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Abstract— Percutaneous interventions have attracted 

significant interest in recent years, but most approaches still 

rely on straight line trajectories between an entry site and a soft 

tissue target. Thus, to this day, a flexible probe able to bend 

along predefined curvilinear trajectories within a highly 

compliant medium without buckling is still an open research 

challenge. In this paper, we describe the concept of a 

“programmable bevel” tip, which is inspired by the ovipositor of 

certain wasps: the offset between two parts of a probe 

determines the steering direction of the tip thanks to a set of 

bevels included at the tip of each segment. A kinematic model of 

the flexible probe and programmable bevel arrangement is 

derived. Several parameters of the kinematic model are 

calibrated experimentally using our first prototype of the 

flexible probe, codenamed STING. Open- (feed-forward) and 

closed-loop (feedback) control strategies are then derived and 

implemented in simulation using the chained form 

representation, originally developed to control car-like robots. 

Simulated results demonstrate accurate two-dimensional needle 

steering in the presence of velocity, position, and initial posture 

disturbances. 

I. INTRODUCTION 

ercutaneous intervention has always attracted significant 

interests because it is performed through a very small port 

in the skin [1]. For instance, tumor biopsy, brachytherapy, 

deep brain stimulation and localized drug delivery currently 

benefit from this operative technique to reduce tissue trauma 

and reduce hospitalization time.  

If the lesion is reachable through a straight path, a straight 

rigid needle can be used. When a straight path does not seem 

possible or is not safe, a steerable needle can be utilized to 

reach a target while avoiding „no-go‟ areas. With a flexible 

needle, however, localization of the tip position becomes 

more difficult because it is no longer possible to extrapolate 

tip position from a base measurement.  

Consequently, there have been several approaches to the 

modeling of flexible needle behavior in soft tissue. DiMaio 

and Salcudean [2] and Glozman and Shoham [3] modeled the 

deflection of a thin needle as a function of tissue deformation 

to steer the tip around predefined obstacles in the plane of 

 
Manuscript received March 5, 2010. This work was supported by the 

EU-FP7 Project ROBOCAST.  

S. Y. Ko is with Department of Mechanical Engineering, Imperial College 

London, SW7 2AZ, UK (e-mail: s.ko@imperial.ac.uk).  
B. L. Davies is with Department of Mechanical Engineering, Imperial 

College London, UK and the Italian Institute of Technology, Genova, Italy 

(e-mail: b.davies@imperial.ac.uk).  
F. Rodriguez y Baena is with Department of Mechanical Engineering and 

the Institute of Biomedical Engineering, Imperial College London, SW7 

2AZ, UK (corresponding author to provide phone: +44-(0)20-7594-7046; 
fax: +44-(0)20-7594-1472; e-mail: f.rodriguez@imperial.ac.uk). 

insertion by applying a suitable moment at the needle base. 

An alternative approach, which has been exploited by several 

research groups over the past few years, centers upon the 

unique steering capabilities of a very thin needle with bevel 

tip.  Webster III et al. first proposed a kinematic model of the 

beveled tip needle to describe its behavior in soft tissue [4]. 

Alterovitz et al. then derived a motion-planning algorithm 

under uncertainty to obtain better targeting accuracy [5]. 

Reed et al. modeled the torsional dynamics of a flexible 

needle to analyze torsional behavior during needle insertion 

[6]. These studies have predominantly focused on open-loop 

trajectory following, which is effective in situations when 

appropriate models of the environment (i.e. the surrounding 

tissue), the needle, and their interaction can be obtained.  

In the presence of significant uncertainty, for instance that 

introduced by the complex deformations of a soft tissue under 

a dynamic load, feedback control is required to guarantee 

performance. Kallem and Cowan proposed a plane alignment 

control algorithm for needle steering [7]. They utilized a 

stereo camera to measure the tip position of a needle and 

implemented a full-state observer to estimate other states. As 

a method to change the curvature of a thin and flexible needle, 

Minhas et al. proposed a duty-cycling spinning algorithm [8].  

In the area of closed loop control of flexible needles, to our 

knowledge, only two demonstrations with image-guided 

feedback control are reported in the literature. Glozman and 

Shoham closed the control loop in their original approach [3] 

by means of fluoroscopic images, which were used to 

measure needle deflection during the insertion process  [9]. 

Also, Reed et al. implemented an “on-off” controller based on 

stereo video cameras, which modifies the trajectory to a 

predefined target (through “bevel right” and “bevel left” 

commands) in response to instantaneous measurements of tip 

position [10].  

