
 
 

 

  

Abstract—In security defense tasks, multiple robots need 
work cooperatively to detect offensive intrusion to protect some 
sensitive areas.  In this paper, we propose a distributed 
algorithm for a multi-robot system with some static sensors. The 
system concept is that static sensors sense intrusions and act as a 
cueing sensor to an ensemble of robots. These robots in turn 
engage the potential intruder, performing surveillance and/or 
neutralization of the intrusion. To minimize the intruder 
missing rate and average response time, a STAGS (Shame-level 
Task Allocation and Gap-based Self-deployment) method is 
proposed, which is a decentralized method without a central 
control unit.  To further improve the system adaptability under 
dynamic environments, a multi-objective optimization (MOO) 
method is proposed to adjust the system parameters of STAGS. 
Extensive simulation results demonstrate the effectiveness and 
robustness of the proposed algorithm in a dynamic intruder 
detection task. 
 

Index Terms—multi sensor/multi robot system, artificial 
immune systems,    intruder detection, and perimeter defense. 

I. INTRODUCTION 
ECURITY defense task is a complex problem, which aims 
to protect sensitive areas against offensive intrusion. 

Video surveillance system is one of the solutions for these 
tasks, which still require manned observation and can be quite 
costly for large areas. Another alternative solution is to use 
autonomous multi-robot systems (MRSs) for intruder 
detection to reduce the overall system cost without 
compromising security.  
      In this paper, we will describe an autonomous system 
consisting of cooperative mobile robots with some static 
sensors for security defense tasks. The system would utilize 
many relatively cheap sensors that can be used as a cueing 
sensor for an ensemble of robots to detect and track the 
movements of intrusion of any kind through a predetermined 
area or boundary. Through the use of mobile robots, the 
intruders can be tracked, intercepted, or neutralized. While 
some robots are investigating the intruders, the remaining 
robots would self-deploy themselves to maximize coverage. 
Fig.1. illustrates our simulator for this problem.  

Extensive work has been proposed for multi-robot 
coordination for various applications, one paradigm is based 
on organization theory derived from human social behavior 
and psychology [2][6][12][20]. Another paradigm is 
bio-inspired algorithms [7][11][18]. Some research proposed 
 

Y. Zhang and Y. Meng  are  with Department of Electrical and Computer 
Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA  
(phone: 201-216-5496; fax: 201-216-8246; e-mail: yzhang14@stevens.edu, 
yan.meng@stevens.edu)  

artificial immune systems for demining problems [16] and 
exploration problems [19].   

 
 

Fig. 1. A snapshot of the security defense problem simulator. The area to be 
protected is the blue solid circle. Seven robots are deployed on outer blue 
dotted circle (deployment circle). The communication range of each robot is 
represented by grey dotted circle. The red dots are intruders and blue dots are 
robots. 
 
     Some work has been directly addressed for security 
defense problems [1][9][13][14][17]. Agmon et al. [1] 
studied a multi-robot system for perimeter patrolling, where 
they proposed a non-deterministic scheme for robots 
patrolling, which is an optimal polynomial-time algorithm of 
finding the probability p to maximize the probability of 
penetration detection throughout the perimeter. Vidal et al. 
[17] proposed probabilistic pursuit-evasion games with 
unmanned ground and aerial vehicles. Machado [14] 
proposed a distributed MRS approach for patrolling in a 
complex environment based on a market economy approach.  
In this paper, we propose a STAGS (Shame-level Task 
Allocation and Gap-based Self-deployment) approach, which 
consists of a distributed shame-level based dynamic task 
allocation algorithm for intruder tracking and investigation, 
and a distributed gap-based self-deployment (DGSD) 
algorithm for self-deployment. Robots have to choose their 
own behaviors dynamically based on their current states and 
the environment.  The parameters in STAGS approach need 
to be defined.  To further improve the system robustness and 
adaptability to various environmental changes, a 
multi-objective optimization (MOO) method is applied to 
dynamically tune the parameters of the STAGS approach 
with two objectives: minimization of both the missing rate 
and the average response time.     

