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Abstract— This paper presents an approach to probabilistic
active perception planning for scene modeling in cluttered
and realistic environments. When dealing with complex, multi-
object scenes with arbitrary object positions, the estimation of
6D poses including their expected uncertainties is essential. The
scene model keeps track of the probabilistic object hypotheses
over several sequencing sensing actions to represent the real
object constellation.

To improve detection results and to tackle occlusion problems
a method for active planning is proposed which reasons about
model and state transition uncertainties in continuous and high-
dimensional domains. Information theoretic quality criteria are
used for sequential decision making to evaluate probability
distributions. The probabilistic planner is realized as a partially
observable Markov decision process (POMDP).

The active perception system for autonomous service robots
is evaluated in experiments in a kitchen environment. In 80 test
runs the efficiency and satisfactory behavior of the proposed
methodology is shown in comparison to a random and a step-
aside action selection strategy. The objects are selected from a
large database consisting of 100 different household items.

I. INTRODUCTION

Service robots - together with their perception systems -
should be able to operate in everyday environments. In
practice this expectation certainly is not met today. Inac-
curate sensing devices, bad classifiers, object occlusions,
poor lighting or ambiguities of object models limit the
detection capabilities. Active perception approaches aim at
deliberately utilizing appropriate sensing settings to gain
more information about the scene.

In this paper we present an approach to probabilistic scene
modeling and sensor action planning. Object hypotheses
represented as probabilistic distributions are kept in the scene
model. A hypothesis contains object class and pose informa-
tion. The 6D pose representation describes the position and
orientation of the object.

The proposed active planning methodology uses the
POMDP concept to find an efficient strategy to satisfactorily
recognize all objects in a scene. The predicted effects of
future sensing actions on the scene model are compared
on the basis of the expected information gain of state
distributions. The next best sensing action is determined and
executed to improve the scene knowledge.

The scene analysis described in this paper is a component
of a service robot which autonomously performs manipula-
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tion tasks such as grasping objects, where precise knowledge
about the object setting is required. Figure 1 shows the robot
and some of the used household items.

Fig. 1. The service robot, operating in a complex environment.

The outline of the paper is as follows. The next section
gives an overview of current approaches to active perception
with focus on high-dimensional continuous pose modeling.
Section III describes the concepts of scene modeling with
probabilistic 6D poses. In Section IV and V the active per-
ception architecture and its realization is detailed. The paper
closes with experiments in Section VI which demonstrate
a full perception loop and compare the outcomes of three
planning strategies for various scenes.

II. RELATED WORK

Literature provides many approaches to active recognition
and next best view planning. Surveys on perception planning
by Chen[1] and Dutta-Roy[2] list the current state of the art.
Here we discuss active perception approaches with emphasis
on probabilistic continuous pose modeling and their applica-
bility to complex scenarios according to their relevance for
this paper.

The research on active perception varies with respect to
the methods of evaluating sensor positions, the strategies
for action planning and the field of application. It mainly
aims at fast and efficient object recognition of similar and
ambiguous objects, but does not cope with multi-object sce-
narios and cluttered environments. Forssen et al.[3] combine
object recognition with an attention mechanism for obstacle
avoidance to efficiently acquire scene information. This
approach targets on rapidly identifying objects in cluttered
environments, but neither models pose uncertainties nor takes
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into account object occlusions. Lanz[4] describes a Bayesian
framework for robust multi-object tracking in presence of
occlusions. He takes into account the object visibility for
computing the observation likelihood, but uses discrete state
spaces.

Many authors claim the possible applicability of their
active approaches to continuous, high-dimensional domains.
Chli and Davison[5] show 2D active feature matching in
continuous domains. Flandin and Chaumette[6] present an
approach to active 3D object reconstruction by using spatial
voxel representations. However, representations for orienta-
tions are not required.

