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Abstract—This paper presents an adaptive backstepping 
sliding-mode motion controller using fuzzy basis function 
networks (FBFN) method for trajectory tracking of a self-
balancing two-wheeled robot (SBTWR) with parameter 
variations. A decoupling method is proposed to decouple the 
robot’s dynamic model such that the tracking controller can 
be synthesized using backstepping and sliding-mode control in 
both kinematic and dynamic levels. The FBFN is employed to 
on-line learn the uncertain parts of the tracking controller, 
thus achieving adaptive capability. Simulations results indicate 
that the proposed adaptive tracking controller is capable of 
providing satisfactory trajectory tracking performance.  
Keywords: FBFN, sliding-mode control, trajectory tracking, 
wheeled inverted pendulum. 
 

I. INTRODUCTION 
Recently, self-balancing two-wheeled robots (SBTWRs), 

or called wheeled inverted pendulums, have been widely 
investigated in both academia and industry. Such robots 
have been successfully applied to construct several 
autonomous service robots [1-9].  Hosoda et al. [2] detailed 
the basic design of a human-symbiotic robot EMIEW 
whose linear motion speed was up to 1.67 m/sec; their 
EMIEW was designed based on a self-balancing two-
wheeled structure. On the other hand,   many researchers 
[3]-[9] have shown that the two-wheeled self-balancing 
platforms have gained many applications, including 
personal transportation vehicles, soccer games, service 
robots, and so on.   

Modeling and control of the SBTWR have been widely 
studied by several researchers. Tsai et al. [3] proposed an 
adaptive neural network controller for a two-wheeled self-
balancing mobile platform, but did not deal with trajectory 
tracking. Sasaki et al. [4] constructed a lightweight self-
balancing personal riding-type wheeled mobile platform 
(PMP); the PMP steering control was achieved by changing 
the position of the rider’s center of gravity. Grasser et al. [5] 
presented an unmanned mobile inverted pendulum, and 
Pathak et al. [6] studied the dynamic equations and control 
of the wheeled inverted pendulum by partial feedback 
linearization; however, they only addressed velocity control 
and position stabilization. Ha and Yuta [7] presented the 
trajectory tracking system for navigation of the inverse 
pendulum type self-contained mobile robot; however, this 
method was limited to simple straight line motion and  
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simple turning. 
From controller design of view, the control of the 

SBTWR can be thought of as an under-actuated control 
problem, which has been addressed by sliding-mode 
control approaches [10-11]. In particular, Lin and Mon [10] 
offered a hierarchical decoupling sliding-mode control to 
regulate a more general class of under-actuated control 
systems. Wang et al. [11] proposed two hierarchical sliding 
model control methods for the under-actuated control 
problem. However, the approaches [10-11] have not been 
applied to the SBTWR yet!   

Recently, FBFNs have been adopted widely for nonlinear 
system modeling and control because they possess simple 
structure, good local approximating performance, particular 
resolvability, and function equivalence to a class of 
nonlinear function. Hence, FBFNs have been increasingly 
receiving attention in solving complex control problems. 
For example, Lin and Wang [12] presented FBFN-based 
robust self-tuning controller for robotic arms, Huaguang et 
al. [13] investigated an FBFN-based multivariable adaptive 
controller for nonlinear systems, and Lin [14] proposed an 
adaptive critic controller using FBFN for bank-to-turn 
missiles. Furthermore, Tsai et al. [3] employed similar 
FBFNs to approximate the unknown Coulomb and static 
frictions occurring in a two-wheeled self-balancing human 
transporter. However, the methods in [3, 14] have not been 
applied to the SBTWR with parameter variations and model 
uncertainties.  

The goals of this paper are to propose an adaptive 
backstepping sliding-mode trajectory controller using 
FBFN to achieve trajectory tracking of the SBTWR in 
presence of parameter variations and model uncertainties, 
and to verify the controller by numerical simulations. The 
paper is written in two principal contributions; one is that a 
decoupling method is proposed to decouple the robot’s 
dynamic model such that the motion controllers can be 
synthesized in both kinematic and dynamic levels; the other 
is the development of an adaptive trajectory tracking 
controller using FBFN.  

The rest of the paper is outlined as follows. Section II 
decomposes the mathematical model of the SBTWR into 
two levels. Section III develops two backstepping sliding-
mode controllers in both levels.  In Section IV, the FBFNs 
are employed to on-line learn the uncertain parts of the 
controllers, thus achieving adaptive trajectory tracking. In 
Section V, simulation results are conducted to show the 
feasibility and effectiveness of the proposed control 
methods. Section VI concludes the paper. 

