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Abstract— This paper proposes a light-weight sensor plat-
form that consists of gyro-assisted odometry and a 3D laser
scanner for localization of human-scale robots. The gyro-
assisted odometry provides highly accurate positioning only
by dead-reckoning. The 3D laser scanner has a wide field of
view and uniform measuring-point distribution. Robust and
computationally inexpensive localization is implemented on the
sensor platform using a particle filter on a 2D grid map
generated by projecting 3D points on to the ground. The system
uses small and low-cost sensors, and can be applied to a variety
of mobile robots in human-scale environments. Outdoor navi-
gation experiments were performed at the Tsukuba Challenge
2009, which is an open proving ground for human-scale robots.
Our robot successfully navigated the assigned 1-km course in
a fully autonomous mode multiple times.

I. I NTRODUCTION

Mobile service robots that move around in human living
spaces have many promising applications such as trans-
porting, guiding, security and cleaning [1], [2], [3]. These
robots are required to navigate outdoor as well as indoor
environments, and robust outdoor navigation is an important
issue to develop them. There have been many studies on
outdoor navigation for autonomous mobile robots, including
the Grand Challenge and Urban Challenge [4]. The scale of
the target environments for these studies is relatively large
because they aim to develop car-like robots that can navigate
through driveways. On the other hand, the abovementioned
service robots are relatively small and lightweight to navigate
in human living spaces such as narrow passageways, open
spaces, passages near buildings or trees, and even entering
buildings. In such environments where radio signals are
occluded and reflected, the positioning obtained from GPS
will be unstable. Moreover, due to the limited size of human-
scale robots, only a small number of sensors and computers
can be mounted on them.

One of the main difficulties of outdoor navigation is the
self-localization of robots under various conditions. In indoor
environments, walls and furniture can be used as valuable
landmarks. However, in outdoor environments, there are
often many open spaces and very few landmarks. Hence, a
more precise and robust navigation system is required for
outdoor environments. Dead-reckoning and star-reckoning
are well-known techniques for achieving robot localization.
Dead-reckoning accumulates errors and cannot be used for
navigating long distances. Star-reckoning needs to observe
landmarks in the environment and cannot be utilized without
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any landmark observations. One important approach to these
problems is sensor fusion. Probabilistic frameworks that
combine these two methods using Kalman filters and particle
filters have been proposed to achieve high precision and
robustness[5], [6]. Another important approach is to improve
sensor performance; inertial sensors with less accumulated
errors for accurate dead-reckoning and external sensors with
a wide-view angle for observing more landmarks.

Odometry is usually used for dead-reckoning in wheeled
mobile robots by measuring the rotational speed of two
wheels using encoders. Odometry has accumulated errors, in
which orientation errors have a large impact on the precision
of the estimated position. An approach to this problem is to
measure the rotational motion with a gyroscope. However,
gyroscopes also accumulate errors due to factors such as
offset drift, and a simple combination with odometry may
not reduce the positioning errors. There have been many
solutions proposed to solve this problem, such as a sensor
fusion method using Extended Kalman Filter(EKF) [7],
adaptively switching a sensor for rotational motion between
the gyroscope and encoders [8], filter out gyro drift using
heuristics[9], etc. These method depends on a precise error
model or a specific use case.

2D laser scanners are popular external sensors for mobile
robots because they have a good performance balance in
terms of sensing speed, precision and cost. In indoor envi-
ronments, there are walls and furniture whose locations can
easily be detected and used as landmarks by horizontally
placed scanners. Outdoor environment often have fewer or
no structured landmarks such as walls or buildings, and
the number of landmarks detected by a single horizontal
scanner may not be sufficient. To cope with this problem,
laser scanners that can nod or rotate to extend their field
of view are frequently employed. Both nodding and rotating
method has singularities of the point distribution. In addition,
the rotating method needs special cable handling for the
embedded 2D laser scanner, and the nodding method needs
reciprocal motion.

This paper proposes a sensor platform for mobile robots
that integrates a gyro-assisted high-precision odometry and
a wide-view roundly-swinging three-dimensional (3D) laser
scanner. The gyro-assisted high-precision odometry consists
of two complementary gyroscopes attached to the same yaw
axis to compensate each other’s drift. The roundly-swinging
3D scanner consists of a 2D laser scanner attached to a
gimbal and a single actuator. It has uniformly distributed
measuring points in a wide angle of view. Robust self-
localization is implemented on the sensor platform with a
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particlefilter to fuse the measurements from the gyro-assisted
odometry and the 3D laser scanner. The likelihood compu-
tation in the particle filter is based on map-matching using a
2D grid map which is generated by projecting 3D points on
to the ground. This makes the particle filter computationally
inexpensive while maintaining the rich information from the
wide angle of view. The system is built using small and low-
cost sensors, and it can be applied to a wide variety of mobile
robots for human-scale environments.

