks.
Section IV provides simulation results including a static
and a dynamic environmental field function. Finally, our
conclusion is given in Section V.

II. DISTRIBUTED SUPPORT VECTOR REGRESSION

A. ε-SV R

Q ⊂ R2 is a 2D convex working environment for an
N -sensor network. An arbitrary point in it is denoted by
q. The coordinates of ith sensor in this network is denoted
by qi = [xi, yi]

T , and zi(t)(i=1,...,N) denotes the measured
value from ith sensor at time t. Sample set of sensory
measurement is defined as S = (qi

T , zi)
N
i=1. Finding a

function f(q) = wTϕ(q)+b, which can give a fitting result to
the sample set S with a limited error ε, is the goal of ε-SV R
[16]. ϕ(q) is a feature space function, which maps q from
R2 to a higher-dimensional space. b is a biased constant.

Weight parameter w can be found by solving the following
constrained convex optimising problem [17]:

min
w,ξi,ξ∗i

{
1

2
wTw + C

(N∑
i=1

ξi +
N∑
i=1

ξ∗i

)}
(1)

subject to zi − ⟨w, ϕ(qi)⟩ − b ≤ ε+ ξi
⟨w, ϕ(qi)⟩+ b− zi ≤ ε+ ξ∗i
ξi, ξ

∗
i ≥ 0

where ⟨•, •⟩ denote inner products. ξi and ξ∗i are slack
variables, constant C > 0 determines the tradeoff between
a better fitting result or higher successful fitting rate. For
solving this problem with inequality constraints, a dual
optimisation problem should be solved [17]:

min
αi,α∗

i

J =
1

2

N∑
i,j=1

(αi − α∗
i)(αj − α∗

j)⟨ϕ(qi), ϕ(qj)⟩

+ ε
N∑
i=1

(αi + α∗
i)−

N∑
i=1

zi(αi − α∗
i) (2)

subject to { ∑N
i=1(αi − α∗

i) = 0
0 ≤ αi, α

∗
i ≤ C

where αi and α∗
i are non-negative Lagrange multipliers,

and weight parameter w can be obtained from equation (3):

w =

N∑
i=1

(αi − α∗
i)ϕ(qi) (3)

With equation (3), learning function f(q) = wTϕ(q)+ b can
be reformulated as equation (4):

f(q) =

N∑
i=1

(αi − α∗
i)⟨ϕ(qi), ϕ(q)⟩+ b (4)

It was suggested that an augmenting factor λ can be used to
simplify equation (4) and the following equation is obtained
[14]:

f(q) = ⟨w̄, ϕ̄(q)⟩ (5)

where {
w̄ = {wT , b/λ}
ϕ̄(q) = {ϕ(q), λ}

Eventually, the regression function is turned into:

f(q) =
N∑
i=1

(αi − α∗
i)[⟨ϕ(qi), ϕ(q)⟩+ λ2] (6)

Now the function regression problem comes down to find-
ing a suitable mapping function ϕ(q) and learning parameters
αi, α∗

i .
For acquiring ⟨ϕ(qi), ϕ(q)⟩ in equation (6), SV R maps an

input data q from low dimensional data space R2 into a fea-
ture vector in high dimensional feature space F via a feature
mapping ϕ(q). “Kernel trick” in SV R hides ϕ(q) into kernel
function K(qi, qj) = ⟨ϕ(qi), ϕ(qj)⟩. The algorithm does not
need to know ϕ(q) explicitly, but the inner product of feature
vectors, i.e. kernel function K(qi, qj) = ⟨ϕ(qi), ϕ(qj)⟩. With
this kernel function definition, equation (6) can be expressed
as below:

f(q) =
N∑
i=1

(αi − α∗
i)[K(qi, q) + λ2] (7)

Building a suitable kernel function K(qi, qj) needs to
follow Mercer’s condition:

1) K(qi, qj) is continuous;
2) K(qi, qj) is symmetrical K(qi, qj) = K(qj , qi);
3) K(qi, qj) is semi-positive definite.

2927

B. Distributed SV R

Selecting a suitable kernel function is important for a
distribute network. The following bump function with finite
support B meets the above conditions and can be used as a
kernel function:

K(qi, qj) ={
1
2

[
1 + cos(

π∥qi−qj∥
B)

]
, ∥qi − qj∥ ∈ [0, B]

0, otherwise

The main feature of such a kernel function lies in its finite
support. This is one of the key points in our implementation
of distributed SV R. As it is known, “kernel trick” hides
explicit use of feature vectors. The above or Gaussian like
kernel functions hides the explicit use of data qi. It simply
uses the Euclidean distance ||qi−qj || and zi. This simplicity
is very useful in sensor networks where ||qi−qj || is geomet-
ric distance between nodes i and j. Most sensor networks
have ability to observe the geometric distance ||qi − qj ||
via local range finders. Due to limited communication and
sensory range, it is cost-expensive to obtain all the geometric
distances for every node. This kernel function with finite
support B leads to a local version of computing the kernel
matrix K(qi, qj).