The usage of 6D continuous state spaces for representing
object poses requires adequate probabilistic representations
to model pose uncertainties. Due to the theoretical and
computational complexity of using multivariate distributions
for describing orientations and positions, the use of sam-
pled distributions in form of particle representations seems
reasonable. However, their suitability to high-dimensional
problems is questionable because of the great amount of
particles needed. The practical applicability is generally only
shown in simplified experiments with low-dimensional state
spaces. Denzler and Brown[7] and Derichs et al.[8] formulate
their solutions for continuous domains, but only demon-
strate their active object class identification methodology
and neglect pose determination. Ma and Burdick[9] present
a methodology for 6-DOF pose estimation and tracking to
actively recognize moving objects. However, the relevant
aspects of probabilistic modeling are not detailed. In their
experiments only a planar problem is considered, whereby
6D pose modeling is avoided.

In this work scenarios are considered, which contain ar-
rangements of several objects, belonging to different as well
as to alike classes. Their pose uncertainties are represented
by 6D multivariate probabilistic distributions.

III. PROBABILISTIC SCENE MODELING

Each real item, which is considered for the recognition
process, is modeled by its characteristics such as geometry
information or textures. All object models - or also denoted
as object classes - build up the object database. In a scene
various instances of these object classes might appear. Thus,
the state space consists of n object hypotheses each repre-
sented by the tupel qi = (Ci, φi). C describes its discrete
class representation and φ its continuous pose. All n object-
tuples build up the joint state q = (q1, q2, ..., qn). The entities
are assumed to be mutually independent. Since qi represents
both discrete and continuous dimensions it will be further
considered as a mixed state. The dimension of the state space
varies as the perception process proceeds with recognizing
new object instances.

The following section details the modeling of the pose and
the probabilistic distributions over object hypotheses.

A. Probabilistic 6D Pose Modeling

In order to represent real world environments, a six dimen-
sional pose representation is required to model the position

and orientation of an object. In [10] we discussed several
approaches of probabilistic 6D pose representations. In this
work we decided to use a Rodrigues vector (or axis/angle)
representation to describe the orientation because of its good
applicability and simple comprehensibility.

The first three components of the pose vector φi =
(x, y, z, θe1, θe2, θe3) [11] describe the translational posi-
tion. The orientation is represented by the axis and the
angle. (e1, e2, e3)T denotes the unit vector of the rotation
axis. The length of the axis encodes the rotation angle
θ ∈]0; 2π], which the coordinate frame is rotated about.
However, the Rodrigues vector representation has drawbacks
such as duality and singularities, which cause problems for
their mathematical processing. Duality means that one spe-
cific orientation can be described by two different Rodrigues
vectors. This results from the fact that a rotation of θ radians
about an axis equals rotating 2π − θ radians about an axis
pointing into the opposite direction. This effect is dealt with
by setting a working point with respect to the orientation
what possibly requires to use the pose representation with
the Rodrigues vector in the opposite direction. A singularity
arises at θ = 0 radians.

In the simplest case the pose uncertainty is modeled by a
multivariate Gaussian distribution with the pose vector φi

as mean, where one 3D part consists of the components
of the translation vector and the other 3D part of the
components of the Rodrigues vector. The formulation of
Gaussian distributions over the translational dimensions is
simple due to the real, continuous and infinite domains. For
a reasonable modeling in the rotational space the angular
characteristics of periodicity, duality and singularities have
to be considered. The probability density function of the
rotational space would ideally be defined over the finite
halfsphere with radius 0 < rHS ≤ 2π. Nonetheless we
use the infinite space for computational efficiency, but apply
working point selection on the distributions. Generally, the
representation as a single Gaussian is adequate for describing
peaked distributions, where most of the probability mass lies
within this halfsphere. In order to represent more complex,
multi-peaked distributions, linear combinations of multivari-
ate Gaussians are formulated as the multivariate Gaussian
mixture distribution

p(φi) =
K∑
k=1

wikN (φi|µik,Σik), (1)

which consists of K Gaussian kernels. The mixing coeffi-
cient wik denotes the weight of the mixture component with
0 ≤ wik ≤ 1 and

∑K
k=1 w

i
k = 1. µik is the mean and Σik the

covariance of kernel k.

B. Probabilistic State Representation

The probabilistic joint state space p(q) equals the product
of all object instance distributions p(qi) as they are assumed
to be independent. p(qi) is composed of the pose model
p(φi|Ci) and the object class probability P (Ci):

p(qi) = P (Ci)p(φi|Ci) (2)
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The probability distribution over the class is discrete and
is described by a histogram over the object classes. The
6D pose space from Equation (1) of the continuous pose
distribution p(φi|Ci) is conditioned on the object class,
meaning that object class information, in particular the model
origin, is required as reference for the pose distribution.

