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Abstract— The flutist robot WF-4RIV at Waseda University
is able to play the flute at the level of an intermediate human
player. So far the robot has been able to play in a statically
sequenced duet with another musician, individually communi-
cating only by keeping eye-contact. To extend the interactive
capabilities of the flutist robot, we have in previous publications
described the implementation of a Music-based Interaction
System (MbIS). The purpose of this system is to combine
information from the robot’s visual and aural sensor input
signal processing systems to enable musical communication with
a partner musician. In this paper we focus on that part of the
MbIS that is responsible for mapping the information from the
sensor processing system to generate meaningful modulation
of the musical output of the robot. We propose a two skill
level approach to enable musicians of different ability levels
to interact with the robot. When interacting with the flutist
robot the device’s physical capabilities / limitations need to be
taken into account. In the beginner level interaction system the
user’s input to the robot is filtered in order to adjust it to the
state of the robot’s breathing system. The advanced level stage
uses both the aural and visual sensor processing information.
In a teaching phase the musician teaches the robot a tone
sequence (by actually performing the sequence) that he relates
to a certain instrument movement. In a performance phase, the
musician can trigger these taught sequences by performing the
according movements. Experiments to validate the functionality
of the MbIS approach have been performed and the results are
presented in this paper.

I. INTRODUCTION

At the center of our research at Waseda University is
the development of humanoid musical performance robots.
These are robots that are able to perform on a musical
instrument, accurately emulating the human way of playing.
The Waseda Flutist Robot WF-4RIV, has been developed
over more than 15 years in several generations. The Waseda
Flutist robot is a humanoid robot, it has artificial lungs,
an artificial oral cavity, lips and vocal chord, as well as
arms and fingers to play a real flute instrument. It has a
total of 41-DOFs and is controlled by several computing
units, that besides doing the basic motor control also perform
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visual and aural sensor processing, as well as the translation
of sensor information into musical parameter modulation
data. Recently research on the robot has progressed to the
degree that the robot is able to play the flute at the level
of an intermediate human player. The current state of the
development of the robot mechanism and control system has
been published in [1] and [2].

Regarding this purpose our goal is to have the robot play
interactively together with a human band. Musicians in a
human Jazz band rely on giving visual and acoustic cues
to each other to determine to synchronize each other’s play
during a performance ([3]). In our research we try to make
the robot to be able to react to these cues in a musically
meaningful way.

In an approach similar to our work, Gil Weinberg con-
structed the percussion robot Haile ([4]) that is able to tune in
to the rhythm of a partner musician and within a certain limit
vary its performance to display improvisation capability. One
of the main differences to our system are shape and com-
plexity of the robot. Drum playing being a task where only
the musicians hand is involved to directly trigger a sound,
is compared to playing the flute a relatively simple activity.
Weinberg has concentrated on the interaction between human
musicians and his music robot. His robot can actively adjust
to the play of partner musicians, imitating their behavior of
creating a rhythm. His work uses the approach of analyzing
the recorded music data and extract information about the
current musical situation by applying a rhythmic rule-set.
Although we also base our aural interaction on imitating
the human musician, we do so by comparing musical input
with prerecorded sequences in the library using a histogram
method. A further substantial difference is that our system
also involves visual processing.

To realize interaction between the robot and human mu-
sicians; in [5], we have introduced the Musical based In-
teraction System (MbIS). So far we have mainly focused
on the visual and acoustic sensor processing. In this paper
we want to concentrate specifically on the last stage of the
robot’s performance system for translating sensor data into
musically meaningful performance modulation parameters
(in the following, this part of the system will be referred to
as the mapping module). Our system consists of two levels,
one stage for interacting with players of a beginner skill level
and one stage for more advanced players.

In the beginner level interaction stage we focus on en-
abling a user who does not have much experience in com-
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municating with the robot to understand about the device’s
physical limitations. We use a simple visual controller that
has a fixed correlation regarding which performance pa-
rameter of the robot it modulates, in order to make this
level suitable for beginner players. The WF-4RIV is built
with the intention of emulating the parts of the human
body that are necessary to play the flute. Therefore it has
artificial lungs with a limited volume. Also other sound
modulation parameters like the vibrato frequency (generated
by an artificial vocal chord) have a certain dynamic range
in which they operate. To account for these characteristics
the user’s input to the robot via the sensor system has to
be modified in a way that it does not violate the physical
limits of the robot. To modulate the robot’s performance
parameters we use a motion tracking algorithm to detect a
partner musician’s instrument movements. For this purpose
we introduced specialized controllers (Virtual Faders and
Virtual Buttons) in [6].