 
 
 

The 2010 IEEE/RSJ International Conference on 
Intelligent Robots and Systems 
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 3943



Table I. Parameters used for modeling and simulation. 
Symbol and 
unit 

Parameter and variable 
name Value 

xxI , yyI , zzI  
Moment of inertia of the 
pendulum body with respect to 
the x, y, z axis, respectively.  

xxI =2.1073 

yyI =1.8229 

zzI =0.649 

rv [m/sec] Reference linear velocity  

rω [m/sec] Reference angular velocity  

R [m] Radius of both wheels 0.21 

,x zc c  
The center of mass of the 
vehicle  is at Coordinate 

( ,0, )b x zOG c c= in β  

zC =0.21 

rτ , lτ  Input torque applied to the right 
motor and the left motor 

 

waI , wdI  
[ 2Kg m ] 

Moment of inertia of a wheel 
about its axis and about a 
diameter respectively 

waI =0.1563 

wdI =0.0781 

rφ , lφ [rad] angles of  the right and left 
wheels 

 

θ [rad] Yaw angle   

bM [Kg] Mass of the pendulum  70 

wM [Kg] Mass of the each wheel 4 

α [rad] Tilt angle of the wheeled 
inverted pendulum 

 

b [m] 
Half of the distance between 
both driving wheels 

0.2 

( , )x y [m/sec] Position of the wheeled inverted 
pendulum  

 

,v ω  linear and angular velocities of 
the wheeled inverted pendulum 
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θ
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Fig.1. Free body diagram of the SBTWR. 
 

II. SYSTEM MODELING AND DECOMPOSITION  
2.1 Mathematical Modeling: Revisited 

To steer the SBTWR, it is necessary to have its 
mathematical model such that a motion controller can be 
successfully designed based on the model in order to 
achieve desired control goals. Fig. 1 shows the free body 
diagram of the SBTWR whose mathematical model has 
been established in detail in [6]. In order to briefly recall the 
SBTWR’s dynamic model, Table 1 lists all the used 
symbols and their definitions. With the symbols in Table 1 
and the Euler-Lagrange equation, the dynamic model of the 
SBTWR was described in [2]. 

To simply the model, one defines the following notation 
and the augmented vector x,   

[ ]  ,   ,Tx y v v
αωα

θ α
ωθ

⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥= = = = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

r
r

q
q V x

V
        (1) 

Thus,the state equation of the SBTWR is thus given by  
( ) ( )f= +x x g x u                              (2) 

where  

( ) , ( ) , r

l

τ
τ
⎡ ⎤⎡ ⎤ ⎡ ⎤

= = = ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 1

2 2

f (x) g (x)
f x g x u

f (x) g (x)
 1 4 2( ) ;×=g x 0  

2 2 2 2

21 21
2 2

2 22 22

23 23

1 1( 2 2 cos( ) ) ( 2 2 cos( ) )
( ) ( )

( ) ( ) ( ) ( cos( ) ) ( cos( ) )
( ) ( )

b w wa b z b w wa b z

b z yy b z b z yy b z

MR MR I M cR MR MR I M cR
D D

g g
R Rg g M cR I Mc M cR I Mc
D D

g g
R b R b
G G

α α

α α

α α

α α

α α

⎡ ⎤
+ + + + + +⎢ ⎥

⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥= = − + + − + +⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥−⎣ ⎦ ⎢ ⋅ ⋅−⎢
⎢⎣ ⎦

x x
g x x x

x x ⎥
⎥
⎥

2 2 2 2 2 2 2

21
2 2 2 2 2 2 2

22

23

( ) cos( ) sin( )

1 1 1(sin(2 ) ) ( sin(2 )( ) ) ( 2 4 4 ) sin( )
2 2( )

1 1( ) ( ) ( sin(2 )) ( 4 4
2 4

( )

T

b z b z wa b z w b z

b z yy b z b

v v

H M c R M Rc I Mc M RMc g
D D Df

f K M c R g I MRc RM
D D

f

α α α

α
α α

θ θ θ α

αθ α α α

θ α

⎡ ⎤=⎣ ⎦

+ + − − −
⎡ ⎤
⎢ ⎥= = + + − −⎢ ⎥
⎢ ⎥⎣ ⎦

1

2

f x

x
f x x

x

3 2

2 2 2 2

)sin( )( )

1 1( ( ) )sin(2 ) (sin( ) )

z

xx yy b z b z

c

I I R Mc R RMcv
G Gα α

α α

ααθ α θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

− − − −⎢ ⎥
⎢ ⎥⎣ ⎦

 

2 2 2 2 2 2 2

2

cos ( ) (( 2 ) 2 )

