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Abstract— Two controllers capable of achieving asymptotic
convergence of position and velocity errors, of the ith-
manipulator within a multiple robot network, are proposed.
The controllers employ adaptive techniques to find an estimate
of the physical parameters of the nonlinear dynamics of the
robot network. Moreover, the controllers can deal with different
connectivity topologies (ring and star) and and can handle time-
delays in the communications. Simulations, using a ten robot
manipulators network with different connectivity topologies,
that confirm the theoretical results are presented.

I. INTRODUCTION

One of the basic applications that require synchronization

of multiple manipulators is teleoperators control [1], [2],

[3]. In this paper we extend our previous results on control

of bilateral teleoperators [4] to the more general problem

of nonlinear synchronization of multiple robot manipulators

with coupling time-delays.

Motivated by applications in physics, biology and en-

gineering the study of synchronization of collections of

dynamic systems has become an important topic in control

theory [5], [6], [7]. Particularly, Cheong et al. [8] achieve

state synchronization on a ring topology of interconnected

linear dynamical systems using Smith predictors. Yao et al.

[9] address the problem of synchronizing complex dynamical

networks employing passivity-based control and lineariza-

tion. Passivity is also exploited by Chopra and Spong [10]

to demonstrate finite L2-gain of interconnected systems with

time-delays. Rodriguez and Nijmeijer [11], using an exact

model controller together with nonlinear observers, achieve

position synchronization of cooperative manipulators. Adap-

tive control has been employed in several works. Among

them, Sun and Mills [12] propose a controller capable of

coordinating multirobot systems without time-delays using

an integral term of the synchronization error. Applying

contraction analysis [13], Chung and Slotine [14] present

a general framework for the synchronization of Lagrangian

systems with different network topologies. Zhu [15] analyzes

the internal forces of manipulated objects and includes rigid

constraints in the controller synthesis.

This paper employs adaptive control to deal with two basic

problems: 1) synchronization of positions and velocities of a
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network of m−robots; 2) position and velocity tracking of a

given desired trajectory. First the position error with regards

to a given network topology, namely ring or star, and with a

given connectivity, namely unilateral or bilateral, is defined.

Then two controllers capable of solving the aforementioned

problems are presented. The main novelty of this approach,

which distinguishes it from existing techniques, is the use

of nonlinear couplings among the agents in the proposed

control law. Although nonlinear couplings have already been

studied in [5], [16], they have been restricted to be first–

third quadrant, to preserve the passivity properties required

for the stability analysis. It should be underscored that the

second controller does not need acceleration measurements

in order to prove asymptotic synchronization of positions

and velocities. Finally, some simulations with ten 2-Degrees

Of Freedom (DOF) manipulators with different physical

parameters are performed.

II. m−ROBOTS NETWORK DYNAMICS

The dynamic behavior of a n-DOF manipulator can be

derived from the Euler-Lagrange equations of motion

L(q, q̇) =
1

2
q̇⊤M(q)q̇ − U(q);

d

dt

∂L

∂q̇
−

∂L

∂q
= τ

where L(q, q̇) is the so-called Lagrangian and U(q) is the

potential energy. q̇,q ∈ R
n are the joint velocity and position

and M(q) ∈ R
n×n is the inertia matrix. These equations can

be written as M(q)q̈+C(q, q̇)q̇+g(q) = τ , where q̈ ∈ R
n

is the joint acceleration; C(q, q̇) ∈ R
n×n is the Coriolis and

centrifugal effect; g(q) = ∂U(q)
∂q

∈ R
n is the gravitational

force and τ ∈ R
n is a generalized force. This manipulator

dynamics posses some important and well–known properties

[17], [18]:

P1. 0 < λm{M(q)}I ≤ M(q) ≤ λM{M(q)}I < ∞
P2. Ṁ(q) = C(q, q̇) + C⊤(q, q̇)
P3. ∃kc ∈ R>0 : |C(q, q̇)q̇| ≤ kc|q̇|

2.

