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Abstract—When planning robotic grasping and manipula-
tion maneuvers, knowledge of the shape and pose of the
object of interest is critical information. In order for an
autonomous or semi-autonomous system to operate intelligently
in an unstructured environment and interact with novel objects,
it must have the ability to recover this information at run time,
even when no a priori information of the object is available.
In this paper, we describe the development and testing of
an algorithm that can reconstruct the full 3D geometry of
a novel object from just three images. A variant of shape
from silhouettes, the algorithm first generates a rough surface

approximation in the form of a point cloud. This approximation
is then refined by fitting an eleven parameter geometric surface
to the points in such a manner that the surface ignores noise and
perspective projection shadows. We test the algorithm in both
simulation and on several real world objects. We show that the
algorithm provides accurate reconstructions that can be directly
used to plan grasping maneuvers. Compared to other attempts
in the literature, the proposed algorithm is faster, requires
fewer images, is more accurate, and degrades gracefully in the
presence of bad data. A real world test case is included that
shows that the algorithm still yields usable results when the
form of the object is amorphous or otherwise non-geometric.

I. INTRODUCTION

Accurate knowledge of the position, pose, and shape of

objects of interest is critical information in the process of

planning robotic grasping and manipulation maneuvers. In

unstructured environments, the ability to recover this infor-

mation at run time is a crucial behavior for an autonomous

or semi-autonomous system. Up until this point, many of

the systems described in the robotics and machine vision

literature have focused on recognizing objects in which

the system has some form of a priori knowledge. This

knowledge usually takes the form of a 3D model of an object

and/or a corresponding set of images or feature vectors of the

object. Once the object is recognized by matching the visual

input to the patterns in the database, various techniques such

as visual servoing are employed to grasp the object according
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to a predefined metric. For some recent examples of work in

this area, see [1], [2], [3], [4], [5].

In contrast, there have been relatively few attempts at

recovering the geometry of novel objects for which the

system has no prior knowledge. For robots that are tasked

with operating in a fully unstructured environment, such as

a domestic service robot, such behavior is critical since it

would be a herculean effort, and wholly impractical, to fully

program the system with the plethora of objects it could be

asked to manipulate.

Perhaps the most complete example(s) is [6], [7], [8],

where the authors have developed a mobile robot that can

reconstruct novel objects for the purposes of grasping by

capturing a sequence of images as the mobile base drives

around the object and subsequently performing a dense

structure from motion reconstruction via SIFT key point

matching. The location of the object of interest, however,

must be given beforehand. An alternative to dense stereo

reconstructions and key point matching is the well-known

shape from silhouettes. Though this method has been well

researched, e.g. [9], [10], [11], [12], [13], a novel shape

from silhouettes algorithm was recently developed in [14]

which, we believe, is both conceptually and computationally

more efficient than previous voxel coloring methods, and

far more efficient than dense reconstructions. Further, this

method does not suffer from the limitation of key point

matching algorithms where the reconstruction will fail if the

object has little to no texture; a case commonly encountered

with household objects. However, an issue with both of these

approaches is the large number of images required for the

reconstruction and the fact that images are required from

around the entire periphery of the object. In the case of

[8], 134 images were captured around the periphery of the

object leading to an offline reconstruction time of around 100

seconds with a 2 GHz Intel CPU. The authors of [14] reduce

the number of captured images to 12 and though they do not

report the execution time, they claim real-time performance.

But in both cases, the requirement of the system to capture

images from around the entire periphery severely limits the

application of the algorithm in unstructured environments
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where complete 360 degree access to the object is unlikely

to be available.

Rather than reconstruct the full 3D geometry of the novel

object, various approaches have been proposed that either

make simplifying assumptions of the general nature of the

objects, or seek an alternative means of determining grasping

positions. The authors in [15] have developed a special

purpose robot, ‘El-E‘, that uses a multitude of sensors and

cameras to manipulate unknown objects. They assume that

the object is oriented vertically on a horizontal surface

with respect to gravity and rely on the horizontal 2D cross

sectional geometry of the object and an overhead approach

in order to perform the grasp. The authors in [16] have

developed a novel system for manipulating unknown objects

that predicts appropriate grasping locations without needing

to reconstruct the full 3D geometry of the object. Given

multiple 2D images of a novel object, the system seeks to

predict and triangulate the location of an appropriate grasping

position. What constitutes an appropriate position is defined

by a synthetically generated training set of various objects

which are unrelated to the real world objects. Appropriate

grasping positions are marked on objects in the training

set and various feature vectors of these locations are stored

for later run time comparison. The training phase is a one-

time operation, and the system is capable of calculating an

appropriate grasp position for objects that vary widely in

form and appearance from those in the training set. The

advantage of these approaches are that they do not require

many images of the objects in order to successfully grasp

the object and, provided the algorithmic assumptions hold,

are robust in their capabilities. The disadvantages become

apparent when the assumptions break down, or when the

geometric information of the object becomes required. In

the case of [15], limitations become apparent when the

object does not lie on a horizontal surface, does not have

a relatively constant cross section geometry, or when an

overhead grasping approach is untenable.