The rest of the paper is organized as follows. The STAGS 
approach is proposed in Section II. In Section III, a 
multi-objective optimization (MOO) method is applied to 
dynamically tune the parameters of the STAGS approach. 

  A Decentralized Multi-Robot System for Intruder Detection in Security 
Defense  

Yuyang Zhang and Yan Meng 

S

The 2010 IEEE/RSJ International Conference on 
Intelligent Robots and Systems 
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 5563



 
 

 

Extensive experiments have been conducted to evaluate the 
proposed method in Section IV. Conclusions and future 
works are described in Section V.   

II. THE DECENTRALIZED STAGS APPROACH  

A. Problem Statement  
The objective of this paper is to protect a sensitive area 

from the intruders in security defense application using   a 
multi-robot/multi-sensor system, as shown in Fig. 1.  The 
environment is an 800x800 square area. The protected area is 
defined as a circle with the diameter of 200. It is assumed that 
new intruders appear in a Poisson distribution pattern as: 

 ( ) ( 0,1,2,....)
!

keP X k k
k

λλ −

= = =              (1) 

where ( )P X k=  is the probability that k new intruders arrive 
in each simulator iteration (the simulator’s basic time unit). 
The expectation of ( )P X is λ , so on average a new intruder 
appears on every 1/ λ   system iteration.  The intruders move 
directly toward the protected area in a straight line with some 
predefined velocity. In order to detect intruders, static fiber 
optic sensors are deployed uniformly in a bigger “detecting 
area” that encloses the protected area (the outer circle in Fig. 
1.) with the sensing range of 100. It is assumed that sensors 
can detect the positions of the intruders, and can inform the 
intruders’ positions to the robots which are within the 
sensor’s communication range. Initially, multiple robots are 
deployed uniformly around the protected area.  When a robot 
receives the position information of the intruders from the 
sensors, the robot will communicate with its neighboring 
robots to decide who will track and investigate the intruders. 
The selected robot will move toward the intruder directly in a 
straight line with some predefined speed.  Of course, the robot 
can avoid obstacles on its way to the target intruders.  The 
remaining robots will redeploy themselves to try to cover the 
protected area accordingly to maximize the coverage area.  
In other words, robots switch between two roles dynamically: 
tracking robot and deploying robot.  
    The STAGS approach consists of two parts: the first one is 
a shame-level based algorithm for dynamic task allocation for 
tracking robots, and the second one is the gap-based 
algorithm for self-deployment.   The goal of the STAGES 
approach is to coordinate robots to minimize the missing rate 
and average response time to the intruders. Missing rate is the 
percentage of intruders which successfully invade the 
protected area without being investigated by robots over all 
the intruders. Response time is the time period from the time 
of an intruder is detected by sensors to the time it is 
investigated by robots.   

B. A Shame-Level based Dynamic Task Allocation 
Algorithm 

Inspired by [10], a shame-level based algorithm is 
proposed to dynamically allocate robots to detected intruders. 
Each robot develops a shame level for each detected intruder, 
which is inversely proportional to its distance to the intruder. 
The shame level is incremented until it reaches a threshold 
that causes the robot to respond. Here, the shame level 

represents how “shame” a robot can feel of not responding to 
the detected intruder.  The greater a shame level of a robot to a 
detected intruder, the higher possibility that the robot would 
respond to this detected intruder, which is kind of similar to 
the motivation level in ALLIANCE [15]. Once a robot starts 
to respond to an intruder, the robot would broadcast its 
decision to its neighboring robots so that the neighboring 
robots would suppress their shame levels to this intruder. In 
essence, other robots no longer “feel” the shame of not 
responding to the intruder, so that they can investigate other 
intruders or self-deploy themselves. Based on this idea, the 
shame level of a robot ir  on intruder jI  can be defined as:  

( , ) ( , )
( , )

i
i j j k

i j

v
S r I p I r

d r I
= ∏        (2)

 
 where iv  is the robot traveling speed. ( , )i jd r I  is the 
traveling distance between ir  and jI . kr  is all robots within 
the communication range of ir . ( , )j kp I r   is the shame-level 
suppression from kr  on intruder jI , which can be defined as:   

1 when   is not tracking   
( , )

(0< <1) when  is tracking   
k j

j k
k j

r I
p I r

r Iχ χ
⎧⎪= ⎨
⎪⎩ `

  (3) 

where χ  is a constant representing the suppression level. 