P4. M(q)q̈ + C(q, q̇)q̇ + g(q) = Y(q, q̇, q̈)θ

where, in P4, Y(q, q̇, q̈) ∈ R
n×p is a regressor matrix of

known functions and θ ∈ R
p is a constant vector with the

manipulator physical parameters (link masses, moments of

inertia, etc.).

The dynamics of a network of m−robots with different

values of physical parameters, i.e., different inertia and

Coriolis matrices, and different gravity vectors, are

Mi(qi)q̈i + Ci(qi, q̇i)q̇i + gi(qi) = τ i (1)

where i ∈ m̄ := {1, ...,m}. It is assumed that the manipu-

lators consist of fully actuated revolute joints.
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III. NETWORK TOPOLOGY
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ei = q̃i,i−1 ei = q̃i,i−2

ei = q̃i,i−1 + q̃i,i+1 ei = q̃i,i−2 + q̃i,i+2

Fig. 1. Network topologies for a group of 5 robot manipulators and their
corresponding position error function. a) unilateral ring, b) bilateral ring, c)
unilateral star, d) bilateral star.

Each manipulator can be seen as a node of a network

(graph) and its interconnection with other manipulators

(nodes) can be defined using different network topologies.

If the robot manipulators are connected, for example, using

an unilateral ring topology, then the position error of the ith-

manipulator can be defined as ei = qi − qi−1(t − Ti,i−1),
where Ti,i−1 is the coupling time-delay from robot i − 1 to

i. If the interconnection is bilateral then ei = 2qi−qi−1(t−
Ti,i−1)−qi+1(t−Ti,i+1). It should be noted that all indexes

are modulus m and are contained in the set m̄, e.g., q0 = qm,

q−1 = qm−1, qm+1 = q1 and qm+2 = q2.

From graph theory, in the absence of time-delays, these

error functions can be generalized using a Laplacian matrix

L ∈ R
m×m, relating the ith- and the jth-robot manipulators,

as

e = (L ⊗ I)col(q1,q2, ...,qm)

where e = col(e1, ..., em), I is a n×n identity matrix and ⊗
is the Kronecker product [19], [20]. The topologies presented

in this paper correspond to balanced and strongly connected

graphs. For which, |e| → 0 ⇔ q → (α1m ⊗ q0), ∀α ∈
R,q0 ∈ R

n and 1m = col(1, . . . , 1).
In order to analyze time-delays in the interconnections, let

us start by defining the variable q̃i,j ∈ R
n, that relates the

position of the ith- and the jth-robot manipulators, as

q̃i,j = qi − qj(t − Ti,j).

The position error, of the different robot network topologies

covered in this paper (see Fig.1), is given by

ei = q̃i,i−k + (c − 1)q̃i,i+k

= cqi − qi−k(t − Ti,i−k) − (c − 1)qi+k(t − Ti,i+k)

where c ∈ {1, 2} is the connectivity degree. c = 1 stands for

unilateral connectivity and c = 2 for bilateral connectivity.

k ∈ {1, 2} is the adjacency index. k = 1 represents a ring

topology and k = 2 a star topology. The corresponding

velocity error is

ėi = ˙̃qi,i−k + (c − 1) ˙̃qi,i+k (2)

= cq̇i − q̇i−k(t − Ti,i−k) − (c − 1)q̇i+k(t − Ti,i+k).

For the unilateral topologies (c = 1), such as Fig.1.a

and Fig.1.c, ei = q̃i,i−k. On the other hand, for bilateral

topologies (c = 2), such as Fig.1.b and Fig.1.d, ei = q̃i,i−k+
q̃i,i+k. Consequently, ėi = ˙̃qi,i−k and ėi = ˙̃qi,i−k + ˙̃qi,i+k,

respectively.

Remark 1: In this paper we assume that m ≥ k + 1.