IV. ACTIVE PERCEPTION ARCHITECTURE

Active perception is a process where various actions at ∈
A are compared to each other and executed in order to
achieve intelligent sensing to build up to a good world model.
From the wide range of different actions we only consider
sensor positioning at different viewpoints as sensing actions
in this paper. A viewpoint comprises both position and
orientation of the sensor. The active perception architecture
of the proposed approach for next best view selection,
containing the Observation Model, the Inference Model and
the Planning Module, is schematically illustrated in Figure
2.

Fig. 2. Active perception framework

In order to find an optimal action policy π a sequence
of prospective actions and observations is evaluated by the
planning module. Decision making is based on the costs
of the executed action and the expected reward from the
belief bt(q′), which denotes the conditional probability dis-
tribution over the state q′, given a sequence of measure-
ments. The inference module consists of data association
and state estimation. It determines the belief distribution
bt(q′) by updating the initial distribution by incorporating
an observation Ot(at). The observation model provides
the measurement data for state estimation. The expected
observation is predicted from the chosen sensing action
and the state distribution after the transition update. Object
occlusions in multi-object scenarios are handled for more
accurate observation prediction.

The following sections describe the probabilistic modeling
of multi-object scenes and the Bayesian statistical frame-
work. Also the observation model under consideration of
occlusion estimation and probabilistic action planning are
explained in detail.

A. Inference Model

In this approach we decided on a Bayesian state estimator.
The system properties for the dynamic environment follow
the equations

q′ = g(at, q, εt) (3)
Ot = h(at, q′, δt). (4)

The index t denotes the time step, which covers the period
of incorporating one action-observation pair into the state
update. Often the system state q cannot be addressed right
after the control action but only after the measurement. Thus
the apostrophe ′ marks the state transition due to action
effects.

In the following the state estimation process for the joint
state is derived following the dynamic environment model.
Equation (3) describes that reaching a future state q′ depends
on the previous state q and on the applied action at. The
system dynamics underlie the state transition uncertainty
εt, meaning that each executed action influences the state
distributions. We consider the probability distribution over
the state

bt−1(q) = p(q|Ot−1(at−1), ..., O0(a0)) (5)

as the a priori belief for previous sensor measurements
Ot−1(at−1), ..., O0(a0) at time step t−1. Applying an action
with its state transition probability pa(q′|q) containing εt
leads to the probabilistic model for the prediction update

bt−1(q′) = p(q′|Ot−1(at−1), ..., O0(a0))

=
∫
q

pat
(q′|q)bt−1(q)dq. (6)

The measurement Equation (4) describes the influence
of measurement uncertainties δt on the observation Ot(at)
which is performed at time step t after executing the control
action at. In Bayesian context the measurement update is
formulated as the probability distribution P (Ot(at)|q′).

A recursive Bayesian state estimator is used to calculate
the posterior distribution b

Ot(at)
t (q′) by updating a priori

information by the measurement Ot(at). Combining the
models of the transition update and the measurement update
using Bayes’ rule leads to

b
Ot(at)
t (q′) = p(q′|Ot(at), ..., O0(a0))

=
P (Ot(at)|q′)bt−1(q′)∫

q′
P (Ot(at)|q′)bt−1(q′)dq′

. (7)

The rules of probability, the Markov assumption and the
theorem of total probability are applied to derive this expres-
sion. The observation Ot(at) is assumed to be conditionally
independent of previous measurements.

B. Observation Model

The observation model encapsulates all processes from
data acquisition to providing the joint measurement likeli-
hood distribution P (Ot(at)|q′) for the current measurement
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Ot(at). Under the assumption of using interest point detec-
tors this measurement can be expressed as the detection of
the set of F features

Ot(at) = {f1(at), ..., fF (at)} (8)

as a subset of all database features. These features are
considered to be the currently visible interest points.