We performed experiments on outdoor navigation at the
Tsukuba Challenge [10], which is an open proving ground
for human-scale robots. The reliability of the proposed sys-
tem was verified by the experimental results, which showed
that the robot successfully navigated the assigned 1-km
course in a fully autonomous mode multiple times.

II. GYRO-ASSISTED HIGH-PRECISION ODOMETRY

A. Sources of positioning errors

Odometers calculate the longitudinal and rotational mo-
tions by measuring the rotational speed of two wheels using
encoders. The accumulated errors of odometry are affected
by systematic errors, such as inaccurate parameters for the
wheel diameter and tread width, and non-systematic errors,
such as wheel slippage or bumps on the floor. In particular,
orientation errors have a large impact on the precision of
the estimated position. By using gyroscopes to measure the
rotational speed directly, both systematic and non-systematic
errors can be avoided to improve the positioning accuracy.
However, gyroscopes also accumulate orientation errors due
to such factors as drift, rounding errors, etc.

We use the MEMS rate gyro CRS-10 (Silicon Sensing) to
measure the rotational speed for odometry calculation.

The following factors are major error sources when cal-
culating orientations using MEMS rate gyros.

• Drifting offset caused by temperature change
• Analog noise from power supply or other electrical

components
• Rounding errors from ADC and computation process
The drifting offset value is relatively larger for MEMS rate

gyros than fiber optic gyros. The amount of rounding errors
is determined by the ADC resolution and the dynamic range
of gyro output. In implementation, we used gyros configured
to a rate of 75[◦/s] and full-scale analog range of±2.07[V],
attached to a 12-bit ADC withVre f = 5[V]. As a result, 1
LSB is equivalent to 0.044 [◦/s].

B. Reduction of orientation errors

To compensate for the offset drift caused by temperature
change, each time a robot stops moving, the gyro output
is measured to calibrate the offset values. The stationary
condition is detected by monitoring the encoder output on
both wheels, and when the same value is recorded for over 1
[s], the offset value is updated with the weighted mean using
the old value and averaged gyro output in the meantime.
In addition, using two complementary gyros attached to the
same yaw axis and providing two outputs helps cancel the
offset errors.

Fig. 1. Odometry tracks of ordinary implementation and gyro-assisted
implementation

High-frequency analog noise and rounding errors are han-
dled by averaging multiple samples. The ADC rounding error
can be reduced by using the dithering effect for analog noise.
In addition, using two complementary gyros attached to the
same yaw axis reduces rounding and linearity errors.

Fig.1 shows the tracks of remote-controlled robot(white
lines) determined by encoders on wheels, and by gyroscope
to measure angular velocity. Each figure shows the results of
independent trials where the robot drives uneven curved path
in a large room (70[m]×30[m]). The red and yellow dots
in the figure represent the measurements from a 2D laser
scanner mounted on the robot and aimed at the floor in front
of the robot, along with the odometry tracks; these are used to
generate a map to compare the results of the two independent
trials. The colors of the dots represent their height. The red
dots are on the floor and yellow dots are on the walls. The
ordinary odometry had large errors, and the start and goal
points had an extreme mismatch. As a result, the map showed
large strain and deviation. The general distortion may be due
to inaccurate parameters for the wheel diameter and tread
width. In addition, there may be some local distortion caused
by large orientation errors from slippage and bumps when
running over cables. In contrast, the results for the gyro-
assisted odometry showed very small distortion.

III. W IDE VIEW 3D SCANNER

A. Roundly-swinging laser scanner

To enhance the field of view for the 2D laser scanner, we
use a roundly swinging mechanism [11]. A 2D laser scanner
attached onto a gimbal, and it is swung by a single actuator to
achieve a wide angle of view. Fig. 2 shows a single cycle of
the mechanism. The swinging motion extends vertical view
angle on every horizontal direction evenly, as a result, whole
horizontal view angle of a 2D laser scanner which is 275[◦],
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Fig. 2. 3D Scanner

Fig. 3. Simulated FoV of our scanner covering 5/6 of secondary rotation
range in 30 scans.

will have the same extended vertical view angle. When the
2D scanner has a view angle of 360[◦], this mechanism has
a field of view almost equivalent to a scanner with a tilted
2D scanner fixed on a rotating mechanism. This type of 3D
scanner has an advantage because of the uniform distribution
of measuring points [12].