       2 2
b z b w b z yy w yy b

b z w a yy wa

D M c R M M M c I M I M R

M c I I I
α α= + − − − −

− −
2 2 2

2 2 2 2

( ) cos ( )

       ( 2 2 ) 2
b z zz xx

b z xx wd w wa

G M c I I R

M c I I b M R b I
α α= − + −

+ + + + +
 

2 2 2 3 2

2 2 2 3

( 4 ) ( 4 3 ( )) s in ( )

                ( ( ) ) s in (3 )
y y b z b z b z xx yy

b z x x z z b z

K D I M R c R M c M R c I I

M R c I I R M c
α α α

α

= − − + −

+ − +

 
2 2 2 2 2

2 2

1
2
1
2

b zz w a zz w xx w a xx b z w b z w a

b xx w zz

H M R I I I M R I I I M c M R M c I

M R I M R I

= + − − − −

− +

 
2.2 Model Decomposition 

With the transformation of the torques yC  and Cθ
 into 

the wheel torques lτ  and rτ , one obtains  

0.5 0.5
0.5 0.5

l

yr

C
C

θτ
τ

⎡ ⎤⎡ ⎤ ⎡ ⎤= = ⎢ ⎥⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦
u                           (3) 

  and 

 

2 1 21

2 2 2 2

2 32 3

( ) ( ) 0
( ) ( ) 0

0 ( )( ) y

f g
C

f g
C

gf

θ
⎡ ⎤ ⎡ ⎤

⎡ ⎤⎢ ⎥ ⎢ ⎥= + ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

x x
V  x x

xx

       (4)

 From (2) and (4), it follows that the dynamic model of the 
SBTWR is decomposed into two levels of equations: 
kinematic and dynamic.    

[ ]cos sin
T T

r x y v v αθ α θ θ ω ω⎡ ⎤= =⎣ ⎦q    (5) 
and 

21 21

22 22

2323

( ) ( ) 0
( ) ( ) 0

0 ( )( )
r

y

f g
C

v f g
C

gf

α
θ

ω

ω

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = + ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦

x x
V x x

xx

      (6) 

The kinematic level reveals the relations between the 
position, orientation and inclination of the SBTWR and 
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their velocities, whereas the dynamic level involves with 
the relations between the three accelerations and the two 
torques, Cθ

 and 
yC  . Furthermore, from (5) and (6), it 

indicates that two controllers for Cθ
 and 

yC can be 
synthesized independently from each other and then 
combined together to accomplish the control goal. 
 

III. TRAJECTORY TRACKING 
3.1 Problem Statement 

The design goal of the trajectory tracking for the robot 
model described by (5) and (6) is to keep the trajectories of 
the SBTWR asymptotically follow time-varying reference 
trajectories, and to main the tilt angle of the pendulum at 
origin. To formulate the problem, let  ( ),  ( ),  ( )x t y t tθ  be 
the differences between the real position ( ),  ( )x t y t  and the 
angle )(tθ  of the nonholonomic mobile robot with the 
desired reference trajectory, [ ] 3( ) ( ) ( ) ( ) T

r r r rt x t , y t , θ t R= ∈q , in the 
Cartesian coordinate, i.e.,  

( ) ( ) ( )rx t x t x t= − , ( ) ( ) ( )ry t y t y t= − , ( ) ( ) ( )rt t tθ θ θ= −     (7) 

Moreover, the desired reference trajectory ( )rq t satisfies 
the following kinematics equation. 

( ) ( ) cos( ), ( ) ( )sin( ), ( )rc r r rc r r r rx t v t y t v t tθ θ θ ω= = =   (8) 
where ( )rv t and ( )r tω  represents the desired time varying 
linear and angular velocities.  
      The aim of the trajectory tracking control method is to 
design two control laws for the two torques, Cθ

 and 
yC , such 

that ( ) 0, ( ) 0, ( ) 0x t y t tθ→ → →  as t → ∞  and the inclination 
α  is eventually maintained at zero. 
3.2 Design of Trajectory Tracking Controller  

The trajectory tracking controller of the SBTWR can be 
synthesized using backstepping in both kinematic and 
dynamic levels. In the kinematic level, two virtual controls 
for trajectory tracking are respectively constructed. In the 
dynamic level, the controlled torque vector to drive two 
wheels is established using the sliding-mode control 
approach, in order to achieve trajectory tracking.  
3.2.1 Kinematic Level 

For the kinematic part (5), the three variables ( )v t , ( )tω  
and ( )tαω  are regarded as virtual controls. To stabilize the 
inclination of the vehicle, it is easy to propose the virtual 
control  