A sensor node i has a limited wireless communication
range. Any other sensor nodes within this range are defined
as its neighbour set Ni. Distributed SV R algorithm only
sums up the measured values from the neighbours of each,
instead of the measured values from whole network. Dis-
tributed SV R algorithm is listed in algorithm 1. More details
on this algorithm can be found from our previous work [18].

Algorithm 1 Distributed SV R Algorithm
Initialise αi = 0, α∗

i = 0, t = 0
Loops until the terminal condition is met:

Each sensor node obtains the distance ||qi − qj ||
from its neighbour set Ni

Each sensor node calculates the kernel function K(qi, qj)
Ei = zi −

∑
j∈Ni

(αi − α∗
i)[K(qi, qj) + λ2]

δαi = min{max[γ(Ei − ε),−αi], C − αi}
δα∗

i = min{max[γ(−Ei − ε),−α∗
i], C − α∗

i }
Update αi = αi + δαi

Update α∗
i = α∗

i + δα∗
i

t← t+ 1
end

III. DISTRIBUTED COVERAGE CONTROL

Our algorithm proposed in this paper includes two major
steps in each loop. The first step is to implement the function
regression with SV R as discussed in previous section. The
second step is to implement the locational optimisation by
using Lloyd’s algorithm. This section introduces a distributed
Lloyd’s algorithm for coverage control based on the esti-
mated environmental field function.

A. CV T

The definition of a Voronoi tessellations is showed below:

Vi = {q ∈ Q | ∥q − qi∥ ≤ ∥q − qj∥ ,∀i ̸= j} (8)

Vi from above represents the Voronoi region of ith sensor,
q is an arbitrary point in Q, and qi is the generating point
(sensor node position) of a Voronoi region. CV T is a special
Voronoi tessellation, which requires each generating point
move toward to the centre of mass of each Voronoi cell. For
computing the mass centre of each Vi, we use the following
definitions:

MVi =

∫
Vi

f(q)dq

LVi =

∫
Vi

qf(q)dq

CVi =
LVi

MVi

where f(q) is the environmental field function estimated
from SV R algorithm.

The cost function of the locational optimisation problem
is defined as:

H(q1, . . . , pN) =
N∑
i=1

∫
Vi

1

2
∥q − qj∥2 f(q)dq (9)

The gradient of the cost function with respect to sensor
node position qi is:

∂H

∂qi
= −

∫
vi

(q − qj)f(q)dq

= −MVi(CVi − qi) (10)

B. Distributed CV T

Let Ri denote the maximum communication range of
sensor node i. In order to calculate Voronoi region Vi for
sensor node i, it is necessary to evaluate f(q) in Vi. However,
the distributed SV R algorithm only provides possibility of
evaluating f(q) within a circle region Ωi of radius B for
sensor node i, where Ωi = {q ∈ Q| ∥qi − q∥ ≤ B}. When
Ri ≥ 2B, the function evaluation is in a distributed form:

f(q) =

Ni∑
j=1

(αi − α∗
i)[K(qj , q) + λ2] (11)

Therefore a sensor node can only calculate a range-limited
Voronoi region Wi:

Wi ={q ∈ Q | Ωi ∩ Vi}

The corresponding mass centre of each Wi should be
calculated in the following way:

2928

MWi =

∫
Wi

f(q)dq

LWi =

∫
Wi

qf(q)dq

CWi =
LWi

MWi

The mobile sensor node is modelled as a linear point
model:

q̇i = ui

where ui is speed input to mobile sensor node i. With a
step length β. The controller is:

ui = −β
∂H

∂qi
= βMWi(CWi − qi) (12)

This locational optimisation process is named as CV T
algorithm and summarised below:

Algorithm 2 Distributed CV T algorithm
Initialise MWi = 0, LWi = 0
Sensors qi is randomly located at a certain region
Loops until the terminal condition is met:

Sample environmental variable zi.
Execute the distributed SV R algorithm.
Obtain the updated f(q) from SV R
MWi

=
∫
Wi

f(q)dq

LWi =
∫
Wi

qf(q)dq
Calculate the new mass centre CWi = LWi/MWi

Move qi towards CWi with a certain speed
end

Each CV T loop contains a SV R learning algorithm with
multiple learning steps.