While for a real measurement the set of features is ac-
quired directly from the detector, we generate this set explic-
itly when predicting an observation, where the measurement
is simulated. Feature characteristics and occlusion events are
considered to determine the visibility of features. In [12]
the methodology of occlusion calculation is detailed. Given
the set of (expected) visible features and in consideration of
the measurement uncertainty we formulate the likelihood of
seeing the feature f(at) as P (f(at)|q′). The measurement
likelihood distribution P (Ot(at)|q′) is computed as the prod-
uct of conditional feature likelihoods by applying the naive
Bayes rule and assuming all features to be conditionally
independent:

P (Ot(at)|q′) =
F∏
j

P (fj(at)|q′). (9)

C. Perception Planning

Sequential decision-making consists of the processes of
evaluating future actions and finding the best action sequence
with respect to a specific goal. The probabilistic planning
concept is realized in form of a partially observable Markov
decision process, as proposed in [13]. The probabilistic
planner reasons by considering information theoretic quality
criteria of the expected belief distribution bOt(at)

t (q′), which
is abbreviated by b′ in the following equations, and control
action costs rat(b

′). The objective lies in maximizing the
long term reward of all executed actions and the active
reduction of uncertainty in the belief distributions. The value
function

Vt(b′) = max
at

(
Rat

(b′) + γ

∫
Vt−1(b′)P (Ot(at)|q′)dOt

)
(10)

with V1(b′) = maxat
Rat

(b′) is a recursive formulation to
determine the expected future reward for sequencing actions.
γ denotes the discount rate for penalizing later actions and
Rat

(b′) is the reward. The continuous domains and the high-
dimensional state spaces make the problem intractable. As
the value function is not piecewise linear, it is evaluated at
specific positions, which demands the online calculation of
the reward for these specific actions and observations.

The control policy

π(b′) = argmax
at

(
Rat(b

′)+γ
∫
Vt−1(b′)P (Ot(at)|q′)dOt

)
(11)

maps the probability distribution over the states to actions.
Assuming a discrete observation space the integral can be
replaced by a sum.

The prospective action policy π is determined by maxi-
mizing the expected reward

Rat
(b′) = −αEO[hbt

(q′|Ot(at))] +
∫
rat

(b′)b(q)dq, (12)

which relates benefits and costs of future actions at with the
relation factor α. The first term states the expected benefit
of applying the control action, the second term expresses
the respective costs with ra(b′) denoting the action efforts.
In perception problems the quality of information is usually
closely related to the probability density distribution over
the state space. The information theoretic measure of the
differential entropy is suitable for determining the uncertainty
of the belief distribution. Since the computation of the
differential entropy both, numerically or by sampling from
parametric probability density distributions is costly in terms
of processing time, the sum of the upper bound estimates
over the object instances

hUbt
(q′|Ot(at)) ≥ hbt(q

′|Ot(at))

=
∑
i

Ki∑
k=1

wik[−logwik +
1
2
log((2π exp)D|Σik|)]

(13)

is used to approximate and determine the expected benefit
[14]. D denotes the dimension of the state, |Σk| denominates
the determinant of the kth component’s covariance matrix.

V. REALIZATION OF THE ACTIVE FRAMEWORK

This section details the basic concepts by applying them
on a robotic scenario. As a sequence of observations from
various viewpoints is fused, the measurements have to be cor-
rectly associated with the corresponding object instances of
the prior knowledge. The essential process of data association
in the inference model is described in this section as well as
the modeling of system and measurement uncertainties and
the realized planning concept.

A. Data association

State estimation in the high-dimensional joint space is
challenging. Thus, we factor the joint space into subspaces,
each describing one object instance distribution. The Bayes’
update Equation (7) can almost be directly applied, ex-
cept for the measurement likelihood P (Ot(at)|q′). It has
to be decomposed and associated with the priors of the
corresponding object instances. The process of multi-target
data association aims at finding the assigned measurement
likelihoods P (Oit(at)|q′). In this work we combine global
nearest neighbor (GNN) data association and geometry-based
data association to find corresponding measurement compo-
nents. Both build up association tables. GNN data association
uses the Mahalanobis distance measure to probabilistically
compare Gaussian kernels of pose distributions. This is
only applicable for components of the same object classes.
Geometry-based data association accomplishes the associ-
ation task over classes by checking object constellations
of physical plausibility, meaning objects instances must not
intersect. Therefore, samples are draw from the distributions
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and each sample arrangement is checked for intersections
according to their object geometries.