C. A Decentralized Gap-based Self-Deployment (DGSD) 
Algorithm 

The robots whose shame level is below the threshold 
should re-deploy themselves properly in the deployment 
circle to maximize coverage.  A gap-based algorithm is 
proposed here for this self-deployment purpose.  A gap is 
defined as the sectors between the lines which are connecting 
all the tracking robots and the center of the protected area. For 
individual gap, the two corresponding tracking robots at the 
ends are called “gap builders”, and the deploying robots 
within the gap are called “gap members”. The gap members 
should be deployed uniformly within each gap. Based on 
different situations of intruders and robots, we define a gap 
weight GW  for each gap as:  

*( )G IG
G

rG

s n
w

n
β+

=        (4) 

where Gs  is the angle of gap G . IGn  and rGn  are  the 
number of intruders and robots within gap G , respectively. β  
is a constant that adjusts the importance of IGn . A gap with a 
higher gap weight has a higher priority to be covered by 
deploying robots.  In other words, more deploying robots 
should join in the gaps with higher weights.  Therefore, the 
objectives of gap-based method are: (a) deploy gap members 
uniformly within the gap; (b) switch gap members to a 
neighboring gap with a higher gap weight; (c) work in a 
distributed manner. 

DGSD process runs repeatedly in each gap to dynamically 
redeploy gap members based on the changing environment. 
The DGSD process contains a round-trip to pass information 
to all the gap members within the gap. The round-trip starts 

5564



 
 

 

from a gap builder BR . BR  generates an information pack 
containing its local information. The pack is delivered to the 
other gap builder 'BR  by passing through each gap member 
one by one locally.  During the delivering process, the 
information pack is updated with gap members’ local 
information. So 'BR  has a full vision of the current gap, 
including number of gap members, where gap starts and ends, 
and gap size, etc. Base on this information,  'BR  is able to 
generate deployment positions for gap members which are 
distributed uniformly in the gap. The plan is delivered back to 

BR  through local passing agents one by one in a distributed 
manner, so that gap members are acknowledged with its 
deploying position. It is worth to note that only local 
communication is needed for the robots for DGSD since the 
information is passed one by one instead of globally 
broadcasting.  The local communication in the DGSD process 
usually starts in the clockwise direction.  

At the boundary of gaps, Gap builders also hold status 
information of the two neighboring gaps so that it can notify a 
gap member to switch to a neighboring gap if the neighboring 
gap has a much higher weight. In this manner, critical gaps 
will attract more robots.   

Fig.2 shows an example for this DGSD process.  In gap1, 
DGSD process is started by gap builder 1R .  1R  sends out the 
information pack to  2R , then 2R  sends the information to 

3R . When 4R  (another gap builder) receives the information 
pack from 3R , it is notified that there are two gap members 
(robots) and three intruders in Gap1. Then 4R  updates the 
memory of 1Gw  and calculates proper deployment. This 
deployment information is delivered back to 1R  through 3R  
and 2R . As a result, 1R  updates the memory of 1Gw , and 2R  
and 3R  deploy on stars. For other gaps, 5R  will switch to 
Gap1 from Gap2 because Gap1 has a higher weight.  7R  will 
stay in Gap3 to investigate intruder 4I .   

 It is possible that during DGSD process, a gap member 
who is holding the package cannot find the next robot within 
its communication range to deliver the package. For example, 
a gap member receives the package from its anti-clockwise 
neighbor but there is no robot on its clockwise side within its 
communication range. In this case, the gap member will 
travel along the deployment boarder in clockwise direction 
until a robot is detected on the clockwise side in 
communication range. 

Fig.3 shows the block diagram of the STAGS algorithm. 
These two algorithms have mutual influence with each other. 
The shame-level based algorithm triggers robots to conduct 
intruder investigation. Meanwhile, the investigating robots 
would dynamically formulate gaps. With the new gaps, the 
robots use the DGSD algorithm to deploy themselves within 
the gaps to corporately working with the investigating robots, 
which would further affect the performance of future 
investigation.  