IV. SIMULATIONS

The simulation was conducted on an 1 × 1 square envi-
ronment and included two sections: one is static simulation
where the environmental field is a scalar static 2D function
and another is dynamic simulation where the environmental
field is a scalar time-variant 2D function. In both cases,
a sensor network with N = 30 nodes was used. The
communication range of each sensor of this network was
set as R = 0.2. Number of loops for SV R algorithm was
selected as 10. The number of loops for CV T algorithm was
selected to be 50 for the static environment field, and 100 for
the dynamic one. In both of these two simulations, sensor
readings are assumed perfect (without noises).

A. Static Simulation

In the static simulation, sensor nodes were randomly
placed in the centre of 1 × 1 simulation area. Considering
most of real polluted environments, the concentration of
pollution will not be evenly distributed and the changing is
following continuous environmental field function. We use

three Gaussian shape distributions denote the concentration,
in which higher value implies more serious polluted. This
field function was chosen as equation (13):

f(q) =0.2e−
(x−0.6)2+(y−0.4)2

σ2 + 0.3e−
(x−0.4)2+(y−0.5)2

σ2

+ 0.4e−
(x−0.8)2+(y−0.6)2

σ2 (13)

where σ2 = 0.005.
Fig 1 shows the true environmental field function. Fig 2

presents the estimated result of static simulation after 50
CV T loops. Comparing with true function in Fig 1, it is
clearly showed that three peaks of underlying function are
captured by the sensor network with proposed algorithms.

Fig. 1. True static environmental field function

Fig. 2. Estimated static environmental field function

Error sum of true and estimated static environmental field
functions was calculated after each loop and is showed in Fig
3 where the number of loops is denoted in x-axis. This figure
clearly shows the error sum kept reducing but maintained
with a stable static error after 30 loops. The static error is
due to the sparseness of samples produced from the sensor
network. This static error can be reduced by increasing the

2929

sensor’s communication range and/or increasing the density
of sensors.

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5
x 10

−3

Fig. 3. Error curve of static simulation

The locational optimising procedure of CV T algorithm
can be observed in Fig 4, which shows how mobile sensors
moved and spread out by tracking the estimated environ-
mental field function. The final Voronoi tessellation is also
showed in Fig 4 for a clear demonstration.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 4. Top view of locational optimised trajectories

B. Dynamic Simulation

In the dynamic simulation, the environmental field func-
tion was changing with time. It tries to test if the pro-
posed algorithms can track a moving environmental field
function. Still the underlying function had three peaks in
this simulation. Initially, all the three peaks were located at
the same position (0.3, 0.8). Amplitude parameter and σ of
each Gaussian function were selected the same as previous
static simulation. The environmental field function was made
changing with time by moving the three peak locations
with constant speeds. The moving speeds of three peak
components were selected as (5 × 10−4,−5 × 10−3), (5 ×
10−3,−5× 10−3), and (5× 10−3,−1× 10−3) per loop.

Fig 5 to Fig9 show the dynamic simulation process where
(a) of each figure shows the true function, and (b) shows the
estimated function. Time interval between two figures is 20
loops.

Fig 5 shows the three peaks of underlying function was
moving at loop 20, but still very close to each other. The
estimated function by the mobile sensor network had the
similar pattern. After about 40 loops (Fig 6 to Fig 9), the
three peaks gradually separated from each other due to
their different velocity. The sensor network self-organised
itself according to the changed underlying function and the
estimated function was able to match to the truth.

Fig 10 gives the error sum between the true and estimated
environmental field functions in each loop. The error sum
was reduced because the mobile sensor network was gradu-
ally distributed close to the true distribution. A stable static
error existed just the same as in the static simulation due to
the sparse use of sensors.

The top view of sensor’s moving trajectory in Fig 11 in the
dynamic simulation shows how the mobile sensors tracked
the underlying function.

Fig. 5. Dynamic simulation result at loop = 20

Fig. 6. Dynamic simulation result at loop = 40

Fig. 7. Dynamic simulation result at loop = 60

Fig. 8. Dynamic simulation result at loop = 80

2930

Fig. 9. Dynamic simulation result at loop = 100

0 20 40 60 80 100
0

1

2

3

4

5

6

7
x 10

−3

Fig. 10. Error curve of dynamic simulation

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 11. Top view of sensor’s trajectories

V. CONCLUSIONS

A distributed environment monitoring algorithm for mo-
bile sensor networks is investigated in this paper. Distributed
SV R algorithm is an effective means to estimate environ-
mental field functions. Distributed SV R algorithm combined
with locational optimisation CV T algorithm provides a
solution to environment monitoring problem with mobile
sensor networks. Static and slow-changed environmental
field functions are simulated to verify the effectiveness of
proposed algorithm. The distributed nature of the proposed

algorithm improves the robustness of environment monitor-
ing algorithm.