If the entries of the association tables are within the vali-
dation gate, the corresponding measurements are associated.
Otherwise, unassigned measurements establish a new object
instance distribution which is fused in the Bayes’ update with
a uniform prior, resulting in an increase of the dimension of
the joint state.

B. Measurement uncertainties

In this work the object recognition process uses local
interest points from the SIFT algorithm as features for object
classification and pose determination. From stereo images
spatial information is gained and 6D poses are calculated,
which is detailed in [15].

The measurement model provides P (Ot(at)|q′) as a mix-
ture distribution for the state update. The mean values of
the measurement distribution are determined from the stereo
matching algorithm on the basis of feature correspondences.
In order to determine the measurement accuracy of the object
pose we evaluated the detection precision of several objects
in a total of 260 measurement against ground truth data. The
deviation of the translational components is plotted in Figure
3 with the sensor pointing into z-direction. The covariance
ellipsoid of this point cloud is used to approximate the
measurement likelihood uncertainty. The uncertainty of the
object class recognition is encoded in the mixture weight.
It results from relations between seen and expected interest
points, matching errors, sensor and feature characteristics.

The measurement model for the state prediction slightly
differs from the model for the state update as the observation
needs to be simulated. The mean object pose and the average
spreading is determined from a heuristic based on training
data. The interest points of 360 stereo images per objects
are calculated, matched and stored to build up the object
database. The 3D locations of the features are mapped
onto the object geometry to generate the database model.
During measurement simulation we determine the expected
visible features and estimate the consistent stereo matches,
which are used together with the results of the occlusion
estimation process to adapt the covariances of the simulated
measurement components. While the shape of the ellipsoid
of the translational components is modeled according to the
detection results from Figure 3, the rotational covariance axes
are set to equal length.

Fig. 3. Measurement uncertainty in xyz-directions with the covariance
ellipsoid (97%quantile). The sensor points into z-direction.

(a) Multi-object scenario (image taken
from VP1)

(b) Viewpoint arrangement and
executed action sequence

Fig. 4. Experimental setup

C. State transition uncertainties

The transition uncertainty is defined as the linear Gaussian
mixture

pιat
(q′|q) =

K∑
k=1

wkN (q|µk + ∆(at),Σk(at)), (14)

with Gaussian kernels equal in the number of components
and mean values to the belief distribution. ∆(at) denotes the
change in the mean dependent on the action with covariance
Σk(at). Ground truth experiments have shown standard
deviations due to state transitions of 16.8mm in xy- and
19mm in e3-direction for experiments on the service robot.
The other dimensions are negligible.

D. Greedy planning

The incorporation of observations usually changes the
belief distribution enormously and possibly makes the cur-
rent action policy ineffectual. Hence a 1-horizon planning
strategy is more efficient for the considered scenarios which
can be achieved by applying a Greedy-technique to plan
an action sequence until a measurement is performed. The
iterative planning algorithm terminates when the desired
quality criteria in form of distribution entropies are reached.
In this work the differential upper bound entropy is estimated
and evaluated for each object instance separately, aiming at
detecting each object instance with a specific precision.

VI. EXPERIMENTS

In this section the proposed approach is evaluated. A per-
ception cycle is demonstrated with focus on the localization
process. The performance of the developed active planning
approach is compared to two other strategies for viewpoint
selection.

A. Localization process in the perception cycle

1) Experimental setup: The proposed approach is demon-
strated on the example of the object constellation shown in
Figure 4a. The complex scenario consists of 11 different
objects belonging to 9 object classes. The object database
contains a total of 100 different object classes, all household
items.