 
1I  2I  

3I  

2R

3R  

7R

5R  

4I

1R

4R

Gap2 

Gap1 

Tracking robot

Deploying robot

Intruder

Gap3 

6R
 

Fig. 2. One example using the DGSD algorithm. 
 

Loop start

Loop end

Participate in DGSD 
algorithm

Shame-level 
algorithm

Investigating role 
triggered?yes

Play Investigating role .
Track the intruder with 
the highest shame-level

Play deployment role.
Self deploy or switch to 

another gap

no

 
Fig. 3. The block diagram of the STAGS algorithm.   

III. ONLINE LEARNING AND MULTI-OBJECTIVE 
OPTIMIZATION ON DISTRIBUTED STAGS METHOD 

The parameters of STAGS method can significantly affect 
the overall system performance. In addition, the environment 
may dynamically change over time, for example, intruders 
may change their intrusion behaviors (changing the velocity 
or strategies), or some robots may suddenly break down. 
Therefore it is important to find optimal STAGS parameters 
under dynamic situations. Ideally, the solution should be 
self-adaptive, which requires the robots to recognize and tune 
up STAGS parameters for different situations.  

We are interested in finding parameters of STAGS that can 
optimize both missing rate and response time. Therefore, a 
multi-objective optimization (MOO) technique is applied. 
Since the robots are highly cooperated in this task, it is 
difficult to evaluate the system performance based on the 
behaviors of individual robots only. Therefore, a global 
sensor node is produced to implement the multi-objective 
optimization (MOO) to dynamically adjust the parameters of 
STAGS. This node is responsible of recording all detected 
situations, using the MOO learning method to obtain optimal 
STAGS parameters for each situation in real-time, and 
synchronizing all the robots with the latest STAGS 

5565



 
 

 

parameters through sensor network.   The pseudo code of this 
process is summarized as followings: 
Step1.  Detect environment changes. Record current 

situation currentS  and previous situation previousS . 
Step2.  If currentS  matches with previousS , go to step 4; 

otherwise, go to step 3. 
Step3. If learning on previousS  is not finished, protect the 

learning process of previousS . Go to step 4. 
Step4.  If a learnt adjustment currentA  for currentS is found in 

memory, use currentA  to adjust the STAGS parameters. 
Otherwise, go to step 5. 

Step5. Start, continue or resume the learning on currentS  using 
the NSGA-II method. When the learning process on  

currentS  is finished, store { currentS , currentA } into 
memory. 

 Problem situation is defined as 1 2{ , ,..., }kS s s s= , where 
| 1...js j k=  are the parameters that describe situation S . 

The matching between situation S  and 'S  can be estimated 
by the following equation: 

 1 1 2 2
1 2

1 2

( ' )( ' ) ( ' )Matching ( ) ^ ( ) ^ ... ^ ( )k k
k

k

s ss s s sd d d
s s s

−− −= < < <  (5) 

where kd  is the upper bound of the difference for ks . Here the 
parameters of problem situation S are chosen as {arriving 
rate of intruders, speed of intruders, number of robots, speed 
of robots}, where the arriving rate of the intruders is the 
frequency of the arrivals of new intruders. kd  is set as 10% of 

ks . The adjustment solution A  is defined as: A = 
{shame-level threshold, shame-level suppression, 
deployment radius}. Deployment radius is the radius of the 
deployment circle as shown in Fig.1. 

 The learning process is evaluated based on two criteria: 
the intruder missing rate and the average response time to 
intruders. A good strategy should strike a balance between 
these two criteria.   

NSGA-II [4] has been adopted as the MOO method for the 
parameter optimization and learning in STAGS.  NSGA-II is 
a popular and efficient evolutionary algorithm for solving 
multi-objective optimization problems. In our work, 
simulated binary crossover (SBX) [3] and polynomial 
mutation [5] have been employed to generate offspring. After 
the offspring population is generated, the elitist crowded 
non-dominated sorting is used for selecting parents for the 
next generation. The complexity of NSGA-II is 2( )O MN , 
where M is number of objectives and N is population size of 
each evolution. 