On the other hand, the network topologies covered in the

paper are strongly connected and balanced, which means

that, there exists a directed path from robot i to robot j

and a directed path from j to i for every pair i, j ∈ m̄, and

every robot exchanges information with the same number

of robots. These facts allow to show that synchronization is

achieved when |ei| → 0, in this scenario,

qi →
1

c
[qi−k(t − Ti,i−k) + (c − 1)qi+k(t − Ti,i+k)],

and the only solution is all qi be the same, e.g., for c =
1, k = 1, qi → qi−1(t−Ti,i−1), and for illustration purposes

consider Ti,j = 0, thus q1 → qm, q2 → q1 ... qm → qm−1.

Hence, q1 → qm → qm−1 → ... → q1.

IV. ACCELERATION BASED CONTROLLERS

In this section two controllers are presented. In the first

of them, it is considered that the nonlinear model is known,

and in the second, adaptive control is employed to provide

asymptotic stability.

A. The Known Model Approach

Let us define a synchronizing signal as

ri = ėi + λei, (3)

where λ is a diagonal positive definite matrix.
The proposed controllers are

τ i = 1

c
(Mi [q̈i−k(t − Ti,i−k) + (c − 1)q̈i+k(t − Ti,i+k) − λėi] +

+Ci [q̇i−k(t − Ti,i−k) + (c − 1)q̇i+k(t − Ti,i+k) − λei] +
+ gi − Kiri)

(4)

where Ki = K⊤

i > 0. Substituting controllers (4) on the

system dynamics (1), using (3), yields

Mi(qi)ṙi + Ci(qi, q̇i)ri + Kiri = 0 (5)

For any connectivity and any topology in Fig 1, with

any coupling delays Ti,j , it is trivial to prove that,

setting λm{Ki} > λM{Mi}, |ri| → 0 exponen-

tially. Take Vi = 1
2r

⊤

i Mi(qi)ri. Using (5) and P2, yields

V̇i ≤ λm{Ki}|ri|
2. And invoking Lemma 1, which is pre-

sented in the Appendix, it is also proved that |ėi| → 0 and

|ei| → 0.

B. The Adaptive Control Approach

The adaptive version of (4) is

τ i = 1

c

(

M̂i [q̈i−k(t − Ti,i−k) + (c − 1)q̈i+k(t − Ti,i+k) − λėi] +

+Ĉi [q̇i−k(t − Ti,i−k) + (c − 1)q̇i+k(t − Ti,i+k) − λei] +
+ ĝi − Kiri)

(6)

where M̂i, Ĉi, ĝi are the estimates of the inertia and Coriolis

matrices, and the gravity forces, respectively.

3309



From P4, these controllers can be also written as

τ i = Yi(qi, q̇i, ei, ėi, q̇i−k, q̈i+k)θ̂i − Kiri

where Yi are the regressor matrices of known functions, θ̂i

are the physical estimated parameters.

Similar to (5), substituting (6) on (1), yields

Mi(qi)ṙi + Ci(qi, q̇i)ri + Kiri = Yiθ̃i = Ψi (7)

where θ̃i = θ̂i − θi are the errors between the estimation

and the unknown real parameters.

Remark 2: As first shown in [21], (7) defines an output

strictly passive map Ψi 7→ ri. Consider Vi = 1
2r

⊤

i Mi(qi)ri

as a storage function. From which, after evaluating along (7),

it can be obtained V̇i ≤ r⊤i Ψi − λm{Ki}|ri|
2. Integrating

from 0 to t, and due to Vi > 0, yields
∫ t

0
r⊤i Ψidσ ≥

λm{Ki}‖ri‖
2
2 − Vi(0). This suggests that if it is possible

to generate a passive map −ri 7→ Ψi then ri ∈ L2. This is

due to the well-known passivity theorem that ensures L2-

stability of the feedback interconnection of a passive and an

output strictly passive map [22].