The viewpoint arrangement consists of 8 different, cir-
cularly aligned viewpoints and is schematically illustrated
in Figure 4b. A sensing action is defined as a change in

1040



TABLE I
DETECTION RESULTS: NUMBER OF RECOGNIZED OBJECTS AND

NUMBER OF COMPONENTS OF MIXTURE DISTRIBUTIONS

Observation Recognized objects Mixture components
from VP class accurate pose bt−1(q) Ot(at) bt(q′)

VP 6 7 4 0 18 9
VP 5 10 7 9 22 12
VP 2 11 11 12 17 13

the robot’s viewpoint, equivalent to moving the sensor to
a different location. These actions are evaluated in this
experiment on the basis of the predicted belief distributions.
We derive the costs of the robot’s movement to another
viewpoint from the movement angle and distance.

2) Perception Cycle: An action sequence resulting from
the proposed planning approach and its effects on the prob-
abilistic scene model are presented in this section.

Initially we do not have any scene knowledge, so each
action promises identical benefits. We start from the current
robot position, namely viewpoint 6. After performing the
first measurement and accomplishing the data association
and state estimation process we retrieve the probabilistic
scene distribution consisting of a total of 7 detected object
instances, 3 of them of unsatisfactory pose accuracy, though.
Table I lists the recognition results and the number of mixture
components of the probability distributions during the state
update. Figure 5a displays characteristics of the measure-
ment process. The top left image shows one of the stereo
images acquired by the camera. The bottom left graphics
illustrate the current scene with object models positioned
at the means of the corresponding probability distributions.
The middle plots show the horizontal and upright projection
of the translational covariance ellipsoids of each mixture
component of all object instance distributions. The right plot
pictures the translational and rotational covariance ellipsoids
in a single graphic. The axis of the orientation of each
mixture component is drawn in black as a vector of unit
length, originating from the translational mean. The original
length representing the rotation angle is colored. At the tip
of the unit vector the covariance ellipsoid of the Rodrigues
components is attached. The weight of the mixture compo-
nent is visualized by the transparency of the ellipsoids. The
table board is shown in grey. All graphics are drawn from
the perspective of viewpoint 1.

3) Recognition results from viewpoint 6: The first obser-
vation is performed at viewpoint 6. The salt box and the
tomato soup can are recognized very well. The recognition
results of the stapled soup boxes, especially for the lower
blue one, are worth looking at. Two mixture components,
one for the green and one for the blue box, are assigned
to the object instance of the bottom soup box. This effect
results from the similarity of the objects as they are almost
identical in their textures, implying they have many similar
interest points. For the Amicelli box in the front - due to
reflections - and for some back objects no hypotheses are
found as they are too far away or beyond the image. The

TABLE II
CORRELATING COSTS AND VALUE FOR CALCULATING THE REWARD Rat

FROM EQUATION (12) FOR SELECTED VIEWPOINTS FOR α = 2.0

View- VP6 VP6 VP5
points Rat costs value Rat costs value Rat

VP1 -0.75 -0.75 -1.0 -2.75 -1.00 -0.53 -2.06
VP2 -1.00 -1.00 -0.00 -1.0 -0.75 -0.00 -0.75
VP3 -0.75 -0.75 -0.95 -2.65 -0.50 -0.65 -1.80
VP4 -0.50 -0.50 -0.88 -2.26 -0.25 -0.28 -0.81
VP5 -0.25 -0.25 -0.24 -0.73 -0.50 -0.24 -0.94
VP6 0.00 0.50 -0.13 -0.76 -0.25 -0.49 -1.23
VP7 -0.25 -0.25 -0.28 -0.81 -0.75 -0.64 -2.03
VP8 -0.50 -0.50 -0.14 -0.78 -0.50 -1.00 -2.50

planning algorithm aims at differentiating between the soup
boxes and sharpening the knowledge of the Ceylon tee and
the jam tins. It determines moving to viewpoint 5 as best
future action. The planning results are shown in Table II.
Due to the heavy occlusion of the bottom soup box, many
viewpoints are considered as disadvantageous.

4) Recognition results from viewpoint 5: Three new ob-
jects are recognized in the second measurement step and
most goals, except for improving the knowledge of the left
jam tin, are reached. Note, that the uncertainty of the jam
tin even grew due to state transition effects. For the right
jam tin and the Fenchel tea two mixture components depict
the respective object instance distributions. As these objects
have similar textures on several sides of their surface, a
clear identification is not possible from this observation.
While the two mixtures of the Fenchel tea are almost equally
weighted, the larger mixture component of the jam tin has
very little weight assigned. Due the fairly low entropy of this
distribution, it is still regarded as satisfactorily recognized.