Our further research will consider the addition of explo-
ration behaviour to the algorithm so that the entire network is
able to escape from local minima. Also, various of improved
algorithms which can adapt for different environments (e.g.
gas, water, and liquid) will be investigated, and eventually
these algorithms should be applied on SHOAL project.

Acknowledgement
This research has been financially supported by European

Union FP7 program, ICT-231646, SHOAL: Search and mon-
itoring of Harmful contaminants, Other pollutants And Leaks
in vessels in port using a swarm of robotic fish.

REFERENCES

[1] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control for
mobile sensing networks,” IEEE Trans. on Robotics and Autonamous,
vol. 20, no. 2, pp. 243–255, 2004.

[2] L. C. A. Pimenta, V. Kumar, R. C. Mesquita, and G. A. S. Pereira,
“Sensing and coverage for a network of heterogeneous robots,” in
Proc. of the IEEE Conf. on Decision and Control, Cancun, Mexica,
2008.

[3] M. Schwager, D. Rus, and J. Slotine, “Decentralized, adaptive con-
verage control for networked robots,” Int. J. of Robotics Research,
vol. 28, no. 3, pp. 357–375, 2009.

[4] K. M. Lynch, I. B. Schwartz, P. Yang, and R. A. Freeman, “Decen-
tralized environmental modelling by mobile sensor networks,” IEEE
Trans. on Robotics, vol. 24, no. 3, pp. 710–724, 2008.

[5] S. Martinez, “Distributed interpolation schemes for field estimation by
mobile sensor networks,” IEEE Trans. on Control Systems Technology,
vol. 18, no. 2, p. to appear, 2010.

[6] J. Choi, J. Lee, and S. Oh, “Swarm intelligence for achieving the
global maximum using spatio-temporal Gaussian processes,” in Proc.
of the American Control Conference, Seattle, Washington, 2008.

[7] J. Cortes, “Distributed Kriged Kalman filter for spatial estimation,”
IEEE Trans. on Automatic Control, vol. 54, no. 12, pp. 2816–2827,
2009.

[8] J. B. Predd, S. R. Kulkarni, and H. V. Poor, “Distributed learning in
wireless sensor networks,” IEEE Singal Processing Magazine, vol. 23,
no. 4, pp. 56–69, 2006.

[9] S. Simic, “A learning theory approach to sensor networks,” IEEE
Pervasive Computating, vol. 10, pp. 44–49, 2003.

[10] C. Guestrin, R. Thibaux, P. Bodik, M. A. Paskin, and S. Madden,
“Distributed regression: an efficient framework for modeling sensor
network data,” in Information Processing in Sensor Networks (IPSN
’04), Berkeley, 2004.

[11] J. B. Predd, S. R. Kulkarni, and H. V. Poor, “Distributed kernel
regression: an algorithm for training collaboratively,” in Proc. of 2006
IEEE information Theory Workshop, Punta del Este, Uruguay, 2006.

[12] M. G. Rabbat and R. D. Nowak, “Quantized incremental algorithms
for distributed optimization,” IEEE J. Special Areas Comunication,
vol. 23, no. 4, pp. 798–808, 2006.

[13] J.A.K.Suykens and J. Vandewalle, “Least square support vector ma-
chine classifiers,” Neural Processing Letters, vol. 9, no. 3, pp. 293–
300, 1999.

[14] S. Vijayakumar and S. Wu, “Sequential support vector classifiers and
regression,” in Proc. of Int. Conf. on Soft Computing, Genoa, Italy,
1999, pp. 610–619.

[15] T. Frieb, N. Cristianini, and C. Campbell, “The kernel-adatron al-
gorithm: a fast and simple learning procedure for support vector
machines,” in Proc. of the 15th Int. Conf. on Machine Learning, 1998,
pp. 188–196.

[16] V. Vapnik, The nature of statistical learning theory. Springer-Verlag,
New York, 1995.

[17] A. J. Smola and B. Schlkopf, “A tutorial on support vector regression,”
Statistics and Computing, vol. 14, pp. 199–222, 2004.

[18] D. Gu and Z. Wang, “Distributed regression over sensor networks:
an support vector machine approach,” in Proc. of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS08),
Nice, France, Sept. 2008.

2931