This paper describes the development and evaluation (with

a focus on the latter) of a new shape from silhouettes algo-

rithm that we have developed which attempts to provide the

benefits of both of the above approaches while eliminating

most of the drawbacks. That is, our algorithm is capable

of reconstructing, to a sufficiently accurate approximation,

the full 3D geometry of a completely novel object using

substantially fewer images than is typically required. As

direct result, our algorithm is extremely efficient and capable

of performing the reconstructions on a time scale suitable for

most uses. Further, the proposed algorithm is robust in the

sense that it degrades gracefully when presented with non-

optimal data. Under optimal conditions, the algorithm yields

a reconstruction that is accurate to within a few percent-

age points of ground truth. Under non-optimal conditions

however, the algorithm still generates useful and plausible

results. While the images required for the reconstruction

must be obtained from disparate locations, 360 degree access

to the object is not required; frontal and overhead access

is sufficient. The assumptions made by our algorithm con-

cerning the object is that the object is a) the object of

interest, b) present somewhere within the workspace, and c)

segmentable from the background. Understanding that for

any autonomous system there must be some method for

the system to recognize that a given object is the object

of interest, we feel that these assumptions are reasonable

and that system still operates with no a priori knowledge

of the shape, pose, or position of the object. Further, since

the purpose of our algorithm is not to solve the notoriously

difficult problem of image segmentation, some liberties were

taken with the test objects to make the segmentation criteria

more tractable.

The balance of this paper progresses as follows: Section II

describes the reconstruction algorithm. Section III explains

the performance of the algorithm within an ideal simulated

environment. Section IV describes the hardware test setup

and the real objects that were used for testing. Section V dis-

cusses each test case in detail, focusing on both the strengths

and weaknesses of the algorithm. The paper is rounded out

by Section VI in which we discuss our conclusions and future

work.

II. RECONSTRUCTION ALGORITHM

Our reconstruction algorithm, which is developed in de-

tail in [17], is presented here in a shorter overview. The

reconstruction process is broken down into three main por-

tions: image capture and silhouette calculation, approxima-

tion of the object’s surface by a three dimensional point

cloud, and finally refining the approximation through surface

parametrization. The entire process is captured in Figure 1

which shows every step of the reconstruction of a simulated

prismatic object.

A. Image Capture and Silhouette Calculation

This initial step is the simplest portion of the algorithm.

We capture three images of the object from three disparate

viewing locations. Typically, we choose two frontal positions

that are separated by 90 degrees and one overhead position.

This viewing configuration lends itself to wide coverage

of the object and thus good reconstruction accuracy, as

will be shown in the in the simulation results. In practice

however, this constraint must be relaxed due to the kinematic

constraints of the manipulator. Thus our viewing locations in

real world experiments are still widely disparate, though not

purely orthogonal. It will be seen however, that this does not

have a large effect on the reconstruction accuracy.

Once the images of the object are captured, the object

is segmented from the background and a binary silhouette

image is generated. The method chosen for segmentation is

highly dependent on the environment and nature of the the

objects. It is beyond the scope of this paper, and indeed our

algorithm, to address the problem of segmentation. Instead,

we assume that a reasonably decent segmentation of the

object is available, and we insure this in our testing by using

uniformly colored objects.
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Fig. 1. The reconstruction process as a step by step simulation. (a) The
original shape. (b)-(d) The generated silhouettes. (e) The encompassing
sphere of points. (f)-(h) The point cloud after the points have been shrunk
to the silhouette boundaries. Error due to perspective projection is clearly
seen. (i)-(j) The superquadric that was fit to the point cloud. Original shape
shown as a wire frame. Notice the ability of the superquadric to ignore the
perspective projection error.