5) Recognition results from viewpoint 2: Based on the
current belief distributions the planning algorithm proposes
a prospective measurement from viewpoint 2 from where
all uncertain objects are supposed to be clearly visible.
Except for the right jam tin, all objects are observed. The
ham tin is newly discovered. This results in 11 strongly
peaked hypotheses distributions, which makes the algorithm
terminate. The green arrows in Figure 4b show the completed
action sequence.

The detection of new object instances has great effects
on the planning algorithms. Thus, especially in complex
scenes with a large number of objects, the detection of all
objects cannot be guaranteed. The algorithm terminates when
all recognized objects are of high class and pose accuracy,
but does not have explorative behavior. The consideration of
occlusion is essential for a reasonable observation sequence.

B. Evaluation against other strategies

In a series of experiments we compare the proposed
approach to two other strategies, namely random viewpoint
selection and an incremental strategy. The random strategy
arbitrarily chooses the next sensing action. The incremental
strategy decides on either moving clockwise or counterclock-
wise around the table and performs measurements step by
step, always moving right to the next viewpoint.

1041



O
B
S
E
R
V
A
T
IO
N
 F
R
O
M
 V
P
6

O
B
S
E
R
V
A
T
IO
N
 F
R
O
M
 V
P
5

O
B
S
E
R
V
A
T
IO
N
 F
R
O
M
 V
P
2

Fig. 5. Detection results for three sequential measurements. The top left plot shows one stereo camera image, the bottom left plot the current scene model.
The other plots illustrate the covariance ellipsoids (97%quantile) of each mixture component of all object instance distributions. The middle column shows
the horizontal and upright projection of the translational components, the right column a 3D view on the translational and rotational ellipsoids. On the
bottom right important components are enlarged.
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(a) Average number of iterations (b) Average costs

Fig. 6. Evaluation of number of iterations and costs for each strategy.

(a) Rates of successful termination (b) Recognition rates

Fig. 7. Experimental results, analyzed at each iteration step.

In the following we compare these strategies in 80 exper-
iments with different scenes consisting of up to 10 objects.
The proposed strategy outperforms the others in the number
of average iteration steps with an average of 1.68 steps as
shown in Figure 6a. In the movement costs a clear increase
can be seen from the proposed to the incremental strategy.
The random strategy is weakest as expected. Figure 6b shows
the results.

In Figure 7a the rates of successful termination of the
algorithms are plotted against the iterations. Significantly
more experiments terminated after few iterations for the
proposed strategy than for others. Also, the proposed strategy
almost always terminates, while the others sometimes cannot
achieve the desired termination precision. Note, that it does
not necessarily mean that all objects are successfully de-
tected, when the algorithms stop, as no explorative behavior
is implemented. Thus, sometimes the precise recognition of a
subset of all objects meets the specified termination criterion
already.

The recognition rates with respect to the different strate-
gies are presented in Figure 7b. The rates are again plotted
over the iteration steps to show how the results change with
the number of incorporated measurements. We differentiate
between the detection rates for the object class, illustrated by
the dashed line and the recognition rate, which additionally
takes into account pose accuracy (solid line). As presumed
the class detection rate is similar for all strategies due to
the lack of exploration abilities. It grows with the number of
iterations as object instances accumulate with the number
of observations up to the total number of objects in the
scene. The recognition rate including the pose accuracy is
higher for the proposed strategy between the second and the
forth iteration step, what proves the deliberate reduction of
uncertainty in the scene model.

VII. CONCLUSIONS AND FUTURE WORKS

In this work we realized an active perception framework
which probabilistically reasons over belief distributions to
efficiently plan future actions. It is integrated in a real robot
and operates in realistic environments. In experiments the
functionality of the proposed approach is demonstrated. Its
good performance is shown in comparison to two other
viewpoint selection strategies.

In future works object relations could be used to improve
localization errors and measurement data. Also, it could be
of interest to model occluded and invisible space to give
the robot more profound knowledge for action selection and
enable it to explore the environment.
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