In the advanced level interaction interface, our goal is to
give the user the possibility to interact with the robot more
freely (compared to the beginner level). To achieve this we
propose a teaching system that allows the user to link instru-
ment gestures with musical patterns. Here, the correlation
of sensor input to sensor output is not fixed. Furthermore,
we allow for more degrees-of-freedom in the instrument
movements of the user. As a result this level is more suitable
for advanced level players. We use the robot’s instrument
gesture detection system that we have presented previously
in [7]. A Bayesian mapping algorithm is employed in order to
ensure, that if the teaching musician does not account for all
combinations of instrument orientation and musical output
in the teaching phase, in the performance phase the robot
will automatically play the most closely matching answer
modulation to a given instrument state.

Regarding previously published work, learning-teaching
techniques similar to the method proposed here have, in
various ways, been introduced in robot control. In [8] oral
expression and sensory inputs are mapped to control the
motor of a robotic arm. The approach uses information
gained from camera images and microphone input to set
up Hidden Markov Models (HMMs). These models contain
a state-space representation of the generated training data.
This information is used to execute tasks that consist of
combinations of the different teaching situations. Specifi-
cally, our approach is adapted from a problem setting, in
which a robotic arm is taught how to empty a glass of
water into a sink ([9]). The robot learns this movement
by demonstration, taking the glass from a specific location.
The goal is that, with changing initial location, the robot
autonomously is able to find the right way to empty the
glass without assistance. Similar to the other approaches
referenced above this application uses a state-space table to
record the instructions during the teaching phase. During the
execution, sequential Bayesian filtering is employed to adapt
the learnt data to the current problem environment.

Our new approach brings two significant novelties com-
pared to how we have dealt with sensor input in previous

work. First, we now work with the acquired sensor data
conditionally by getting feedback from the body of the robot
(e.g. state of the lung) and using this feedback to modulate
the influence of the user interaction on the performance
parameters. Second, in the advanced interaction level, we
allow the user to teach the robot how one or more sensor
values modify one or more performance parameter values.

II. IMPLEMENTATION OF A MAPPING MODULE
FOR THE MBIS

A. Direct Translation of Sensor Input to Musical Perfor-
mance Parameters with Consideration of Physical Restraints
(Beginner Level Interaction Mapping)

The purpose of the beginner level interaction system
mapping module is to translate the actions of the user that
are recorded through the virtual buttons and faders into
musical output. This output is to make musical sense in the
way that the user can express himself as freely as possible,
while at the same time respecting the physical limitations of
the robot. One important limitation of the WF-4RIV flutist
robot is the restricted air volume that can be contained
by the lung. Similar to the human breathing the robot is
only able to produce sound for a certain duration, until the
lung is empty. The robot has also further limitations, like
a maximum playing speed and maximum modulation speed
performance parameters like the vibrato frequency.

When receiving data about the robot’s partner musician
from the vision processing system, we can map this data
directly onto a musical performance parameter. In case of
receiving a continuous value from a virtual fader controller,
this relationship can be formulated as shown below:

A(t) = k ∗ I(t) (1)

This equation contains the constant k representing a scaling
factor to resize the sensor (virtual fader) value I(t) to an
appropriate output value A. Using information about the
maximum and minimum value emitted from this controller,
we can condition k accordingly, so that the output value A
does not exceed the acceptable range for the performance
parameter.

A(t) = k(t) ∗ I(t) (2)

with

k(t) =
{
k if t < TBreathing

0 if t ≥ TBreathing
(3)

Some limitations of the robot however are not time-constant.
The capability of the robot to create an air-beam in order
to play the flute, depends on the air volume left in the
lung. Taking this into account we add time-dependence to
k. TBreathing indicates the time duration of air remaining in
the lung, enabling a tone to be be produced. The equation
expresses that the intended output of the flute robot is to
be conditioned with the fill-status of the lung. If the lung
becomes empty, the equation constant k(t) is set to 0,
resulting in A(t) to become 0 as well. As result the flute
robot does no produce sound output.
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As the switch from a normal performance to a breathing
break is very abrupt, this method might not be satisfac-
tory in a musical sense. Musical progressions are normally
characterized by smooth transitions or intentionally inserted
breaks at certain points. If a musician needs to interrupt
his performance as a result of physical constraints, that
would, under normal circumstances, give the impression of
an unsatisfactory presentation to the audience. As every
human has various bodily constraints, these need to be
integrated in the mode of performance in a way, that is
as little as possible perceivable by the audience. To address
this issue in a natural way we applied a method to provide
smoother outline to the switching edges. Using a digital low-
pass filter on the time-dependent conditioning as indicated
in equation (2), we get smoother outlines for the switching
of the performance states (normal play / interrupted play due
to lung-refill).