Remark 3: It is easy to prove that the map −ri 7→ Ψi is

passive with the following parameter estimation law

˙̂
θi = −ΓiY

⊤

i ri, (8)

where Γi = Γ⊤

i > 0 and Yi is defined as in (6). Note that,

due to
˙̃
θi = ˙̂

θi, r⊤i Ψi = r⊤i Yiθ̃i = −θ̃
⊤

i Γ−1
i

˙̃
θi. Hence,

−
∫ t

0
r⊤i Ψidσ =

∫ t

0
θ̃
⊤

i Γ−1
i

˙̃
θidσ = 1

2 θ̃
⊤

i Γ−1
i θ̃i − κi ≥ −κi,

where κi = 1
2 θ̃

⊤

i (0)Γ−1
i θ̃i(0). Thus −ri 7→ Ψi is passive.

Proposition 1: Consider (7) with the estimation law (8).

Then, for any robot network topology and independently

of the magnitude of the constant coupling time-delays Ti,j ,

|ei|, |ėi|, |ri| → 0 as t → ∞.

Proof: Consider Vi = 1
2r

⊤

i Mi(qi)ri + 1
2 θ̃

⊤

i Γ−1
i θ̃i,

Vi is positive definite and radially unbounded w.r.t ri and

θ̃i. Evaluating V̇ on (7) and (8), yields V̇ = −r⊤i Kiri.

Hence, ri ∈ L2 ∩ L∞ and θ̃i ∈ L∞. From (3), Ei(s) =
(sI + λ)−1Ri(s), where s is the Laplace variable, hence

from Lemma 1, it follows that ei ∈ L2 ∩ L∞, ėi ∈ L2,

and |ei| → 0 as t → ∞. Boundedness of Yi is established

with ri, θ̃i ∈ L∞. Hence, from (7) and P1, it can be

concluded that ṙi ∈ L∞ and, by Barbălat’s Lemma, |ri| → 0,

consequently |ėi| → 0.

V. VELOCITY BASED CONTROLLERS

A. The Known Model Approach

In this case the synchronizing signal is given by

ǫi = q̇i + λei. (9)

An interesting fact of strongly connected and bal-

anced graphs, that will be used in the proofs, is that
∑N

i=1

∑n
k=1 ǫik

=
∑N

i=1

∑n
k=1 q̇ik

, when Ti,j = 0. This

follows from the fact that the Laplacian L ∈ R
m×m of

such graph has a left eigenvector of all ones [19]. Thus,

if we define e ∈ R
mn –similarly to q—piling up the m

components ei we can write (9) as ǫ = q̇ + (L ⊗ Λ)q.

The proposed velocity-based controllers, for the ith-

manipulator, are

τ i = −Mi(qi)λėi−Ci(qi, q̇i)λei+gi−Kiǫi−Bėi. (10)

where Ki = K⊤

i > 0 and B > 0 is diagonal. Using (9) and

(10) we can write (1) as

Mi(qi)ǫ̇i + Ci(qi, q̇i)ǫi + Kiǫi + Bėi = 0. (11)

Remark 4: If we remove Bėi from (10), yields

Mi(qi)ǫ̇i + Ci(qi, q̇i)ǫi + Kiǫi = 0, which is similar to

(5). Exponential convergence of ǫi to zero can be easily

proved with Vi = 1
2ǫ

⊤

i Mi(qi)ǫi. However, due to the form

of (9), Lemma 1 cannot ensure convergence of ei to zero.

This is precisely the reason why Bėi has to be included in

the controllers.