Within this context, we are currently developing a 

bio-inspired flexible probe [11], which can alter its direction 

by means of a “programmable bevel tip” that will incorporate 

a small electromagnetic (EM) position sensor with up to six 

degrees of freedom of positional information. With this 

approach, closed loop control of the probe tip along an 

arbitrary trajectory can thus be achieved without the need for 

an external imaging system. 

This paper described the kinematic modeling of the probe 

and a two-dimensional needle steering feedback control 

algorithm, which is validated here in simulation and is 

currently undergoing experimental trials on a first prototype. 

Specifically, Section II explains the concept of 

“programmable bevel” and presents the kinematic model of 
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the probe and bevel assembly. Two-dimensional needle 

steering based on the kinematic model is explained in Section 

III. In Section IV, calibration methods to obtain important 

parameters of the kinematic model are described. Simulation 

results are summarized in Section IV, while a discussion of 

the simulation follows in Section V. Finally, conclusions and 

future work are outlined in Section VI.  

II.  “PROGRAMMABLE BEVEL” CONCEPT 

A. Bio-Inspired Programmable Bevel 

Our flexible probe was inspired by the ovipositor of the 

wood wasp, Sirex noctilio. The ovipositor is used to penetrate 

the bark of wood to deliver eggs through a long and hollow 

inner channel along its length. The ovipositor consists of 

several (two in the case of Sirex noctilio) valves, which are 

connected to each other by means of a special interlocking 

mechanism.  

Based on this unique biological design and that of other 

ovipositor assemblies, where the insertion angle is controlled 

by the offset between valves, the concept of a “programmable 

bevel” is proposed here, which is illustrated in Fig. 1. The 

probe insertion direction is a function of the offset between 

probe segments, which are connected by means of a specially 

designed dovetail-shaped interlock [12]. Each segment is 

controlled by a corresponding linear actuator, which is 

connected to the proximal end and enables independent 

forward and backward sliding motion of each segment with 

respect to the other. 

B. Kinematic Modeling 

In this paper we assume that trajectories are defined in a 

plane and that the probe is aligned with the plane during 

initial setup. Therefore, the kinematic model of the probe is 

currently dealt with in two-dimensional space. Webster III et 

al. showed that the kinematic model of a thin beveled tip 

needle could be considered similar to that of a bicycle model 

with a fixed steering angle [4]. In the case of our probe, the 

steering direction can be altered using the offset between the 

two halves (segments) and the kinematic model can thus be 

considered to be similar to that of a bicycle able to steer. Fig. 

2a shows the notation adopted to describe the flexible probe, 

while Fig. 2b shows the notation associated to a conventional 

bicycle model. If the origin of the bicycle model is chosen at 

the center of the rear wheel (Pb), its kinematic model is 

expressed as in (1), where x, y, θ, and φ indicate the x-axis and 

y-axis coordinates, the approach angle, and the steering angle 

of the bicycle model, respectively. In (1), v1, v2, and L indicate 

the forward velocity of a bicycle‟s body, the rate of change of 

steering angle, and the distance between the front and a rear 

wheels, respectively.  
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In (1), the relationship between the forward velocity (v1) 

and the rotational velocity ( ) determines the instantaneous 

curvature (ρ) of a real trajectory [7] and it is a function of the 

steering angle (φ). In contrast to the bicycle model, however, 

in our probe the instantaneous curvature is assumed to be a 

function of the steering offset (δt) at the tip of the probe, as in 

(2), where f(δt) is a monotonically increasing function of the 

steering offset. In this research, we simplify the definition of 

f(δt) by treating the curvature (ρ) as being proportional to the 

steering offset, with a coefficient κ (mm
-2

), based on 

preliminary experiments, as explained in Section IV-A. The 

kinematic model thus becomes as in (3), where v1 and vt2 

indicate the forward velocity and the rate of change of 

steering offset respectively.
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(3) 

 