The modulation envelope that results from this method
of smoothing is similar to ADSR (Attack-Decay-Sustain-
Release) curves used in electronic music synthesizers. If we
vary the parameters of the low-pass filter we can change
the slope of the attack curve. This enables us to adjust the
smoothing in a more human-like fashion. We implemented
the digital low-pass filter as a FIR (Finite Impulse Response)
filter. This filter achieves a similar effect to value-averaging
by chaining delay stages and scaling stages. Considering a
queue of values (in this case the time-dependent values of
k(t)), fractions of previous values are fed-back to the current
value and added. Depending on the number of these delay-
elements the low-pass / averaging effect becomes stronger.

Through the implementation of this method in the mapping
module of the beginner level interaction system we can
guarantee that the robot’s partner musician can control the
robot safely (within the robots value constraints). Using the
time-dependent scaling parameter and the smoothing filter,
the robot will automatically adjust the sensor input from
the vision system to account for the system’s mechanical
properties (Figure 2).

Although the above principle was so far introduced using
a virtual fader as controller source, it also applies to the
adjustment of data from a virtual button. In an interaction
setting using virtual buttons, the user might be able to switch
between various melody patterns. If during the performance
of one melody pattern the volume drops due to the necessity
of a lung-refill, this might seem unnatural to the audience.
A resolution to this problem is to calculate, if the melody
pattern to be played fits into the time remaining until the
next lung-refill; And in case it does not apply the proposed
fade-out effect to the sequence tempo (slow the sequence
down) using the low-pass filter to smoothly finish the last
note of the pattern still fitting into the lung cycle (Equation
(4), (5)).

A(t) = k(t) ∗ I(t) (4)

Fig. 1. Block diagram of the beginner level mapping method. M denotes the
movement value output from the sensor processing module, L the detected
lung fill level, T the fill level threshold, R the movement data regulated
by the fill level controller and O the filtered musical parameter modulation
output.

with

k(t) =
{
fadeout IF sufficient residual air volume

play IF residual air volume not sufficient
(5)

B. Translation of Sensor Input to Musical Performance Pa-
rameters based on a Sequential Bayesian Filtering Approach
(Advanced Level Interaction Mapping)

The mapping approach for the advanced level interaction
system, is based on the assumption that the partner musician
of the robot is a player of advanced skill level. As a result
the method leaves more space for free control of the robot.

The goal of our approach is to implement this technique
into our musical interaction setup to create sensible musical
output. In contrast to the previous approach, this time we do
not use the virtual faders and buttons as input source, but
the particle filter-based tracker. In two phases, the teaching
phase and the performance phase we try to enable the
robot to estimate the song state according to the input
received from the vision and audio processing system. If
the robot knows the current state of the song, it will be
able to play an appropriate reaction to the human partner
musician’s actions. A deliberate number of input parameters
(e.g. horizontal and vertical instrument orientation), is to
be mapped to a deliberate number of output parameters
(e.g. vibrato amplitude, played note value). This should be
done without the teaching musician having to account for
all possible state combinations. Using a particle filter, even
if during the performance an unknown state combination is
given to the robot, it is to automatically play the most closely
matching answer modulation.

At first, in the teaching phase, the teacher fills up the state-
space table with information on how to relate instrument
orientation changes to performance modulation. Although
the instrumentalist may spend a long time teaching, this
information will probably not be complete. That means that
there are states of the instrument configuration that are not
accounted for in the table. In the performance phase, the
robot reacts to the movements of the musician in order
to reproduce the previously learnt behavior. To relate a
configuration of the instrument (orientation) to a correct
modulation, the robot uses a particle filter (Bayesian filter).
In Fig. 2, the robot takes the data from the vision processing,
seeds particles in the state-space table (e.g. in the button
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Fig. 2. Block diagram of the advanced level mapping method. a) shows
the learning phase signal flow. I denotes the detected instrument motion,
N the detected note or rhythm sequence. b) displays the signal flow in the
performance phase. Additionally S denotes a state from the state table here
(could be also expressed as an (I, N) tuple).

states and fader states column) and selects the most closely
related particle. The modulation that this particle relates to
(in the table), is played by the flutist robot.