Proposition 2: Consider (11). Then, for any robot network

topology and for any constant coupling time-delays Ti,j ,

position errors and velocities asymptotically converge to

zero.
Proof: Consider the following Lyapunov-Krasovskiĭ

functional

V =
1

2

m
∑

i=1






ǫ
⊤

i Miǫi + e
⊤

i λBei + c

t
∫

t−Ti,j

q̇
⊤

i Bq̇idσ






(12)

where c ∈ {1, 2} represents the connectivity order. V is

positive definite and radially unbounded in ǫi, ei. Its time-

derivative along (11), using P2, is given by

V̇ = −

m
∑

i=1

[

ǫ
⊤

i Kiǫi + q̇⊤

i Bėi

]

+ (13)

+

m
∑

i=1

[ c

2
(q̇⊤

i Bq̇i − q̇⊤

i (t − Ti,j)Bq̇i(t − Ti,j))
]

.

Factoring B and invoking Lemma 2 to the resulting term,

yields, for c = 1, V̇ = −
m
∑

i=1

[

ǫ
⊤

i Kiǫi + 1
2
˙̃q
⊤

i,i−kB
˙̃qi,i−k

]

,

and for c = 2,

V̇ = −

m
∑

i=1

[

ǫ
⊤

i Kiǫi +
1

2
( ˙̃q

⊤

i,i−kB
˙̃qi,i−k + ˙̃q

⊤

i,i+kB
˙̃qi,i+k)

]

.

In both cases, V ≥ 0 and V̇ ≤ 0. Hence, ǫi ∈ L2 and

ǫi, ei ∈ L∞. Note that, for c = 1, ˙̃qi,i−k ∈ L2 and for

c = 2, ˙̃qi,i−k, ˙̃qi,i+k ∈ L2, implying that ėi ∈ L2. From (9)

one can also conclude that q̇i ∈ L∞, hence ėi ∈ L∞.

From (15), it can be shown that ǫ̇i ∈ L∞. Hence, with

ǫi ∈ L∞ ∩ L2, ǫ̇i ∈ L∞ it is proved that ǫi → 0.

ǫ̇i, ėi ∈ L∞ imply that q̈i ∈ L∞, hence ëi ∈ L∞. This

last, and the fact that ėi ∈ L∞ ∩ L2 prove that |ėi| → 0.

Now, ei, ėi, ëi ∈ L∞ and |ėi| → 0 imply that

lim
t→∞

∫ t

0
ėidσ = ei − ei(0) = ki < ∞. On the other hand,

lim
t→∞

|ǫi| = lim
t→∞

|q̇i + λei| = lim
t→∞

|q̇i + λ(ki − ei(0))| = 0

imply that when t → ∞, q̇i → −λ(ki − ei(0)) that is

constant. This and |ėi| → 0 ensure that qi − qj(t− Ti,j) →
qi − qj . Thus, in the limit we can use the Laplacian

3310



matrix and its properties to show that
∑N

i=1

∑n
k=1 ǫik

=
∑N

i=1

∑n
k=1 q̇ik

. Hence, the fact that |ǫi| → 0 implies that

q̇i = 0. Thus, |q̇i| → |ei| → 0. This completes the proof.

B. The Adaptive Control Approach

The proposed adaptive controllers are

τ i = −M̂i(qi)λėi−Ĉi(qi, q̇i)λei+ĝi−Kiǫi−Bėi, (14)

thus, τ i = Yi(qi, q̇i, ei, ėi)θ̂i − Kiǫi − Bėi.

Using (9) and (14), (1) becomes

Mi(qi)ǫ̇i +Ci(qi, q̇i)ǫi +Kiǫi +Bėi = Yiθ̃i = Φi (15)

Proposition 3: Consider (15) together with the estimation

law
˙̂
θi = −ΓiY

⊤

i ǫi. (16)

Then, for any robot network topology and for any constant

coupling time-delays Ti,j , the following holds |ǫi| → 0 as

t → ∞. Moreover, |q̇i|, |ei| → 0.