The roll and pitch angles of the gimbal swing are±28[◦],
so the vertical view angle of the mechanism is±28[◦]. Fig.3
shows a simulated field of view for the roundly swinging
3D scanner. In all cases, the 2D scanner measured a range
of 500 and the swinging actuator moved about 300 [◦] by
10 [◦] steps. The advantages of this scanner are as follows:

1) The total range of the horizontal view angle has the
same extended vertical view angle.

2) The measuring points are uniformly distributed.
3) The actuator is simply controlled since it just rotates

at a constant speed.
4) No special cable handling such as slip rings are needed.

Moving the 2D laser scanner in a rotating or nodding
manner is a popular method for extending the field of view in
3D. Our roundly swinging scanner is better than the rotating
method for points 1, 2 and 4 and is better than the nodding
method for point 1-3.

Fig. 4. Scanner structure

B. Calculation of measured point position in 3D

By considering the estimated robot position, sensor posi-
tion on the robot, posture of the gimbal, 2D laser scanner
position on the gimbal and direction of the laser beam, the
3D measurement position can be calculated by applying these
transformations in order. The posture of the gimbal can be
calculated using the next formula from output link angleφ of
the swinging actuator and link parametersL1 andL2 (Fig.4).

Roll(φ) = tan−1 y(φ)
L2

(1)

Pitch(φ) = tan−1 x(φ)√
y2(φ)+L2

2

(2)

wherex,y are

x(φ) = L1cosφ (3)

y(φ) = L1sinφ (4)

The positions of the measured points on the scanner frame
are given by

P(l ,θ ,φ) = Rx(Roll(φ))Ry(Pitch(φ))Rz(θ)(r,0,zo f f set)
T

(5)
whereθ is the direction of the laser beam,r is the measured
distance,zo f f set is the length between the gimbal rotation
center and laser beam window of the 2D laser scanner, and
Rx, Ry, Rz are matrices of rotation around the X, Y, and Z
axes, respectively. Finally, the point in the global coordinate
frame can be calculated by transforming the resultingP using
the scanner position on the robot and the robot position
estimated with gyro-assisted odometry.

The posture of the gimbal is continuously changing while
the laser scanner is scanning, and so the angleφ needs to be
updated for eachθ . In addition, the position and orientation
of the robot change continuously, and so these should also
be updated for eachθ . However, even if the same robot
position and orientation are used for the duration of a scan,
a resulting point cloud will not be distorted much because the
the rotational speed of the robot is relatively slow. As a single
φ value which is synchronized withθ can be measured for
every scan in our method,φ value corresponding to eachθ

1416



Fig. 5. Sensor block diagram of data flow

can be calculated by interpolating measuredφ using rotating
speed of the swinging actuator.

C. Implementation of the swinging mechanism

The hardware consists of a small-sized 2D laser scanner
(HOKUYO UTM-30LX), a smart actuator (ROBOTIS RX-
64) to swing the gimbal, and a single board computer to
control them. The software consists of three processes —
obtaining scans, controlling the actuator and synchronizing
data. In our implementation, all the processes run on a single
PC. This is an advantage over another implementation [13],
which requires a dedicated micro-controller for managing the
swinging actuator.

The positions of 3D points can be calculated by using
range data from the 2D laser scanner, the posture of the
gimbal and the estimated robot position. Synchronizing these
three kinds of data is the key to obtaining point clouds
without distortion. We use the SYNC signal from the 2D
laser scanner to control the outgoing data packet to the
smart actuator requesting a report on its output angle (Fig.5).
The SYNC signal from the 2D laser scanner triggers data
acquisition from the smart actuator, which then triggers data
acquisition for odometry on the PC. This simple implemen-
tation can synchronize the three types of data more precisely
than a method using the time-stamp of each data. In addition,
there is no need to monitor the odometry and gimbal posture.

Fig.6 shows a point cloud obtained from the 3D scanner on
a moving mobile robot in an outdoor environment. The points
on the figure are color-coded by height. In this experiment,
the scanning period of the 3D scanner was set to 1.8 [s],
and the scanner measured a total of 60 2D scans in a single
period. In Fig.6, there are 13 periods of measured points.
Although the 2D laser scanner UTM-30LX has a view angle
of 270 [◦], we limited this to 180[◦] because the rear view
angle was occluded by the mobile robot itself.