1( ) ( ) , 0t k k Rα α αω φ α α= = − ∈ >                        (9) 
so as to regulate the tilt angle to zero exponentially. On the 
other hand, to achieve  

( ) 0, ( ) 0, ( ) 0x t y t tθ→ → →  as t → ∞      (10) 
in the kinematic level, one considers the first three 
equations of the subsystem (5) as a well-known kinematic 
model of a mobile robot with differential driving, and 
applies the subsequent kinematic control approach to 
achieve the trajectory tracking goal. Since the errors 
between the actual and desired postures ,  ,  x y θ  are defined 
in (7), the tangential error 1( )e t , the normal error 2 ( )e t  and 

the orientation error 3 ( )e t  is then obtained from the 
following matrix: 

1

2

3

( ) cos sin 0
( ) sin cos 0
( ) 0 0 1

e t x
e t y
e t

θ θ
θ θ

θ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

            (11) 

Differentiating the error vector obtains 
1 2 3

2 1 3

3

cos
sin

r

r

r

e e v v e
e e v e
e

ω
ω

ω ω

= − +⎧
⎪ = − +⎨
⎪ = −⎩

                       (12) 

Notice that the transformed errors, 1( )e t  2 ( )e t  and 3 ( )e t , are 

continuous and bounded, the original errors, ,  ,  x y θ  are 
bounded and continuous. Define a new auxiliary 
variable 3 ( )e t : 

3 3 2( )e t e eα= +                                     (13) 
where 0α ≠ .Taking the time derivative of 3 ( )e t  yields: 

3 3 3 2 3 1 3( ) ( sin )r re t e k e k e v eω ω ω= + = − + − +    (14) 
To stabilize three error variables 1( )e t  , 2 ( )e t  and 3 ( )e t , one 
proposes the following control laws for v and ω , 

2 1 1 3

3
3 2 3 2 3

3 1 3

cos
sin1 ( sin )

1

r

r r r

v k e v e
e

k e v e v e
k e e

φ

ω φ α ω

= = +⎧
⎪
⎨ = = + + +⎪ +⎩

 (15) 

Note that it is easy to show that the set of control laws (15) 
stabilizes three error variables 1( )e t  , 2 ( )e t  and 3 ( )e t . 
3.2.2 Dynamic Level 
3.2.2.1 Sliding-Mode Yaw Rate Control 

This subsection proposes the sliding-mode yaw rate 
controller to steer the SBTWR to exactly track the virtual 
angular velocity command 3φ . The yaw rate controller can 
be designed based on the following decoupled and 
simplified yaw motion model 

23 ( ) ( / ) yf x R b G Cαω = + ⋅  
Define the sliding surface Sη  by 

3Sη ω φ= −                                                            (16) 
 Differentiating Sη  gives  

3Sη ω φ= −  23 3( ) ( / ) yf x R b G Cα φ= + ⋅ −                       (17) 
The control objective is to find a sliding-mode control 
law for  Cy such that 0Sη →  in finite time. Thus, let 
the yaw rate control law be  

23 3 1 2[ ( ) sgn( ) ]y
GC f x K S K S
R b

α
ηω η ηω ηφ= − + − −

⋅
      (18) 

such that  

1 2 1 2sgn( ) , 0, 0S K S K S K Kη ηω η ηω η ηω ηω= − − > >         (19) 
To show that 0Sη →  in finite time, one proposes the 

Lyapunov function 2
2 / 2V Sη= whose time derivative is   

2V S Sη η= 2
1 2K S K Sηω η ηω η= − − 1K Sηω η≤ −       (20) 

This indicates that 0Sη → in finite time. In practice, the 
signum function will be replaced by a saturation function to 
avoid the chattering phenomenon. 

3945



∑

∑

1x

nx

2x

ω
W

1φ

Nφ

2φ

1f

mf

φ 1−n

 
Fig.2. FBFN structure. 

 
3.2.2.2 Aggregate Hierarchical Sliding-Mode Control  

The control objective of the subsection is to find a 
torque control law for Cθ  such that the speed of the 
platform tracks the virtual linear velocity command 

2φ without errors, and the tile angle of the platform is 
maintained at zero simultaneously. In what follows, the 
aggregate hierarchical sliding-mode control approach in [11] 
is used to find torque control law for Cθ by using the 
following simplified and coupled 2-state state equation  

             

21 21

22 22

( ) ( )
( ) ( )

f g
C

f gv
α

θ

ω ⎡ ⎤ ⎡ ⎤⎡ ⎤
= +⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x x
x x

              
(21)  

To formulate the hierarchical decoupling sliding-mode 
controller, one proposes the two first-layer sliding surfaces  

     1 ( )S Kα α α α αη ω φ ω α= = − = − −            (22) 