A Bayesian filter represents the PDF (Probability Density
Function) p(xk|zk−1) of state xk given observation zk−1

were k is the discretized time. Specifically for the particle
filter this PDF is defined through a set of Ns random
measurements si

k with weights πi
k. In this case, the current

observation Xk is given by

Xk =
Ns∑
i=1

πi
ks

i
k (6)

and the PDF p(xk|zk−1) can be approximated as ([10])

p(xk|zk−1) ≈
Ns∑
i=1

πi
kδ(xk − si

k) (7)

with
Ns∑
i=1

πi
k = 1 (8)

III. EXPERIMENTS AND RESULTS

Experiments were performed to evaluate, how well a user
/ musical partner can express his musical intentions using
the proposed two stage mapping approach.

In case of the beginner level interaction interface experi-
ment, the robot is controlled by one virtual fader. This fader
is used to continuously control the speed of a pre-defined
sequence that is played by the flutist robot. The output of the
sensor processing system determining the value of the virtual
fader is conditioned by the lung movement of the robot.
We use the method introduced in section II to continuously
reduce the speed of the performed pattern, when we reach
a certain fill-level of the robot’s lung. In order to perform
the experiment, a professional flutist player is situated in
front of the robot (within the viewing angle of the robot’s
cameras). After introducing the functionality of the beginner
level stage to the player we recorded data of the resulting
interaction with the robot.

To achieve quantitative results for the first level interaction
system we performed the experiment with a professional
flutist player. A graph of these results is shown in Fig. 3.
Fader movements control the tempo of the tone sequence that
is performed by the robot. If the amount of air remaining in
the lung reaches a certain limit (in this experiment approx.

Fig. 3. In the beginner level interaction system the user controls the tempo
of a pattern performed by the robot. The lung fill level plotted in the top
graph, modulates the input data from the virtual fader resulting in the robot
performance displayed by the pitch and the amplitude curve.

15% of the lung volume), the fader value transmitted to
the robot is faded-out (using the low-pass filter previously
described). At 5s and 15s the robot refills its lungs for a
duration of approx. 5s. These breathing points have a time-
distance of approx. 10s. During the breathing points no
sound is produced by the robot. The fader value actually
transmitted to the robot is faded out before the lung is
completely empty. This adjustment can be observed at 3.5s-
5s and 13.5s-15s in the fader value plot, the filtered fader
value plot and the robot output volume plot. As the fader
value is faded-out rapidly, the resulting performance tempo
of the robot decreases quickly. In this experiment the robot
continuously plays a pattern of the notes a4 - b4 - c5 - b4.

In the experiment for the advanced level interaction system
we try to confirm that, using our mapping module, a musician
of advanced skill level has the possibility to teach the
robot how to relate certain instrument movements with the
variation of certain musical parameters.

The experiment has two phases, the teaching phase and the
performance phase. In the first phase the interacting musician
teaches a movement-performance parameter relationship to
the robot. In this particular case we relate one of three
melody patterns to the inclination angle of the instrument of
the robot’s partner musician. From this information the robot
builds a state-space table that relates instrument angles to
musical patterns. In the second stage the interaction partner
controls the robot with these movements. Using the proposed
particle Bayesian filtering we search for the instrument angle
in the state-space table that most likely represents the current
state. When a match is determined, the robot plays the
musical pattern that relates to the current instrument angle.
The transition of the teaching phase to the performance phase
is defined by the number of melody patterns associated by
the robot. In case of this experiment, the switch occurs after
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Fig. 4. In the advanced level interaction system’s performance phase shown
here, a professional musician controls the robot’s output tone by changing
the orientation of his instrument. In the graph the detected instrument
orientation, the associated musical pattern and the output of the robot are
displayed.

3 melody patterns have been recorded.
The experiment was again performed by the professional

flute player. After introducing the functionality of the system
to the player, he performed one teaching phase and the
following performance phase. In the following we show and
evaluate an excerpt of the data recorded from the interaction
of the professional player with the system.