B. Surface Approximation

We chose the algorithm presented in [14] as the basis for

our initial surface approximation as it represents a simpler

and more efficient method of reconstruction compared to

the more traditional voxel based methods. We note that the

authors of that work required at least 12 images using this

algorithm for an accurate reconstruction. And indeed, with

just three images, the result of this algorithm is a very rough

approximation of the object’s surface (the next phase of

our algorithm refines this approximation). Even though this

algorithm is efficient, we were able to further improve its

performance by removing the iteration step that was present

in the original version.

We use the three silhouette images to derive the approx-

imate three dimensional centroid and radius of a bounding

sphere that fully encompasses the object. Then, a set of 3000

points is evenly generated across the surface of the sphere.

Finally, the position of these points are modified so that the

resulting set of points approximates the surface of the object.

This is accomplished with the following procedure:

1) Let the center of the camera be c0.

2) Let the center of the sphere be x0.

3) Let xi be any point in the sphere other than x0.

4) Let xinew
be the updated position of point xi.

5) Let the projection of the center of the sphere into the

image be x′

0.

6) Then, for each point xi:

a) Project xi into the silhouette image to get x′

i .

b) If x′

i does not intersect the silhouette:

i) Find the pixel point p′ that lies on the edge

of the silhouette along the line segment x′

ix
′

0.

ii) Reproject p′ into R
3 to get the point p.

iii) Let the line c0p be L1.

iv) Let the line x0xi be L2.

v) Let xinew
be the point of intersection of lines

L1 and L2

7) Repeat steps 2-6 for each silhouette image.

In the original algorithm [14], the authors accomplish Step

6b in an iterative fashion. Rather than treat each point indi-

vidually, the authors shrink the entire radius of the sphere at

once, for all xi, by an amount that is dynamically determined

based on a point x′

j that lies closest to, but does not intersect,

at least one of the silhouettes. This process is repeated until

x′

j intersects every silhouette. When this happens, point xj is

removed from computation and the process is repeated for all

remaining xi. The authors state “the step is variable because,

when a point is back projected near the silhouette contours,

the step is reduced to reach a better approximation of the

object model”. Step 6b shows that such an approximation

is unnecessary because the position of the point can be

calculated exactly, in a single step. The geometry of this

result is shown in Figure 2. Since the number of points in

the cloud is large, eliminating the iteration step amounts to

a significant computational savings. The proposed algorithm

must visit each point only once for each image, and thus

executes in a single pass.
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Fig. 2. The geometry of point xinew
, which is the intersection of lines

L1 and L2. The line L2 is defined by known points xi and x0. The line
L1 is defined by point c0, which is the camera center, and point p, which
is the reprojection of the image point p′ into R

3.

We note that in the perfectly theoretical case, the lines L1

and L2 will have an intersection. However, since the point p′

is not sub-pixel accurate, the lines will typically not intersect.

Instead, we find the point of nearest intersection of the two

lines. This turns out to be the midpoint of the line segment

that is the perpendicular distance between the two lines, and

therefore has a closed form solution.

C. Surface Parametrization

Since point cloud only very roughly approximates the

surface of the object (see Figure 1 (f-h)), we need a way

to refine the approximation such that it accurately reflects

the geometry of the object. We accomplish this by fitting

a superquadric to the point cloud using non-linear least

squares minimization. Superquadrics are three dimensional

solid models that are capable of modelling a wide vari-

ety of shapes with a relatively simple parametrization. A

thorough treatment of superquadrics, their derivation, and

minimization function can be found in [18]. The motivation

to parametrize the object with a superquadric is threefold:

1) It was shown in [3] that superquadrics can accurately

model a wide variety of objects typically found in a

domestic setting.

2) The 11 parameters of the superquadric immediately

yield the shape, size, orientation, and position of the

object, and can also be used to quickly find volume and

moments of inertia. Thus, the superquadric parameters

are ideal for planning grasping maneuvers.

3) The structure of a superquadric and the nature of

the minimization routine lends the shape to ignoring

localized noise.

We modify the standard superquadric minimization function

derived in [18] by adding a weighting factor which has the

effect of forcing the superquadric to ignore those points

that likely represent a perspective projection artifact. Our

modified fitting function is:

min
Λ

[

w

n
∑

i=1

(
√

λ1λ2λ3(F
ǫ1 − 1))2+

(

(1− w)

n
∑

i=1

(
√

λ1λ2λ3(F
ǫ1 − 1))2 ∈ F ǫ1 < 1

)]

(1)

where F is defined as:

F (xw,yw,zw) =
[(

nxxw + nyyw + nzzw − pxnx − pyny − pznz

a1

)
2

ǫ2

+

(

oxxw + oyyw + ozzw − pxox − pyoy − pzoz

a2

)
2

ǫ2

]