The steering offset will be different if measured at the base 

rather than the tip of the probe, due to a number of factors 

associated with this mechanism of motion e.g. compressive 

and tensile deformation, probe body configuration and 

friction. Thus, let δ describe the offset between the two 

segments of the probe, as illustrated in Fig. 2, while δt 

describes the corresponding offset, measured at the tip of the 

probe. Disregarding material deformation, a relationship 

between the two offsets which takes into account the probe‟s 

configuration can be derived as follows. Considering a small 

segment of the flexible probe of length ds, as shown in Fig. 3, 

the curvature of the segment is 1/Rc and the distance to a 

 
Fig. 2. Notation comparison between our flexible probe and 
conventional bicycle model.  
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Fig. 1.  Programmable bevel tip concept: the offset between two 
interlocked segments of a flexible probe determines the steering 

direction of the tip.  
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neutral axis for each segment is rc. The length of each 

segment can be expressed as in (4). Given a segment with 

length ds, the angular difference between the two ends of the 

segment is dθ, as in (5), and the difference between the two 

halves becomes dδ, as in (6). By integrating both sides of (6), 

a relationship between Δδ and the approach angle θ (7), where 

ε (mm) is the distance between the neutral axes of the two 

segments, can be obtained. Assuming that the initial insertion 

direction for the probe is parallel to the x-axis, (i.e. θ0 = 0), the 

compensation amount is thus only proportional to the current 

tip direction of the probe.  
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To generate the correct steering offset δt at the tip of the 

probe, the prescribed offset imposed at the base, δ, should be 

adjusted by Δδ, as defined in (8).
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A modified kinematic model of the flexible probe which 

takes into account this adjustment is described in (9), where v1 

and v2 indicate the forward velocity and the rate of change of 

steering offset (with the offset applied at the base of the 

probe), respectively. Please note that vt2 in (3) and v2 in (9) are 

different quantities and that the shape of the trajectory does 

not affect the forward velocity v1, which is considered here to 

be the forward motion of the middle point of the steering 

offset.  
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Generally, the kinematic model of a non-holonomic system 

is nonlinear, as in (9), and can be expressed using the 

following equation:
  

 

vqGq )(  (10) 

where q is a 4-vector of the flexible probe‟s generalized 

coordinates [x, y, θ, δ]´, v is a 2-vector of input velocities [v1, 

v2]´, and the columns gi (i=1,2) of the 4×2 matrix G(q) are 

vector fields [13].  

III. TWO-DIMENSIONAL TRAJECTORY FOLLOWING 

A. Related Works and the Chained Form 

In order to construct a feedback control algorithm for the 

probe, we adopt an algorithm developed for car-like robots 

(e.g. [13-16]), which has received significant attention over 

the years. One of the well-structured methods presented in the 

literature utilizes the chained form representation [13, 14, 16]. 

In this method, the bicycle model, which is similar to the one 

developed here for the flexible probe, can be converted into a 

“(2.4)” single chained form using new states ξ as in (11), with 

two input velocities, (v1, v2), and four states (x, y, θ, δ). By 

applying a similar approach to the one explained in [13], the 

kinematic model of the probe can then be converted into the 

chained form, as illustrated in (12). The function M converts 

the original coordinates q into the chained form‟s coordinates 

ξ. Equation (13) describes the function N, which converts the 

chained form‟s input u = [u1, u2]‟ into the original input v.  
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Using the chained form to model the flexible probe, open- 

and closed-loop control become straightforward. First, based 

on a desired trajectory, open-loop or closed-loop input 

velocities can be computed using the chained form. Then, 

using (13), the inputs of the chained form can be converted 

back into the original inputs. 

B. Open-Loop Control 

Open-loop control implies the need to find input velocities 

to enable the probe to follow a predefined trajectory without 

access to feedback information. Given a desired trajectory as 

in (14), where ζ is an intermediate trajectory parameter, the 

derivatives of the desired trajectories are obtained as in (15). 

By defining ξd1 = xd and ξd4 = yd, the desired input for 

open-loop control can be obtained, as described in (16) [13]. 

In this case, the states of the probe will be as in (17). In this 

 
Fig. 3. Short segment of the flexible probe having two valves. 
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application, the value )(t  was utilized to keep the forward 

velocity vd1 constant using (16) and (18).  
  

))((

))((

tyy

txx

dd

dd








 (14) 

)()(
)(

)()(

)()(
)(

)()(

ty
dt

d

d

dy
ty

dt

d
ty

tx
dt

d

d

dx
tx

dt

d
tx

d
d

dd

d
d

dd





















  

(15) 

)(
33

)()(

4

22

2

1

t
x

yxyxxyxxyx
u

txu

d

dddddddddd
d

dd
















 
(16) 

dd

ddd

dddddd

dd

y

xy

xyxyx

x









3

3

3

2

1

)(








 

(17) 

)()()()()()( 2222

1 tyxtytxtv ddddd     (18) 

 