Proof: The proof is established with function (12)

plus the term 1
2

∑m
i=1 θ̃

⊤

i Γ−1
i θ̃i. In this case such V is

positive definite and radially unbounded in ǫi, ei, θ̃i, and

its time-derivative along (15) and (16), using P2, is equal

to (13). Hence V ≥ 0 and V̇ ≤ 0 for c ∈ {1, 2}. Thus,

ǫi, ėi ∈ L2 and ǫi, ei, θ̃i ∈ L∞. From (9) it is concluded

that q̇i ∈ L∞, hence ėi ∈ L∞. All these bounded signals

imply that Φi ∈ L∞.

The rest of the proof follows verbatim the proof of

Proposition 2.

C. Synchronization to a Common Desired Trajectory

Suppose now that the objective is to drive the manipu-

lators to a common, twice differentiable, desired trajectory

qd ∈ R
n, in this scenario the position error of the ith-

manipulator becomes

ei = (c+1)qi−qi−k(t−Ti,i−k)−(c−1)qi+k(t−Ti,i+k)−qd.

The acceleration based controllers (6), become

τ i = 1

c+1
(ĝi − Kiri +

+M̂i [q̈i−k(t − Ti,i−k) + (c − 1)q̈i+k(t − Ti,i+k) + q̈d − λėi] +

+ Ĉi [q̇i−k(t − Ti,i−k) + (c − 1)q̇i+k(t − Ti,i+k) + q̇d − λei]
)

from which we can recover (7) and Proposition 1 holds.

Thus, in this scenario |ei| → 0 for any Ti,j and any

connectivity topology.

The employment of qd in controllers (14) leaves (15)

unchanged. And, for a given constant qd, Proposition 3

holds.

VI. SIMULATIONS

The simulations are performed with ten 2-DOF nonlin-

ear manipulators with revolute joints. Their corresponding

nonlinear dynamics are modeled by (1) where the elements

of the inertia matrices Mi(qi) are Mi11 = αi + 2βic2i
,

Mi12 = Mi21 = δi + c2i
and Mi22 = δi; the elements of

the Coriolis and centrifugal matrices Ci(qi, q̇i) are

Ci11 = 2Ci12 = −2βis2i
q̇2i

, Ci21 = βis2i
q̇1i

and Ci21 = 0;

and, finally, the elements of the gravity forces gi(qi) are

gi1 = 1
l2i

gδic12i
+ 1

l1i

(αi − δi)c1i
and gi2 = 1

l2i

gδic12i
. In

these expressions c2i
, s2i

and c12i
are the short notations for

cos(q2i
), sin(q2i

) and cos(q1i
+ q2i

), respectively; qzi
is the

articular position of link z of manipulator i, with z ∈ {1, 2};

q̇1i
and q̇2i

are the respective revolute velocities of the two

links; αi = l22i
m2i

+ l21i
(m1i

+ m2i
), βi = l1i

l2i
m2i

and

δi = l22i
m2i

. lki
and mki

are the respective lengths and

masses of each link.

The following parametrization is proposed for each ma-

nipulator

Y(q, q̇, q̈) =

[

q̈1 Y21 q̈2 gc12 gc1

0 c2q̈1 + s2q̇
2
1 q̈1 + q̈2 gc12 0

]

,

θ =
[

α β δ 1
l2

δ 1
l1

(α − δ)
]⊤

,

where Y21 = 2c2q̈1 + c2q̈2 − s2q̇
2
2 − 2s2q̇1q̇2.

The physical parameters are: for manipulators 1, 2 and 3
the length of links l11,2,3

and l21,2,3
is 0.38m, the masses at

each link are m11,2,3
= 3.9473kg, m21,2,3

= 0.6232kg; for

manipulators 4, 5 and 6 the length of links l14,5,6
and l24,5,6

is 0.48m, the masses at each link are m14,5,6
= 3.5473kg,

m24,5,6
= 1.1232kg; and for the last four, 7, 8, 9 and 10,

l17,8,9,10
= l27,8,9,10

= 0.55m and m17,8,9,10
= 2.9473kg,

m27,8,9,10
= 0.8232kg.