2v vS vη φ= = −                                  (23) 
whose time derivatives are respectively given  by 

21 21( ) ( )S K f g C Kα α α θ αω α α= + = + +x x         (24) 

2 22 22 2( ) ( )vS v f g Cθφ φ= − = + −x x                (25) 
Then the second-layer sliding surface is proposed by 
                          1 1 2vS r S r Sα= +                                      (26)  
where 1r and 2r are two real parameters. To construct the 
aggregate hierarchical sliding-mode control law [11] such 
that 1, , 0vS S Sα → as t → ∞ , one takes the time derivatives 
of the second-layer sliding surface to be zero, i.e.,  

1 1 22 22 2 2 21 21[ ( ) ( ) ] ( ( ) ( ) )S r f g C r f g C Kθ θ αφ α= + − + + +x x x x   (27) 
The control law for Cθ  is chosen by  

1 21 2 22
1 21 2 22

1 2 2 1 1 2 1 1 2

1 [ ( ) ( )
( ) ( )

        sgn( ) ], 0, 0s s s s

p r f r f
r g r g

r k r K S K S K Kα

τ

α φ

= − − −
+

+ − − > >

x x
x x   (28) 

which leads to  1 1 1 2 1sgn( )s sS K S K S= − − . The fact that  1S  
approaches zero in finite time can be easily shown by 
proposing the Lyapunov function 2

3 1 / 2V S= .  Hence, it 
easily implies that 1, , 0vS S Sα → in finite time. 
 

IV. ADAPTIVE TRAJETORY TRACKING  
This section will develop an adaptive trajectory tracking 

controllers using FBFN for the SBTWR with unknown 
parameters, or abrupt parameter variations. The controllers 
are derived using the Lyapunov stability theory.  
4.1 Brief Review of FBFN 

As shown in Fig. 2, the architecture of the FBFN can be 
represented by a three-layer network with Gaussian 
functions as its activation functions in the hidden layer and 
weights 'kjw s  ’s connecting hidden layer and output layer. 

Thus, the output vector of fuzzy basis function network 
(FBFN) can be expressed as 

( , , , ) ( , , )Tf S=x c ω W W x c ω                         (29) 

where  [ ]1 2 1 2, ,..., . , ,..., ,
TT n T T T n N

n Nx x x c c c ×⎡ ⎤= ∈ = ∈⎣ ⎦x cR R  

1 2 1 2, ,..., , , ,..., ,
T TT T T n N n

N j j j jnc c cω ω ω ×⎡ ⎤ ⎡ ⎤= ∈ = ∈⎣ ⎦⎣ ⎦ω cR R

1 2, ,..., ,
T n T

j j j jn kjω ω ω ω⎡ ⎤ ⎡ ⎤= ∈ =⎣ ⎦ ⎣ ⎦ω WR is an 
m N× matrix and 

[ ]1 2( , , ) T
NS S S S=x c ω   

2 2 2
1 1 2 2( ) ( ) ( )[ ]
T T T

N Nx c x c x c Te e eω ω ω⎡ ⎤ ⎡ ⎤ ⎡ ⎤− − − − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦=  
By the Stone–Weierstrass theorem, the FBFN can be 

proven that it is capable of uniformly approximating any 
real continuous function ( )f x  on a compact set U to any 

arbitrary accuracy bε , i.e., there exists an ideal FBFN, 

( , , )T SW x c ω , with ideal parameters, , ,c ω and W  such that 

sup ( ) ( , , )T
x f x S bε∈ − <U W x c ω . Therefore, ( )f x can be 

represented as 
( ) ( , , )T

ff x S ε= +W x c ω                            (30) 

where f bεε ≤ . 
 
4.2 Adaptive Posture and Speed Control Using FBFN 

To develop adaptive sliding-mode posture and speed 
control law for Cθ , it is necessary to rewrite (28) in the 
following form 

( ) ( )1 1 2 1p SS SSC = f K sgn S K Sθ − − −x

                                       

(31) 

where  ( ) ( ) ( ) ( )1 22 2 21 2 1 2
1 22 2 21

1( ) [ ]pf r f r f r K r
r g r g αα φ= − − − +

+
x x x

x x
 

 

          
( ) ( )

1
1

1 22 2 21

,S
SS

KK
r g r g

=
+x x

  
( ) ( )

2
2

1 22 2 21

S
SS

KK
r g r g

=
+x x

 Since the bounded function ( )pf x  in (31) can be on-line 
learned by the FBFN, it is good to propose the following 
adaptive control