C. Closed-Loop Control 

De Luca et al. produced a feedback controller for trajectory 

tracking through approximate linearization [13]. This 

approach utilizes the state and input errors, which are denoted 

as in (19), to obtain the time-varying state space form.  
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The chained form can be represented as the nonlinear error 

equations in (20).  
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With the approximation ξ2 = ξd2 and ξ3 = ξd3, (20) can be 

converted to the linear state-space representation as in (21).  
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where   4321

~~~~~
  and   21

~~~ uuu . If input 

errors are defined as in (22), the closed-loop dynamics of the 

probe become as in (23), with the characteristic polynomial 

(24), the eigenvalues of which can be easily manipulated.  
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The overall control input to the chained form is thus:
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IV. SIMULATION AND EXPERIMENTAL CALIBRATION 

A. Steering Offset vs. Curvature Calibration 

In (2), it was assumed that the curvature would be a 

function of the steering offset. To investigate this relationship, 

a set of experiments was performed using a first prototype 

with 12 mm diameter, manufactured with rapid prototyping 

(RP) techniques in a rubber-like material (TangoBlack – 

FullCure 970, Objet; tensile strength of 2MPa; hardness of 61 

Shore Scale A; elongation at break of 48%) [11]. A 6 wt. % 

gelatin phantom, with a mixture of 1.3 ml of gelatin to 20ml 

of boiling water, was used in these experiments, as this 

solution at 20~21ºC is reported to nearly duplicate the 

resistance of in vitro canine brain at 38ºC [17]. A 

custom-made trocar, with 12.5mm inner diameter, was 

introduced to eliminate the possibility of buckling outside of 

the gelatin phantom. Six tests were performed, where the 

steering offset varied from 0mm to 25mm at 5mm intervals. 

Each trajectory was captured using a video camera (Sony 

Handycam HDR-SR10E) from a top-down view. Each image 

was calibrated using key reference points (i.e. the size of the 

gelatin box), then the shape of the probe was manually 

measured on each frame of the video capture as shown in Fig. 

4. Given the relatively small influence of out of plane 

deviations of the measured trajectories on the scaling 

coefficient κ, off-plane errors in this set of experiments were 

neglected for the sake of simplicity.   

In order to extract curvature information from the 

experimentally acquired points, a 4
th

-order polynomial fit 

(0.9927 ≤ R
2
 ≤ 0.9999) was used on the raw image data (green 

lines in Fig. 4). Curvature values for increasing insertion 

depths were then computed, as illustrated in Fig. 5a. Fig. 5b 

shows the average curvature recorded for each steering offset. 
 

Fig. 4.  Still images of the flexible probe with various steering offsets. 
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Based on these results, the curvature was found to be 

approximately proportional to the steering offset, with a 

coefficient )(1080.2 24  mm .  

B. Steering Offset Compensation 

The compensation coefficient ε in (7) was determined 

theoretically as twice the distance from the center to the 

centroid of each valve [18]. ε for a probe with two halves is 

thus )3()8( R  , and with four quarters is )3()28( R .  

C. Simulation 

In this section, a simulation of the flexible probe‟s 

performance when controlled via the chained form 

representation is presented. The general sequence of the 

simulation is shown in Fig. 6. First, Gaussian measurement 

noise (qgn) is added to the current states of the probe (q) in 

order to mimic disturbances in the EM tracker measurements 

[19] which will relay information about the tip of the flexible 

probe once real experiments on a functional prototype are 

performed. These measured states (qm) are used to obtain the 

states (ξ) of the chained form. Inputs (u) are then converted 

back into the input velocities (v) from the chained form, 

followed by the addition of velocity control noise (vgn). 

Finally, an input velocity (vm) is applied to simulate the 

behavior of the probe. TABLE 1 lists all parameters 

considered in this simulation.  
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V. RESULT & DISCUSSION 

Fig. 7 shows the simulation results obtained for the 

kinematic model of our flexible probe. Fig. 7a shows the 

simulation results for open-loop control with an exact initial 

posture; Fig. 7b shows the results of open-loop control with 

an initial posture perturbation; Fig. 7c shows the results of 

closed-loop control, which employs both the feed-forward 

and the feedback terms, with an initial posture perturbation 

equivalent to that in Fig. 7b.  

These simulation results show that the kinematic model 

and control strategy implemented for our flexible probe with 

a programmable bevel tip work as expected. Open-loop 

control results show near perfect trajectory following 

capabilities in the absence of noise and initial posture 

perturbation, the introduction of which quickly deteriorates 

tracking performance.  