ǫ2

ǫ1

+

(

axxw + ayyw + azzw − pxax − pyay − pzaz

a3

)
2

ǫ1

(2)

and 9 of the variables are reduced with the following ZYZ-

Euler Angle transformation:
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nz oz az pz
0 0 0 1









=









Rz(φ)Ry(θ)Rz(ψ)
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∣
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∣
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py
pz
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(3)

yielding a total of 11 parameters:

Λ = {λ1, λ2, . . . , λ11} =

{a1, a2, a3, ǫ1, ǫ2, φ, θ, ψ, px, py, pz}

The parameters a1, a2, a3 are the width, height, and depth

of the object in an object-centered coordinate system. The

parameters ǫ1, ǫ2 define the shape of the object, and the pa-

rameters φ, θ, ψ, px, py, pz are the 6 independent elements of

the transformation of the object-centered coordinate system

with respect to the world. The variable ω in Equation 1

is the weighting factor we have added to aid in projection

shadow rejection. It works by placing a penalty on points that

lie inside the superquadric surface. We use an empirically

determined value w = 0.2, thus placing an 80% weight

on the error of points that lie within boundary of the

superquadric surface. In effect we force the superquadric

to be as large as possible while minimizing any extension

beyond the boundary of the points. Since the point cloud

will never be smaller than the object, this is a valid and

effective operation.

The result of fitting a superquadric to the point cloud

approximation is illustrated in Figure 1 (i-j). Notice that the

fitted shape accurately represents the original object and fully

ignores the perspective projection shadows that are present

in the point cloud. Furthermore, the superquadric ignores all

localized noise, though in this simulated case the only noise

is due to quantization error.
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III. SIMULATION

We developed a simulation environment which allows us

to test the reconstruction algorithm under ideal conditions i.e.

no noise, perfect segmentation, perfect camera calibration.

We can simulate a wide variety of simple geometric shapes

and capture images of the object from any arbitrary positions.

The captured images are then used in the reconstruction

routine and the results overlayed on the ground truth as seen

in Figure 1. In order to quantify the reconstruction accuracy,

we chose three orthogonal viewing directions: two frontal

separated by 90 degrees and one from overhead. We then

compared the 11 recovered superquadric parameters to the

known ground truth. We also compare the volume of the

recovered superquadric to the known volume of the shape.

We define the volume fraction as

vf =
V olumerecovered

V olumetruth

Table I lists the results for a few simulated shapes.

When comparing the values in the table, care should be

taken when interpreting the values for orientation φ, θ, ψ.

Since the objects are symmetric about certain axes, there

is more than one equivalent orientation. It is readily seen

from the table that the algorithm is capable of exceedingly

accurate reconstructions. Though the algorithm has tendency

to overestimate the size of the object (as seen by the volume

fraction), most parameters are off by only a few percent of

ground truth.

Furthermore, the execution time of the reconstruction

algorithm is typically between 0.25 and 0.4 seconds on a 2.53

GHz CPU and is dependent on the time taken for the non-

linear solver to converge. This is a huge savings compared to

the ~100s in [8] and is negligible when compared to the time

it would take a robotic manipulator to capture the images of

the object.

IV. EXPERIMENTAL SETUP

A. Hardware

For real world testing, our hardware configuration consists

of an Axis-207MW wireless network camera mounted in

an eye-in-hand configuration at the end effector of a Kuka

KR6-2 six axis industrial manipulator. The robot and camera

platform is shown in Figure 3. The test object is placed in a

random location on a table which is in the robot’s workspace.

The robot is programmed to observe the scene from three

locations. Due to kinematic constraints, these locations are

not mutually orthogonal but they approach such a condition.

The three images captured by the robot during one of the

test runs are shown in Figure 4. From these images, one

can see the nature of the disparate viewing locations; the

frontal views are not perfectly horizontal nor is the overhead

view perfectly vertical. We note that during reconstruction,

the robot is not informed of the location of the object on the

table. Rather, it is merely assumed that the object is visible

in all three images of the scene; the location of the object

in the scene is determined as part of the reconstruction (the

px, py, pz parameters of the superquadric).

Fig. 3. The robot and camera platform.

Fig. 4. Three images captured by the robot during a test run. The nature
of the disparate viewing locations can be inferred from these images.