 ( )1 1 2 1
ˆ ( )p SS SSC f K sgn S K Sθ = − − −x

                  
(32) 

where ˆ
pf  is the estimate of pf  using the FBFN proposed 

in Section 4.1, namely that 
* * * * * * * T *

1 1=[ ][ ]T
p p p pn p pn pf W Wε ε= + Φ Φ +p pW Φ (33)

 
and 

T
1 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ=[ ][ ]T
p p pn p pnf W W= Φ Φp pW Φ             (34) 

where 
( ) ( )2 2* * * * 2 * 2 *

1 2 3 2 4exp{ [ ( ) ( ) ] }pi p i p i p i p i pic c c cαα ω θ φ ωΦ = − − + − + − + − (35) 
and 

( ) ( )2 2 2 2
1 2 3 2 4

ˆ ˆˆ ˆ ˆ ˆexp{ [ ( ) ( ) ] }pi p i p i p i p i pic c c cαα ω θ φ ω= − − + − + − + −Φ  (36)
 

Moreover, by defining ˆ= −*
p p pW W W , ˆ= −*

p p pΦ Φ Φ , 
one obtains

 *ˆ ˆ ˆ ˆ +T T T T
p pf ε= + + +p p p p p p p pW Φ W Φ W Φ W Φ              (37) 
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In order to achieve on-line tuning of the FBFN parameters, 
including the center vector 

11 21 31 41 1 2 3 4[  c  c  c  ... c  c  c c ]T
p p p n p n p n p nc=pc and the vector 

1 2 3[    ... ]T
p p p pnω ω ω ω=pω , the expansion of pΦ  is taken 

in a Taylor series as follows 

ˆ ˆ
∂ ∂

= + + = + +
∂∂

p p
p p p p p p p p p

pp

Φ Φ
Φ C ω h A C B ω h

ωC
    (38) 

where ˆ= −*
p p pC C C ; ˆ= −*

p p pω ω ω ; h  is the vector 

containing higher order terms and satisfies b≤ph . 
Substituting (38) into (37) gives 

*ˆ ˆ ˆ ˆ( )T T T T
p p pf h ε= + + + + + +p p p p p p p p p p pW Φ W A C B ω W Φ W Φ  (39) 

where *ˆ T T
p pε ε= + +p p p pW h W Φ  and pε  is assumed to 

satisfies max .p pgε < Substituting the proposed controller 

(32)  into 1S  in (20) yields  
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )

( )

1 22 2 21 2 1 2
1 1 22 2 21

1 22 2 21 1 22 2 21

1 1 2 1

*
1 1 2 1

[ ]

ˆ[ ]
ˆ ˆ[ ( ) ] ]

p p SS SS p

T T T
p p p p p p p p p SS SS

r f r f r K rS rg r g C
rg r g rg r g

f K sgn S K S f

A C B h K sgn S K S

α
θ

α φ

ω ε

⎡ ⎤+ −= + + +⎢ ⎥+ +⎢ ⎥⎣ ⎦

=Δ − − − +

=Δ + + + Φ + Φ + − −p p p

x x
x x

x x x x

W W W
(40) 

where *ˆT
p p p phε ε= Φ + +p pW W , ( ) ( )1 22 2 21p r g r gΔ = +x x  

Note that pΔ  is made negative if both parameters 1r  and 2r  
are properly chosen. Moreover, we have 

( )
1 1 1

1 1 2 1 1 1

2
1 1 1 2 1 1

ˆ ˆ{ [ ( ) ]}

( ) }
ˆ ˆ{ [ ( ) ] }

T T
p p p p p p

S S p

T T
p p p p p p SS SS p

S S S A C B

K sgn S K S S S

S A C B K S K S S

ω
ε

ω ε

= Δ + + Φ

+ − − +

= Δ + + Φ − − +

p p

p p

W W

W W
(41) 

Using the inequality A B A B+ ≥ − , one obtains 
2

1 1 1 2 1 1

2
1 1 1 2 1 max 1

ˆ ˆ[ ( ) ]
ˆ ˆ[ ( ) ]

T T
p p p p p SS SS p

T T
p p p p p SS SS p

S A C B K S K S S

S A C B K S K S g S

ω ε

ω

+ + Φ − − +

≥ + + Φ − − −
p p

p p

W W

W W   

where maxp pgε ≤ . Since 0pΔ < , one obtains 
2

1 1 1 1 max 1 2 1

2
1 1 max 1 2 1

ˆ ˆ{ [ ( ) ] ( ) }
ˆ ˆ{ [ ( ) ]} ( )

T T
p p p p p p SS p SS

T T
p p p p p p S p p S

S S S A C B K g S K S

S A C B K g S K S

ω

ω

≤ Δ + + Φ − + −

= Δ + + Φ − + Δ −
p p

p p

W W

W W
  (42)