Due to space limitations, only simulations with the veloc-

ity based adaptive controller using a bilateral ring topology

(c = 2 and k = 1) are presented. For this case λ = 2I in

(9), the matrices Yi for (14) are given by
[

−ėli Y12 −ėi2 gci12 gci1

0 −ci2 ėi1 − si2 q̇i1ei1 −ėi1 − ėi2 gci12 0

]

where Y12 = −2ci2 ėi1 − ci2 − ėi2 + si2 q̇i2ei2 + 2si2 q̇i2ei1 .

The initial conditions are q̈i(0) = q̇i(0) = 0 and all qi(0)
differ one from another. The controllers gains are: Γi = 4I,

Ki = 15I and B = 10I.

The first set of simulations depict the synchronization

results from the different initial conditions without a common

desired position. From Fig. 2 it can be observed that, when

the coupling time-delays are negligible, i.e., Ti,j = 0.01s,

the manipulators synchronize to the average of their ini-

tial conditions. Incrementing the coupling delays, such that

Ti,j = 0.5s, results on more time to synchronize compared to

negligible delays, as can be seen in Fig. 3. Moreover, when

t = Ti,j = 0.5s it can be observed that the error grows

due to the arrival of past data. Large time-delays induce

an interesting behavior, as seen in Fig. 4 when Ti,j = 3s,

that is the reproduction of the initial error every t = nTi,j

for n = 1, 2, .... In these three simulations, independently

of the coupling time-delays, all manipulator position errors

asymptotically converge to zero.

The second set of simulations deals with the synchro-

nization to a common desired position qd = [−1, 1]⊤.

Fig. 5 depicts a simulation for Ti,j = 0.01s, Fig. 6 for

Ti,j = 0.5s and, finally, Fig. 7 for Ti,j = 3s. In all cases the

manipulators positions synchronize at the desired position.

Note, however, that as coupling time-delays increase, the
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Fig. 2. Synchronization without a common trajectory with a bilateral ring
topology and negligible time-delays, i.e., Ti,j = 0.01s.
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Fig. 3. Synchronization without a common trajectory with a bilateral ring
topology where Ti,j = 0.5s.

manipulators require more time to reach the desired position,

but they always move in a synchronous way.

VII. CONCLUSIONS

This paper presents four controllers, two assuming the

knowledge of the nonlinear model and two adaptive, able

to synchronize the positions and velocities of a multiple

robot network. It has been proved that synchronization occurs

despite coupling time-delays. The robots of the network

can track a common desired trajectory or, without such

trajectory, can find a consensus. The main difference with

prior works is that position error is used in the estimation

law, and the position error of the ith-manipulator depends

on the chosen connectivity topology, that can be either ring

or star, unilateral or bilateral. Simulation results show the

effectiveness of the proposed approaches. Future works will

deal with variable coupling time-delays and more complex

networks.

Recently, in [14], [23] an attempt has been made to extend

the Slotine and Li controller to the case of networks of
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Fig. 4. Synchronization without a common trajectory with a bilateral ring
topology and large coupling time-delays, i.e., Ti,j = 3s.

0 1 2 3

−1

0

1

q
1
 (

ra
d

)

0 1 2 3
−1

0

1

q
2
 (

ra
d

)

0 1 2 3

−2

0

2

Time (s)

E
rr

o
r 

(r
a

d
)

Fig. 5. Synchronization to a common desired position qd = [−1, 1]⊤rad
using the acceleration-free controller with a bilateral ring topology and
negligible time-delays, i.e., Ti,j = 0.01s.
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Fig. 6. Synchronization to a common desired position qd = [−1, 1]⊤rad
using the acceleration-free controller with a bilateral ring topology and
Ti,j = 0.5s.