B. Test Objects

We tested the algorithm on four different objects: a pris-

matic battery box, an elongated cylinder composed of two

stacked cups, a ball of yarn, and a small cardinal statue. The

first three objects represent the range of geometric shapes

frequently encountered in domestic settings: cylindrical, pris-

matic, and ellipsoidal. It is expected that the algorithm will

achieve accurate reconstructions for these shapes. The last

object is amorphous and is included to test the robustness

of the algorithm when presented with data that is incapable

of being accurately described by the model. In all cases, the

test objects are red in color to ease the task of segmentation

and facilitate reliable silhouette generation. Again, it is not

our aim to solve the broader machine vision problem of

segmentation. The four objects tested are shown in Figure

5.

V. EXPERIMENTAL RESULTS

This sections discusses the reconstruction results of each

of the test objects mentioned in Section IV-B. Each of the

cases (with the exception of the cardinal) is accompanied by

a rendered figure which shows the ground truth overlayed

by the calculated reconstruction. The ground truth is shown
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Fig. 5. The four real-world test objects. (a) A prismatic battery box. (b)
A stack of cups. (c) A ball of yarn. (d) A cardinal statue.

as a wire frame and the reconstruction as an opaque surface.

The accuracy is discussed from a qualitative perspective in

the frame of whether or not the reconstructed shape could

be used to plan a grasping maneuver. The numerical results,

presented in same fashion as the simulated reconstructions

in Table I, are given in Table II.

When interpreting the accuracy of the results, it must be

kept in mind that there are several sources of error that are

compounded into these results which are not present in the

simulation:

• Uncertain camera calibration: intrinsics and extrinsics

• Robot kinematic uncertainty

• Imperfect segmentation

• Ground truth measurement uncertainty

The last bullet is particularly noteworthy. Since the object is

placed randomly in the robot’s workspace the only practical

way of measuring the ground truth position and orientation is

to use a measuring device attached to the end effector of the

robot. Though more accurate than attempting to manually

measure from the robot base, the error is compounded by

both machine inaccuracy and human error.

We must point out, that despite all of these sources of

error, the accuracy of most reconstructions is within a couple

millimeters of ground truth. Compare this with the results in

[6], where a reconstruction with over 200 images resulted in

an error of 10 millimeters.

A. Battery Box

The reconstruction of the battery box, shown in Figure 6,

was overall the most accurate of all the reconstructions. It

is clearly seen that the model correctly captures the height,

width, depth, and shape of the battery box with only a

slight deviation in position and orientation. The numerical

values of the results in Table II confirm this. Though this

reconstruction has the largest deviation from unity for the

volume fraction, there is no question that the resultant model

Fig. 6. The reconstruction of the battery box. Ground truth is shown as a
wire frame.

Fig. 7. The reconstruction of the stack of two cups. Ground truth is shown
as a wire frame.

can be used as a model for grasp planning. Furthermore, the

accuracy of the shape representation opens the door for other

possibilities such as task inference based on shape and/or

appearance.

B. Cup Stack

The reconstruction of the stack of cups, which would be

accurately approximated as a cylinder, did not achieve high

accuracy in all parameters. Namely, the shape parameters

ǫ1, ǫ2 were inaccurate with respect to ground truth. Shown in

Figure 7, it is seen that the reconstructed shape is bordering

on prismatic rather than cylindrical. This is a byproduct that

stems from the nature of perspective projection shadows and

can be eliminated by either more views, or a view perfectly

in line with the major axis. The rest of the reconstruction

parameters (height, width, depth, position) however, are all

accurate, with only the orientation deviating slightly. We note

again that this error stems from a combination of the many

compounded error sources mentioned in the beginning of this

section.

Despite the non-cylindrical shape of the object, we believe

that the overall size and position are still accurate enough to

attempt a grasping maneuver based on the model parameters.

A robot designed to operate in a domestic setting should

have no problem with the margin of error present in this

reconstruction.

C. Yarn Ball

The yarn barn reconstruction, Figure 8, is nearly as ac-

curate as the battery box. There is slight deviation in the

orientation similar to the two previous cases. The yarn ball

was the largest of all objects tested at 150mm in length and

100mm in diameter. And though such an object is likely too

large to be grasped by most domestic sized manipulators,

the accuracy is sufficient to plan the maneuver provided

the manipulator has sufficient capacity. We note that the

size parameters a1, a2, a3 can be directly used as a criteria

to determine if an object is within capability limits of the

manipulator.
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TABLE I

SIMULATION RESULTS

Shape a1 a2 a3 ǫ1 ǫ2 φ θ ψ px py pz vf

Prism Truth 0.4 0.5 1.25 0.0 0.0 1.571 1.571 -1.571 0.0 0.0 0.0
Reconstr. 0.422 0.518 1.265 0.1 0.172 -1.571 1.571 -1.571 -0.009 0.007 0.003 1.087