Different from single objective optimization algorithms, 
where often only one optimal solution is achieved, NSGA-II 
produces a set of Pareto-optimal solutions, i.e. in our case, the 
produced parameter sets to balance the missing rate and the 
average response time. How to pick one among 
Pareto-optimal solutions depends on user’s preference on 
emphasizing one goal over another. In the experiment part, 
the parameter set with the lowest missing rate is selected as 

final adjustment option. We will analyze the solutions in 
discussing the simulation results using NSGA-II.  

IV. SIMULATION 

A. Simulation Results of STAGS with Fixed Predefined 
Parameters 

To evaluate the performance of STAGS algorithm (S for 
shame-level based algorithm and D for gap-based 
self-deployment algorithm), two simple algorithms are 
defined here: numb tracking (NT) algorithm where robots 
always track the closest intruder, and numb deployment (ND) 
algorithm, where robots are initially distributed uniformly on 
the deployment circle and return to their initial locations 
when the investigation jobs are finished. 

In this simulation, shame-level threshold=2.4, shame-level 
suppression=0.2, deployment-range=235, and 1β =  for the 
gap weight. Simulations each with 50,000 intruders are 
carried on for different algorithm combinations NT+ND, 
S+ND, NT+D, S+D under different situations. The missing 
rate and the average response time are listed in Table I. The 
results illustrate that S+D algorithm outperforms others. 

   

 
B. Simulation Results of STAGS with MOO-based Online 
Learned Parameters 

In this part, the STAGS method with MOO learning 
approach (STAGS-MOO) is compared with the STAGS 
method with fixed parameters (STAGS-fixed). jMetel 
software package is implemented in the simulator to realize 
NSGA-II algorithm. jMetel is a Java-based framework aimed 
at facilitating the development and experiment for solving 
multi-objective optimization (MOO) problems [8]. In our 
experiment, we configure NSGA-II’s evolution population 
size as 8.0 and the maximum evolutions as 8.0.  Other 
parameters use default values in jMetel package: crossover 
probability is 0.9 and mutation probability is 1/(size of A ) 
which is 0.33.  
1) Performance Comparison under Static Situations 

One merit of using the MOO-based learning is that it can 
learn optimal parameter sets of STAGS method to adapt to 
current system situation. In this part STAGS-fixed are 
compared with STAGS-MOO under a static situation where 
the environmental parameters are fixed as:  

TABLE I: SIMULATION RESULTS 
  NT+ND NT+D S+ND S+D 
RN=8, IR=8 
RS=4, IS=3.0 

MS 45.28% 46.96% 8.40% 6.72% 
RT 66.46 67.37 43.68 40.38 

RN=8, IR=8 
RS=4, IS=3.5 

MS 57.03% 55.76% 17.54% 15.63% 
RT 62.11 62.14 44.29 42.45 

RN=6, IR=8 
RS=4, IS=3.0 

MS 46.20% 45.14% 14.84% 14.34% 
RT 67.27 66.81 49.31 48.60 

RN=6, IR=8 
RS=4, IS=3.5 

MS 58.18% 57.18% 23.50% 22.64% 
RT 62.91 62.72 48.88 48.75 

RN=4, IR=8 
RS=4, IS=3.0 

MS 51.84% 50.40% 25.98% 25.81% 
RT 69.27 69.13 58.45 58.25 

RN=4, IR=8 
RS=4, IS=3.5 

MS 58.94% 58.85% 36.00% 35.77% 
RT 65.29 63.49 55.37 55.34 

RN: number of robots, IR: intruder arriving rate (1/ λ  in (7)), RS: robot 
speed, IS: intruder speed, MS: missing rate, RT: average response time 

5566



 
 

 

{number of robots = 8, intruders arriving rate = 8,  
robots’ velocity = 4/system iteration,  
intruders’ velocity of = 3/system iteration } 
In order to provide a thorough comparison, first for each 

parameter we define a searching space for MOO learning 
based on the experiences we obtained from the simulations. 
Then we set up 27 static parameter sets for the STAGS-fixed 
method within the searching space. The searching space and 
the candidate static parameters are given as follows. 