 
Next, move to find the parameter updating laws for 

ˆˆ ˆ, ,p p pW C ω . In doing so, the following Lyapunov function 
candidate is proposed by

 
2

1 1

ˆ( )1
2 2 2 2

p p p

T T T

C C w

V S
λ λ λ

−
= + + +p p p p p pC C ω ω W W                (43)

 
which leads to 

1 1 1 1 1 max 1

2
2 1

2
1 max 1 2 1 1

ˆ ˆ ˆ ( )

ˆ ˆˆ( ) ( ) ( )

ˆ
ˆ( ) [ ]

p p p

p

T T T T
p p p p S p p

T T T

S
C W

T
S p p S p

W

V C S S S K g S

K S

K g S K S S

ωλ λ λ

λ

≤ Δ + Δ + Δ − + Δ

− + − + − + −

= − + Δ − + − + Δ

p p p p p p p

p p p
p p p

p
p p

A W ω B W W Φ

C ω W
C ω W

W
W Φ

1 1

ˆ ˆˆ ˆ[ ] [ ]
p p

T T T T
p p

C W

S S
λ λ

+ − + Δ + − + Δp p
p p p p p p

C ω
C A W ω B W    (44) 

Let the parameter adjustment rules be chosen by 

1 1 1
ˆˆ ˆ ˆ ˆˆ, ,

p p p

T T
W p C p pS S Sωλ λ λ= Δ = Δ = Δp p p p p p p pW Φ C A W ω B W   (45)   

Thus, if 1 maxS p pK g+ Δ >0, then 
2

1 max 1 2 1( ) 0S p p SV K g S K S≤ − + Δ − ≤      (46) 

which implies 1 0S → in finite time. 
4.3 Adaptive Yaw Rate Control Using FBFN 
  Similarly,the sliding-mode control law (18) can be 
rewritten by  

1 2( ) sgn( )w w
y y

G K G K
C f S S

R b R b
α η α η

η η= − − −
⋅ ⋅

x      (47) 

where 23 3( ) ( ) / /( ) .yf x G f R b G R bα αφ= ⋅ − ⋅x Hence, the 
proposed adaptive yaw rate controller is expressed by 

6 max 6
ˆ ( ) [ ]sgn( ) , , 0y y y y yC f K g S g g Kη= − − + ≥ >x    (48) 

where ˆ
yf  is the estimate of yf  using the FBFN proposed 

in Section4.1, namely that 
* * * * * * * T *

1 1=[ ][ ]T
y y y y y yn y yn yf W Wε ε= + Φ Φ +W Φ  (49) 

T
1 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ=[ ][ ]T
y y y y yn y ynf W W= Φ ΦW Φ             (50) 

where 
( ) ( )2 2* * * * 2 * 2 * 2 *

1 2 3 4 3 5exp{ [ ( ) ( ) ( ) ] }yi y i y i y i y i y i yic c c v c cαα ω θ φ ω= − − + − + − + − + −Φ  (51) 

( ) ( ) ( )2 2 22 2
1 2 3 4 3 5

ˆ ˆˆ ˆ ˆ ˆ ˆexp{ [ ( ) ( ) ] }yi y i y i y i y i y i yic c c v c cαα ω θ φ ω= − − + − + − + − + −Φ  (52) 
Similarly, by defining * ˆ

y y y= −W W W , ˆ
y y y= −*Φ Φ Φ , one 

obtains  
*ˆ ˆ ˆ ˆ +y y y y y y y y y yf ε= T T T TW Φ + W Φ + W Φ + W Φ                (53) 

In order to achieve on-line tuning of the FBFN parameters, 
including the center vector 

11 21 31 1 2 3[  c  c  ... c  c  c ]T
y y y y y n y n y nc=C  and the vector 

1 2 3[    ... ]T
y y y y ynω ω ω ω=ω , the expansion of yΦ  is taken 

in a Taylor series as follows: 

ˆ ˆ
y y

y y y y y y y y y
yy

∂ ∂
= + + = + +

∂∂

Φ Φ
Φ C ω h A C B ω h

ωC
  (54)        

where ˆ
y y y= −*C C C ; ˆy y y= −*ω ω ω ; ph  is the vector 

containing higher order terms and satisfies yh b≤ . 
Substituting (54) into (53) gives  

*ˆ ˆ ˆ ˆ( )T T T T
y y y y y y y y y y y y y yf h ε= + + + + + +W Φ W A C B ω W Φ W Φ     (55) 

where  *ˆ T T
y y y y y yε ε= + +W h W Φ  and ε  is assumed to 

satisfies 
maxy ygε < .Substituting yC in (48) into Sη in (17) 

gives 

23 3

6

6

( ) [ ]