IV. L OCALIZATION

Self-localization is performed by fusing the position es-
timated from the gyro-assisted odometry and the measured
points of the 3D scanner using a particle filter. A motion
model is calculated by measurements from the gyro-assisted
odometry, and the robot position is updated within 20 [ms].
The likelihood for the measurement model is calculated by
matching an environmental map to measurements of the 3D
scanner, for each period (1.8 [s]).

One issue is the computational complexity of matching
3D points from the 3D scanner and an environmental map
in 3D. Since the map-matching process is performed for each

Fig. 6. Example of point cloud captured in outdoor environment

particle, the computational time increases proportionally to
the number of particles. This makes the particle filter not
work in real-time. To mitigate this problem, we perform the
map-matching in 2D using a 2D grid map which summarizes
a 3D point cloud. First, a local 2D grid map is generated by
projecting a 3D point cloud on to the ground for every 3D
scanning period. This local 2D grid map is used to calculate
the likelihood of each particle by matching it to a reference
2D grid map generated from a 3D environmental map
in advance. This makes the particle filter computationally
inexpensive while maintaining the rich information from the
wide angle of view.

A reference 2D grid map is generated from 3D points that
are collected by a mobile robot with a remote controller from
the target environment. The 3D points are then projected
into 2D grid cells. The reference 2D map is divided into
multiple sub-maps with some overlapping regions to handle
large environments. When projecting 3D points into 2D grid
cells, to prevent points on the ground or ceiling from being
projected, points with specific heights are filtered out. In
experiments, we used all points above 15 [cm] and below
45 [cm] for outdoor environments. For indoor environments,
an additional filter condition for the ceiling (lower than 2
[m]) was also applied.

Localization with a particle filter sometimes induces a
kidnapped state in which no particle is around its correct
position on the map. This state is caused by large errors in
the motion model or a long time lapse without the effective
measurement of environmental features. The kidnapped state
is detected by checking if the likelihoods of all particles are
lower than a threshold for a certain period of time. When it
is detected, particles are redistributed over a wider area to
recover the localization failure.

V. FIELD EXPERIMENT

Experiments on autonomous outdoor navigation were con-
ducted at the Tsukuba Challenge. The wheeled mobile robot
Papyrus-II was equipped with the proposed system. Fig.7
shows the Papyrus-II robot.
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Fig. 7. Mobile robot ‘Papyrus II’

A. Tsukuba Challenge

The Tsukuba Challenge is a challenge for outdoor nav-
igation by autonomous mobile robots that takes place on
a public street in Tsukuba City, Japan. The task of the
challenge is to navigate through a specified course au-
tonomously. Each robot runs accompanied by a judge to
check if the task is properly accomplished. In 2009, 72
teams entered the challenge, and five, including us, were
successfully accomplished the task. We used the proposed
sensor platform; a minimum sensor system with only gyro-
assisted odometry and a 3D laser scanner.

Fig.8 shows the environment for 2009. The course was 1.1
[km] long, including a park road and a pedestrian pathway
along a street. In addition, the course had a number of
difficulties, such as narrow gates, pedestrians, covered area
with trees and open spaces that has few features, as shown
in Fig. 9. There were a number of buildings and trees near
the course, and using GPS in such an environment would
cause considerable errors. Laser scanners also do not capture
many environmental features in some parts of the course.
Moreover, people are passing through the environment going
about their lives even while the robot is performing the task.

B. Experiments

Because the task was to navigate through the specified
course autonomously, we drove the robot by using an oper-
ator to generate an environmental map in advance and then
edited the target track by hand on the map. First, an operator
steered the robot by driving along the specified course and
captured environmental structures along the way with the
3D scanner. All 3D points were arranged using the position
estimated with the gyro-assisted odometry, and the reference
grid map was generated. The reference grid map was divided
into fifteen overlapping sub-maps since the length of the
course was 1.1[km]. While referring to the trajectory of the
robot as it was steered by the operator, the way points of the
target track were then edited by hand.