Cylinder Truth 1.0 1.0 1.5 0.0 1.0 1.571 1.571 0.0 0.0 0.0 0.0
Reconstr. 0.987 0.993 1.544 0.186 0.724 -1.575 1.573 0.013 -0.01 0.0 0.007 1.088

Sphere Truth 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
Reconstr. 0.96 0.96 0.968 0.793 0.781 0.49 -0.005 -0.188 -0.012 0.005 0.004 1.092

TABLE II

EXPERIMENTAL RESULTS

Shape units-mm a1 a2 a3 ǫ1 ǫ2 φ θ ψ px py pz vf

Battery Truth 30 15 52.5 0.1 0.1 0.0 1.57 0.0 880 -924 865
Box Reconstr. 32.9 16.9 51.6 0.2 0.2 3.12 1.56 0.10 878.4 -924.6 864.9 1.18

Cup Truth 34 34 60 0.1 1.0 0.0 0.0 0.0 898 -915 892
Stack Reconstr. 41.0 37.8 61.2 0.3 1.4 -0.30 3.10 -2.60 893.8 -917.5 894.8 1.13

Yarn Truth 50 50 75 0.7 1.0 -0.17 1.53 0.0 898 -915 855
Ball Reconstr. 57.1 51.5 74.4 0.6 1.1 3.07 1.52 0.86 893.9 -912.7 854.1 1.14

Cardinal Truth 251 251 301 * * * * * 898 -915 862
Statue Reconstr. 24.0 18.4 29.5 0.1 0.4 -9.35 -0.82 6.01 892.0 -908.9 867.3 *

1Approximation based on the bounding box that would encompass the bulk of mass.
∗The value has no meaning in the context of this shape.

Fig. 8. The reconstruction of the yarn ball. Ground truth is shown as a
wire frame.

D. Cardinal Statue

We included the figurine of the cardinal to test how our

algorithm performs when provided with data that does not

fit well with our reconstruction model and assumptions. This

test case is shown in Figure 9. Since it would be difficult

to model the ground truth as a wire frame, the results of

the surface approximation phase of the algorithm are used

instead. From the figure, it is clear that there would be no way

to infer from the box shape that is the final reconstruction

that the original object was a bird. However, it is interesting

to note that the reconstruction is very close to what a human

would likely provide if asked to select a bounding box that

best describes the object. That is, the reconstructed shape

does an excellent job of capturing the bulk form of the statue

despite the fact that the data is ill formed with respect to our

modelling assumptions. It is not a stretch of the imagination

to think that a grasp could be accurately planned for this

object using the reconstructed shape.

This example shows that, even when the object does not

take a form that can be accurately modelled by a single

superquadric, our proposed algorithm still generates useful

results.

a b c

Fig. 9. The reconstruction of the cardinal statue. (a) Side view. (b) Top view.
(c) Rear view. The points are the results of the surface approximation phase.
The opaque surface is the fitted superquadric. A perspective projection
shadow is clearly evident in the bottom right corner of the point cloud
in (c).

VI. CONCLUSIONS AND FUTURE WORK

We have shown that by using three images of a novel

object taken from disparate locations, our algorithm can

calculate a parametrized model of that object with suffi-

cient accuracy to allow for the planning of grasping and

manipulation maneuvers. In contrast to other efforts in the

literature, the proposed algorithm requires fewer images,

significantly less computation time, and yields an overall

higher reconstruction accuracy. Furthermore, the parameters

of the reconstructed model can be directly used for grasp

planning. No further analysis of the shape or time consuming

statistical methods are necessary. We feel that the results

presented here merit further investigation and research into

this approach of novel object recognition.

Our future plans include integrating a grasping algorithm

based on the reconstructed superquadric parameters and test-

ing how the algorithm behaves when the viewing locations

become less and less disparate. We also plan to investigate

what can be done to increase the accuracy to an acceptable

level when such a condition arises, such as incorporating the

appearance data that is discarded by using only silhouettes.

That is, we will attempt to incorporate structure that can
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be inferred from the raster images with the structure of the

superquadric to improve the accuracy and overall robustness.

We also plan to investigate incorporating other sensory in-

formation, such as laser range finder, to augment the abilities

of the optical reconstruction by providing depth information

that cannot be recovered due to projection shadows.
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