The results for the advanced level interaction experiment
in Fig. 4 show the output of the performance phase of the
system. In the teaching phase the musician related three
single notes a4, b4 and c5, to angles of 110◦, 93◦ and
60◦. The robot switches from the teaching phase to the
performance phase after three notes / note patterns have been
recorded. In the performance phase the musician varies the
inclination angle of the flute (maximum: 146◦, minimum
49◦). With the inclination changing, also the note played by
the robot changes as can be seen in the pitch analysis result
plot (at 0.5s, 2s, 3s, 4s, 10.5s, 10.5s, 11.5s, 12s, 13s, 14s).

The same experiment was also performed with an inter-
mediate and a beginner level player. The results are shown
in Fig. 5 and Fig. 6. The beginner level does not fully use
the capabilities of the interface by performing very slow
movements,selecting only a single note for each breathing
phase of the robot. The intermediate level player makes
faster movements, but varies only between two notes for each
cycle. Please note, that each of the players associated differ-
ent instrument states to output notes during the respective
teaching phases. To provide qualitative results documenting
the usability of the system we performed the described exper-
iments with two beginner-level, two intermediate-level and
two professional level instrument players. We investigated
their impression of the interaction quality with a question-
naire. This questionnaire asked the experiment subject to
evaluate the system in three categories on a scale from 1

Fig. 5. Performance data for an intermediate level user. The user performs
relatively fast movements, alternating between two notes for each breathing
cycle.

Fig. 6. The advanced interaction level used by a beginner instrumentalist.
The user selects only a single note per breathing cycle.

( = insufficient) to 10 ( = excellent). The three categories to
be questioned were evaluation of the Overall Responsiveness
of the System, Adaptability to Own Skill-Level and Musical
Applicability / Creative Inspiration. The result of the survey
is shown in Fig. 7.

In the first category we questioned the Overall Responsive-
ness of the system to find out how the subjects responded
to the technical implementation of the system in terms of
detection and processing speed. We observed higher grades
for the less experienced players and lower grades for the
experienced players. With higher skill level the requirement
for responsiveness seem to increase. The second evaluation
category, Adaptability to Own Skill Level, was proposed to
find out in how far the separation of the system in beginner
level and advanced level interaction system fits for the
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Fig. 7. Qualitative evaluation results for a) the beginner level interaction
system and b) the advanced level interaction system. The results for each
category were averaged over the number of subjects (two for each player
skill level).

differently experienced players. We observed that according
to our expectations the less experienced players would feel
more comfortable with the beginner level interaction system
and the more experienced players would give higher grades
in case of the advanced level interaction system. In the
Musical Applicability / Creative Inspiration section we tried
to enquire about how the musicians felt they could express
their musical intentions through utilizing the interaction
interface. The results show intermediate scores for all skill
levels.

The number of subjects used for the evaluation of the
interaction system is with only 6 subjects very small. The
experiments performed so far are only preliminary. We plan
do perform experiments with more subjects as soon as
possible.

IV. CONCLUSION AND FUTURE WORKS

The improved implementation of our two-stage mapping
system makes it possible to interact with the robot in
a more diverse way, compared to our previous mapping
approach. Beginner level musicians can engage in interplay
without having to consider about the physical restrictions
of the humanoid. The state dependent mapping makes the

robot aware of its own limitations and able to adjust its
performance accordingly, similar to how a human player
might act. We show in our experiments that this principle
is applicable to simple improvisational play together with
a musician partner. So far the possible modifications of the
performance are limited to the fade-out produced by the low-
pass filter module. In future works it might make sense, in
order to finish a phrase before a lung-refill, to modify the
currently played rhythm or melody. To do this, strategies on
how a given pattern can be altered without the violation of
any musical rules will be considered. Regarding the advanced
level mapping module, we saw in the experimental results
that an interacting musician can assign instrument gestures
to musical expression variations.

Furthermore, we consider to try to make the system rec-
ognize the skill level of a performer automatically. The skill
level could be assessed during an evaluation phase before
the interaction, in which the player plays a musical phrase
to the robot on his instrument. The robot after analyzing this
data could automatically switch to the appropriate interaction
level. Switching of interaction level during a performance
might also be possible, however the evaluation of the inter-
action partner’s skill level may be more significantly more
difficult to implement.
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