Fig.10 shows all reference grid maps merged together. The
black dots are cells filled with 3D points that passed through
the height filter, which was above 15[cm] or below -45 [cm].
The red line shows the target track. As shown in the figure,

Fig. 8. Course of Tsukuba Challenge 2009

Fig. 9. Start position and some difficult areas.

the distortion of the map was very small since estimating
the position by the gyro-assisted odometry is sufficiently
accurate. The region next to the start point had some overlaps
with the region just before the goal area, and the 3D scanner
measured some objects twice. By using the position of the
corner on a wall in this region, the accumulated errors of
the gyro-assisted odometry after traveling 1 [km] can be
measured; it was 3.7 [m].

Since the environment is open to public, there were many
people walking or cycling through. Moreover, some unex-
pected objects may appear on the target track. Therefore, we
implemented some functions to avoid these obstacles during
the experiments. When an unexpected object is detected on
the track, the robot slows down its running speed depending
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Fig. 10. Generated environment map

on its distance to the object. If the object does not move
away, the robot stops in front of the object. When the robot
is blocked by the object for a certain amount of time, the
robot plans a new short-term track and avoids the object
using the A* algorithm on the local 2D grid map.

C. Results

On November 15, 2009, we ran the robot with an operator
to generate a reference grid map and created way points
along the target track. Using this map, we conducted navi-
gation experiments six times from November 18 to 21. The
results showed the experiments were successful. For all six
trials, the robot successfully navigated the 1.1 [km] course
autonomously.

Fig.11 shows the result for one experiment on November
20. It shows a point cloud generated by just placing 3D
points from the 3D scanner at the positions obtained by
the gyro-assisted odometry. Note that no localization scheme
was applied in this process. It is slightly distorted, but when
compared with Fig. 10, the overall shapes of these two are
almost identical. This proves that our gyro-assisted odometry
can provide reproducible accuracy. The accumulated errors
of the gyro-assisted odometry after traveling 1 [km] was
10.7[m] in this trial. The error is a little larger than that
shown in Fig.10, but it still had very high accuracy.

The self-localization system successfully localized the
robot position on the reference grid map using the map
shown in Fig. 10. Measurements were acquired during
runtime, as shown in Fig. 11, and the robot successfully
navigated 1.1 [km] in a fully autonomous manner. In the
navigation, the robot went through difficult areas including
A, B and C shown in Fig. 9.

Point A is an open space where few objects can be

Fig. 11. Collected point cloud during navigation on November 21, 2009

Fig. 12. Point cloud from 3D scanner and simulated 2D scanner at point
A

observed by 2D laser scanners. Even in such an environment,
the 3D scanner was able to acquire many 3D points. Fig. 12
shows two types of local grid maps generated around point A.
The left is the actual grid map generated by the 3D scanner,
and the right is a grid map generated by a horizontal 2D
scanner that was simulated by using the 1-1.5 [m] height slice
from the same 3D point cloud. The blue triangle shows the
robot position. The figure clearly shows that the horizontal
2D scanner could not obtain enough information while the
3D scanner could. The results indicate that our system can
process the particle filter efficiently by using 2D grid maps
in map-matching while maintaining much of the information
from the wide vertical view of the 3D scanner.

At point B, there were three poles aligned with clearance
of 1.5 [m] that required accurate positioning. At this point,
rich information could be obtained from the 3D scanner,
as shown in Fig. 13. This made the localization results
sufficiently accurate, and the robot went between the poles
without collisions.

Point C has few features, similar to point A; the lo-
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Fig. 13. Point cloud from 3D scanner and simulated 2D scanner at point
B

Fig. 14. Point cloud from 3D scanner and simulated 2D scanner at point
C

calization system provided enough positioning accuracy to
continue the task despite the lack of objects (Fig. 14) due to
precise odometry.

Several times in the experiments, a human or other robots
happened to block the track. The local path planner using
the same 3D scanner as the localization system successfully
avoided collision in all the cases.

VI. CONCLUSION

This paper has proposed a sensor platform for mobile
robots that integrates gyro-assisted odometry and a roundly-
swinging 3D laser scanner. The gyro-assisted odometry pro-
vides highly accurate positioning by dead-reckoning. The
3D laser scanner has a wide field of view and uniform
measuring-point distribution. In addition, we implemented a
self-localization system using a particle filter with the sensor
platform. The self-localization system uses 2D grid maps
which are generated by projecting 3D points. The 2D map

contains rich information from the wide-view 3D scanner
while it has a small data structure. This makes the particle
filter computationally inexpensive and provides a robust and
lightweight localization system. The reliability and usability
of our system was verified through multiple experiments at
the Tsukuba Challenge.

Future work includes enhancing the scanning speed and
widening the field of view of the 3D laser scanner for higher
speed navigation.
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