EL systems. To put in perspective our contribution, we

recall the closed–loop dynamics obtained in those papers,

namely Miṡi + Cisi + K1si −
∑

j K2(sj − si) = 0 with

si := ˙̃qi + λq̃i, the signal used in the classical Slotine and

Li controller, and K1,K2 ∈ R
n×n are some suitable gain

matrices. A standard analysis with s⊤Ms gives conditions on

K1,K2 such that s ∈ L2 and, consequently, that q̃ → 0. This

controller can track a desired trajectory but, in the absence

of a reference position, drives all positions to zero.

Our current research proceeds along the following av-

enues.

• Generalizing the controllers for complex networks,

modeled with balanced and connected graphs.

• Determining the convergence point of the positions,

without adaptation, but in the face of communication

delays.

• Studying the case of time varying communication de-
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Fig. 7. Synchronization to a common desired position qd = [−1, 1]⊤rad
using the acceleration-free controller with a bilateral ring topology and large
coupling delays Ti,j = 3s.
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lays. The results reported in [3] for teleoperators lead

to believe that this is a feasible problem.

• Providing some design guidelines for the gains

λ,Bi,Ki and Γi. Although the stability results are valid

for arbitrary positive values of these gains, simulations

show that they play a key role on the transient perfor-

mance, that should be clarified.

APPENDIX

Lemma 1: Let e, r ∈ R
n and E(s) = H(s)R(s), where

H(s) is an n×n strictly proper, exponentially stable transfer

function and s is the Laplace variable. Then r ∈ L2 implies

that e ∈ L2 ∩ L∞, ė ∈ L2, e is continuous, and |e| → 0 as

t → ∞. If, in addition, |r| → 0 as t → ∞, |ė| → 0 [24].

Lemma 2: The following relation holds for c ∈ {1, 2} and

k ∈ {1, 2}.

m
∑

i=1

[ c

2
(|q̇i|

2 − |q̇i(t − Ti,j)|
2) − q̇⊤

i ėi

]

=

= −
1

2

m
∑

i=1

(| ˙̃qi,i−k|
2 + (c − 1)| ˙̃qi,i+k|

2). (17)

Proof: First note that the right hand side of

(17), for c = 1 or c = 2, is − 1
2

∑m
i=1 |

˙̃qi,i−k|
2 or

− 1
2

∑m
i=1(|

˙̃qi,i−k|
2 + | ˙̃qi,i+k|

2), respectively. The proof

shows that the left hand side of (17) returns these same

square terms for c = 1 or c = 2.

Let us substitute, on the left hand side of (17), the term

ėi in (2). This yields
m

∑

i=1

( −
c

2
(|q̇i|

2 + |q̇i(t − Ti,j)|
2) + (18)

+ q̇⊤

i [q̇i−k(t − Ti,i−k) + (c − 1)q̇i+k(t − Ti,i+k)]
)

Now, for c = 1, (18) becomes
m

∑

i=1

[

q̇⊤

i q̇i−k(t − Ti,i−k) −
1

2
(|q̇i|

2 + |q̇i(t − Ti,j)|
2)

]

(19)

Now, the key part of the proof resides in the following

relation
∑m

i=1 |q̇i(t − Ti,j)|
2 =

∑m
i=1 |q̇i−k(t − Ti,i−k)|2,

which is due to the fact that all indexes must be contained

in the set m̄, i.e., i, i−k ∈ m̄, and as long as the sum covers

all indexes, the relation holds. Hence, (19) changes to
m

∑

i=1

[

q̇⊤

i q̇i−k(t − Ti−k) −
1

2
(|q̇i|

2 + |q̇i−k(t − Ti,i−k)|2)

]

,

clearly, this is equal to − 1
2

∑m
i=1 |

˙̃qi,i−k|
2.

Using the same procedure, with the additional fact that
∑m

i=1 |q̇i(t − Ti,j)|
2 =

∑m
i=1 |q̇i+k(t − Ti,i+k)|2, it is con-

cluded that, for c = 2, (18) is equal to − 1
2

∑m
i=1(|

˙̃qi,i−k|
2 +

| ˙̃qi,i+k|
2).
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