Shame-level threshold: 1.2, 2.4, 3.6 ∈  [0, 4] 
Shame-level suppression: 0.2, 0.6, 0.8 ∈  [0, 1] 
Deployment-range: 145, 235, 285 ∈  [100, 350] 

For each individual fixed parameter set, a simulation is 
carried on for 50,000 intruders, empirically good enough to 
display system performance. From the experiments, the 
parameter set {3.6, 0.6, 145} has the best performance on 
missing rate, and {3.6, 0.6, 235} outperforms on response 
time. Then, STAGS-fixed method with these two parameter 
sets is compared with STAGS-MOO method. The 
comparison results are shown in Fig. 4.  

 

5k 10k 15k 20k 25k 30k 35k 40k 45k 50k
0

0.05

0.1

0.15

0.2

0.25

Time

M
is

si
ng

 R
at

e

Performance comparison in static problem situation: Missing Rate
                       RN=8 IR=8 RS=4 IS=3                      

 

 

3.6, 0.6, 235

3.6, 0.6, 145
MOO-based learning

 

5k 10k 15k 20k 25k 30k 35k 40k 45k 50k
20

25

30

35

40

45

50

55

60

Time

R
es

po
ns

e 
T

im
e

Performance comparison in static problem situation: Response Time
                       RN=8 IR=8 RS=4 IS=3                       

 

 

3.6, 0.6, 235

3.6, 0.6, 145
MOO-based learning

 
Fig. 4.  The comparison results of the missing rate and the response 
time of the system using the STAGS-fixed method and 
STAGS-MOO method under a static situation.  

 
Firstly, it can be seen that both the average missing rate and 

response time fluctuate at the early phase and converge over 
time. The main reason of this fluctuation is because that at the 
early phase the parameter sets generated from the NSGA-II 
algorithm are randomly distributed in the searching space, 
which may lead to significant difference in system 

performance. Secondly, the STAGS-MOO method can 
converge to a competitive system performance with 
STAGS-fixed method using the best parameter sets. In other 
words, it demonstrates that the MOO-learning method is able 
to find out an optimal or sub-optimal parameter set 
automatically for the STAGS method based. This feature can 
enhance the capability of the STAGS method to 
automatically adapt to various environmental situations 
instead of manually adjusting the parameters. 
2) Performance Comparison under Dynamic Situations 

In this sub-section, we will further compare the system 
performance of the STAGS-fixed method and the 
STAGS-MOO method under dynamic changing situations. A 
sequence of dynamic changing situations is listed in TABLE 
II, where there are 8 different situations and in each situation 
50,000 intruders are released. 

Firstly, simulations using the STAGS-fixed method with 
27 fixed parameter sets are conducted under the dynamic 
situations. The result is shown in Table III, where the 
parameter set {1.2, 0.2, 145} and {3.6, 0.6, 235} outperforms 
others on missing rate and response time, respectively. 4 
simulations using the STAGS-MOO method are conducted 
under the same dynamic situations. The average converged 
missing rate and response time is attached to the end of Table 
III. From Table III, it can be seen that the advantage of the 
MOO-based learning still holds under dynamic situations. 
The converged average missing rate and response time ranks 
the third place and the fourth place among all 27 
STAGES-fixed experiments. There is only one fixed 
parameter set that can beat STAGS-MOO on both goals. 
However, STAGS-MOO method is not able to achieve 
performance that perfectly beats all STAGS-fixed cases on 
both goals. This may be caused by the local minimum and 
randomness issue of the genetic algorithm. 

 
TABLE II: A SEQUENCE OF DYNAMIC SITUATIONS 

Time Environmental situations 

T 0 arriving  rate of intruders = 8, number of robots = 8, velocity 
of robots = 4, velocity of intruders = 3 

T 1 Decrease number of robots by 1 
T 2 Decrease velocity of robots  by 0.5 
T 3 Increase arriving  rate of intruders by 3  
T 4 Increase velocity of intruders by 0.5 
T 5 Increase number of robots by 1 
T 6 Increase velocity of robots by 0.5  
T 7 Decrease arriving rate of intruders by 3 

T 8 Decrease velocity of intruders by 0.5. Now the 
environmental situation is the same with T0 again. 