ˆ[ [ ]sgn( )]

ˆ ˆ[ ( ) ( ) sgn( )]

y y y

y y y

T T
y y y y y y

R b R bS f x C C f
G G

R b f f K g S
G
R b A C B K g S
G

η
α α

η
α

η
α

φ

ω ε

⋅ ⋅= + − = +

⋅= − + − −

⋅= + + + + − −y y yW W Φ

 (56) 

where 
*ˆ , / 0T T

y y y yh R b Gαε ε= + + Δ = ⋅ >y y yW Φ W  
and 
 6

ˆ ˆ[ (( ) ) ( ) ]T
y y yS S S K g S Sη η η η ηε= Δ + + + − − +T

y y y y y y yW A C B ω W Φ  
using the inequality A B A B+ ≤ +  
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6

max 6

6

ˆ ˆ{ ) ( ) }

ˆ ˆ{[ ] ( ) }

ˆ ˆ{[ ] }

y y y

y y y

y

S S S K g S S

S g g S K S

S K S

η η η η η

η η η

η η

ε≤ Δ + + + − − +

≤ Δ + − − −

≤ Δ + −

T T
y y y y y y y

T T
y y y y y y y

T T
y y y y y y y

W ((A C B ω ) W Φ

W (A C + B ω ) W Φ

W (A C + B ω ) W Φ

 (57) 

which .y ymaxgε < To obtain the parameter updating rules 

for ˆˆ ˆ, , ,y y yW C ω we have 

2
2

1
2 2 2 2

y y y

T T T

W C

V Sη
ωλ λ λ

= + + +y y y y y yW W C C ω ω               (58) 

Taking the time derivative of 2V  gives 

2

6

ˆˆ ˆ( ) ( ) ( )

ˆˆ
ˆ ˆ[ ] [ ]

ˆ ˆ[ ]

y y y

y y

y

T T T

y y
W C

T T T
y y y y y

W C

T T
y

V S S

K S S W S

S

η η
ω

η η η

η
ω

λ λ λ

λ λ

λ

= + − + − + −

≤ − Δ + − + Δ + − + Δ

+ − + Δ

y y y
y

y y
y y y

y
y y y

W C ω
W C ω

W C
W Φ C A

ω
ω B W

 (59)

 

If the parameter updating rules are selected as 
ˆˆ ˆ ˆˆ ˆ, ,

y y y

T T
y W y y y C y yS S Sη η ω ηλ λ λ= Δ Φ = Δ = Δy y y y yW C A W ω B W  (60) 

Then 2 6 yV K Sη≤ − Δ  and, thus, it implies that 0Sη →  in 
finite time. 
 

V. SIMULATIONS AND DISCUSSION 
In the section, two simulations are conducted to 

examine the effectiveness and merit of the proposed 
adaptive controllers using FBFN. The parameters of the 
SBTWR are given in Table 1, and the parameters of the 
virtual trajectory generator in the kinematic level 
are 3k =0.75; 1k =0.2 , 2k =0.3. The controller’s parameters 
of the proposed adaptive controller using FBFNs are 
respectively given by 0.04

pWλ = , 0.04
pCλ = , 0.04

pωλ = , 

0.01
yWλ = , 0.01

yCλ = , 0.01
yωλ = , and the initial values 

of pW and yW  are 0.0012, 0.0077, respectively. 
Furthermore, 1r =1,  2r  =0.35, 1Kηω = 2Kηω =10, 1sK = 

2sK =10, and Kα =2.0. Figs. 3-4 present the simulated 
results of the proposed adaptive controller for tracking a 
straight line and a circle. The results in Figs. 3-4 indicate 
that the proposed adaptive control method tracked both 
trajectories well.  
 

V. CONCLUSIONS 
The paper has presented adaptive sliding-mode 

trajectory tracking controller using FBFN method for 
posture and yaw control of the SBTWR in presence of 
parameter variations and model uncertainties. The FBFN 
has been used to compensate for the effects of the model 
uncertainties and parameter variations. The adaptive control 
laws have been employed to overcome the performance 
degradation caused by parameter variations. Through 
simulation results, the two proposed adaptive control laws 
using FBFNs have been shown capable of achieving 
trajectory tracking. An interesting future work   would be to 
investigate the regulation problem of the SBTWR.  

 
Fig.3. Simulation result of the proposed adaptive tracking 

controller for line trajectory tracking. 

 
Fig.4. Simulation result of the proposed adaptive tracking 

controller for circular trajectory tracking using FBFN. 
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