In contrast, the closed-loop control simulation results show 

good convergence after 40mm motion, as shown in Fig. 7c. 

The maximum error after convergence was measured to be 

less than 0.3mm (emax < 0.3, x > 40). Indeed, faster 

convergence would be possible if larger eigenvalues were 

chosen (for these results, eigenvalues were set to 

)]31(05.0,1.0,1.0[ i ). However, considering the 

probe‟s dynamics and desired forward velocity are slow, 

these eigenvalues were deemed appropriate. In addition, since 

 
Fig. 7.  Simulation results with flexible probe. 

(a) Open-loop control with exact initial posture (b) Open-loop control with initial posture disturbance (c) Closed-loop control with initial posture disturbance
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TABLE 1. USED PARAMETERS FOR TRAJECTORY FOLLOWING 
SIMULATION 

Parameters Values 

Trajectory 
Equation (26) 

A, L 15mm, 150mm 

Exact initial posture [x0, y0, θ0, δ0]' [0mm, 0mm, 0°, 11.75mm]' 
Init. posture disturb. [x0, y0, θ0, δ0]' [0mm, 1mm, 2°, 11.75mm]' 

Measurement noise [xgn, ygn, θgn, δgn]' [0.9mm, 0.9mm, 0.3°, 0.5mm]' 

Control noise [vgn1, vgn2]' [0.5mm/s, 0.5mm/s]' 
Linear velocity vd1 1 mm/s 

Steering coeff. κ 0.000280 mm-2 

Compensation coeff. ε 7.20 mm 
Time constant τq, τv 0.2s, 0.2s 

Control gain [k1, k2, k3, k4] [0.1, 0.2, 0.02, 0.001] 

  

 
Fig. 5.  Measured curvature according to different steering offsets. 

        
Fig. 6.  Flow chart of simulation using the chained form. 
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closed-loop control can minimize the effect of uncertainty 

and external disturbances, it is expected that our flexible 

probe will mitigate the positional error introduced by, for 

example, an inaccurate coefficient κ between the steering 

offset and the curvature, and/or small perturbations in the 

initial insertion position.  

In the simulations, a first-order low pass filter with time 

constant of 0.2sec was utilized to reduce the effect of 

measurement noise. Since the probe moves slowly (i.e. 

approximately 1mm/sec or less), the delay introduced by the 

filtering process is negligible.  

Two limitations affect the definition of a trajectory for the 

control method described here. First, the trajectory needs to 

be differentiable three times to ensure that the feed-forward 

inputs in (16) can be computed. Second, the trajectory as 

described here can never be parallel to the y-axis, since x'd 

would become zero and ud2 infinity. Considering the probe‟s 

maximum curvature and intended application, such 

limitations are acceptable.  

VI. CONCLUSION & FUTURE WORK 

This paper describes on-going research into the control of a 

bio-inspired flexible probe. Based on the characteristics of 

certain ovipositing wasps, the concept of a “programmable 

bevel” was proposed to steer the probe in a predefined 

direction: the offset between probe segments determines the 

steering direction of the tip thanks to a set of bevels placed at 

the tip of each segment. A kinematic model of the probe was 

derived, based on its similarity to that of car-like robots. In 

this research, the instantaneous curvature of the probe is 

assumed to be a function of the steering offset, which is 

shown to be proportional to the steering offset through a 

simple set of experimental trials in gelatin. A compensation 

algorithm to account for differences in steering offset 

between base and tip coordinates was also proposed. Finally, 

open-loop (feed-forward) and closed-loop (feedback) control 

strategies for two-dimensional path following were 

implemented using the chained form representation. 

Simulation results demonstrate that both the kinematic model 

and control methods implemented for the probe perform as 

expected.  

Though these early simulation results are promising, 

research to date offers significant scope for future work. An 

experimental verification of the feedback control algorithm 

described, with a 12mm prototype of the flexible probe, is 

currently underway. In addition, we currently assume that 

there is no friction between probe segments and that the probe 

is very flexible, while being stiff in compression and in 

tension. However, experiments to date on the prototype show 

that such assumptions may be overoptimistic, which means 

that further improvements to the kinematic model are needed. 

Next, both the kinematic model and control schemes 

described here will be extended to three-dimensions. Finally, 

probe miniaturization will need to be studied intensively to 

ensure that this approach becomes clinically viable. A 

substantial decrease in the probe‟s outer diameter is also 

expected to increase the steering capabilities of the probe (i.e. 

produce a larger κ), further extending the range of potential 

clinical applications for the probe.  
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