 
3)  The Performance Improvement with the Learnt 
Experience  
      At last we will demonstrate how the learnt experience of 
the MOO-based learning can contribute to the performance of 
the STAGS system under dynamic situations. We extend the 
experiments from the previous sub-section by repeating all of 
the situations one more time from T8 to T16. Applying 
STAGS-MOO, we got the average missing rate and response 
time for T0~T8 are 0.1608 and 45.20, respectively. The 
average missing rate and response time for T8-T16 have been 
reduced to 0.1330 and 43.47, respectively which are 
improved by 20.90% and 3.9%, respectively.  This is because 
that the STAGS-MOO system can use the learnt experience 

5567



 
 

 

(the perimeter sets) for the initial generation for the situations 
instead of starting from a random distribution.      
 

TABLE III: PERFORMANCE OF STAGS-FIXED AND STAGS-MOO UNDER 
DYNAMIC SITUATIONS 

ST SS DR MS RT 
3.6 0.8 285 0.2302 48.92 
3.6 0.8 235 0.2266 48.84 
3.6 0.8 145 0.2322 50.83 
3.6 0.6 285 0.1675 42.95 
3.6 0.6 235 0.1504 41.69 
3.6 0.6 145 0.1307 42.67 
3.6 0.2 285 0.2108 44.34 
3.6 0.2 235 0.1821 43.51 
3.6 0.2 145 0.1352 43.58 
2.4 0.8 285 0.3070 55.48 
2.4 0.8 235 0.3091 55.79 
2.4 0.8 145 0.3128 55.89 
2.4 0.6 285 0.2003 47.78 
2.4 0.6 235 0.1970 47.75 
2.4 0.6 145 0.1944 48.61 
2.4 0.2 285 0.2068 45.79 
2.4 0.2 235 0.1841 45.78 
2.4 0.2 145 0.1517 48.38 
1.2 0.8 285 0.3212 56.47 
1.2 0.8 235 0.3152 56.17 
1.2 0.8 145 0.3184 56.29 
1.2 0.6 285 0.2247 51.03 
1.2 0.6 235 0.2243 51.01 
1.2 0.6 145 0.2263 50.97 
1.2 0.2 285 0.1550 45.33 
1.2 0.2 235 0.1414 44.61 
1.2 0.2 145 0.1242 45.98 
MOO MOO MOO 0.1330 43.47 

Notes: ST: shame level threshold, SS: shame level suppression, DR: 
deployment range, MS: missing rate, RT: average response time. The last 
row is performance of STAGS-MOO 

V. CONCLUSIONS 
In this paper, we propose a STAGS algorithm for intruder 

detection in complex security defense tasks. A shame-based 
approach is developed for dynamic task allocation among 
robots to track the detected intruders, and a gap-based method 
is developed for the self-deployment of remaining robots.  
This STAGS algorithm is distributed, where only local 
communication among robots are needed and robots make 
their movement decisions only based on their local contextual 
information. To further improve the system robustness and 
adaptation, a MOO-based online learning method is 
developed to dynamically adjust the parameters of the 
STAGS method. 

In the future, we will investigate the following issues.  First 
more rational and smart intruders, who are not limited to 
appear under Poisson distribution and travel linearly, will be 
considered in the simulations. Second, research on more 
complex terrain situation will be conducted, such as some 
static and more obstacles in the environment. 

REFERENCES 
[1] N. Agmon, S. Kraus, and G. A. Kaminka, “Multi-Robot Perimeter 

Patrol in Adversarial Settings”, In Proceedings of the 2008 IEEE 
International Conference on Robotics and Automation, pp. 2339–2345. 

[2] S.C.Botelho and R. Alami, “M+: A scheme for multi-robot cooperation 
through negotiated task allocation and achievement,” In Proceedings of 

the 1999 IEEE International Conference on Robotics and Automation, 
pp. 1234–1239. 

[3] K. Deb and R. B. Agrawal, “Simulated binary crossover for continuous 
search space,” in Complex Syst., Apr. 1995, vol. 9, pp. 115–148. 

[4] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast elitist 
nondominated sorting genetic algorithm for multi-objective 
optimization: NSGA-II,” in Parallel Problem Solving from Nature 
(PPSN VI), M. Schoenauer et al., Eds. Berlin, Germany: Springer, 2000, 
pp. 849–858. 

[5] K. Deb and M. Goyal, “A combined genetic adaptive search (GeneAs) 
for engineering design,” Comput. Sci. and Informatics, vol. 26, no. 4, 
pp. 30–45, 1996. 

[6] B. Dias, R. Zlot, N. Kalra, and A. Stentz, “Market-based multirobot 
coordination: A survey and analysis,” Robotics Institute, Carnegie 
Mellon University, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-05-13, 
April 2005. 

[7] M. Dorigo, E. Bonabeaub, and G. Theraulaz, “Ant algorithms and 
stigmergy”, Future Generation Computer Systems, 16, pp. 851–871. 
2000. 

[8] J.J. Durillo, A.J. Nebro, F. Luna, B. Dorronsoro and E. Alba, “JMetel - 
A Framework for Multi-Objective Optimization,”  
http://jmetal.sourceforge.net/ 

[9] F. Fave, S. Canu, L. Iocchi, D. Nardi, and V. A. Ziparo, 
Multi-Objective Multi-Robot Surveillance, 4th Int. Conf. on 
Autonomous Robots and Agents, 2009. 

[10] A. Gage, R. Murphy, K. Valavanis, and M. Long, “Affective Task 
Allocation for Distributed Multi Robot Teams.” CRASAR-TR2004-26. 

[11] Y. Gao and W. Wei, “Multi-Robot Autonomous Cooperation 
Integrated with Immune Based Dynamic Task Allocation”, In 
Proceedings of the Sixth International Conference on Intelligent 
Systems Design and Applications (ISDA'06). 

[12] B. P. Gerkey and M. J. Matari´c, “Sold! Auction methods for 
multirobotCoordination”, IEEE Transactions on Robotics and 
Autonomous Systems, 18(5):758–768, October 2002. 

[13] D. B. Kingston, R. Holt, R.W. Beard, T. McLain, and D. Casbeer, 
“Decentralized perimeter surveillance using a team of UAVs,” AIAA 
Guidance, Navigation, and Control Conference and Exhibit, San 
Francisco, California, August 2005, AIAA 2005-5831. 

[14] A. Machado, G. Ramalho, J. Zucker and A. Drogoul, “Multi-Agent 
Patrolling: an Empirical Analysis of Alternative Architectures,” 
Multi-Agent Based Simulation (MABS’2002), Bologna, 2002.  

[15] L. E. Parker, ALLIANCE: An Architecture for Fault Tolerant 
Multi-Robot Cooperation, IEEE Trans. on Robotics and Automation, 
14(2), 1998, pp.220-240. 

[16] S. Singh and S. Thayer, “Immunology Directed Methods for 
Distributed Robotics: A Novel Immunity-Based Architecture for 
Robust Control & Coordination” SPIE: Mobile Robots XVI, v. 
4573.2001 

[17] R. Vidal, O. Shakernia, H. J. Kim, H. Shim, and S. Sastry, 
“Multi-Agent Probabilistic Pursuit-Evasion Games with Unmanned 
Ground and Aerial Vehicles”,  IEEE Trans. on Robotics and 
Automation, vol. 18, no. 5, pp.662-669, 2002. 

[18] G. Wang, W. Gong, and R. Kastner, “System Level Partitioning for 
Programmable Platforms Using the Ant Colony Optimization”, 13th 
International Workshop on Logic and Synthesis( IWLS’04), June 2004. 

[19] H. Wu, G. Tian and B. Huang, “Multi-robot Collaboration Exploration 
Based on Immune Network Model,” In Proceedings 2008 IEEE/ASME 
International Conference on Advanced Intelligent Mechatronics, pp. 
1207-1212. 

[20] R. Zlot and A. Stentz, “Market-based multi-robot coordination for 
complex tasks”, International Journal of Robotics Research, 25(1), 
January 2006, pp73-101. 
 

5568




