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Abstract— This paper discusses the design of a new snake-
like robot without wheels, named ACM-R7. It has 18 DOFs,
is 1.6m in length and weighs 11.7kg. It features a water-tight
structure, a large motion range pitch joint of ±90 degree and a
high output-power actuator arrangement, based on the coupled
drive concept. Furthermore the control method “Loop Gait” is
discussed. For this gait the ACM-R7 forms a loop shape and
rolls like a wheel on the rim. We introduce the “Serpenoid Oval”
for the loop shape. It s formed by a smooth sinusoidal angular
motion of the joints. Moreover we consider the modification of
the “Serpenoid Oval” for steering and obstacle avoidance. The
performance is then verified by several motion experiments.

I. INTRODUCTION

As the snake-like robots and manipulators can make new

types of future field robots, we have named the snake-

like robots, or “the robot forming the cord-like linear shape

by the serial connection of unified units” as “Active Cord

Mechanism (ACM)”. Since after the world’s first experiment

of Hirose’s snake-like robot of 1972, we have been con-

structing several types of ACM and studied about its control

methods [1].

Most of the former ACM models that we have made so

far had multiple wheels attached along the body to generate

low frictional motion towards the longitudinal direction and

high frictional motion towards the normal direction of the

body. The difference of friction can generate a smooth and

fast gliding motion. However, on sandy off-road ground for

example, the wheels may sink into the sand and sand may

get stuck in the rotational shaft of the wheels.

ACMs without wheels have simpler and smoother bodies

and thus are suitable for the motion on sandy or uneven

environments. However, frictional resistance of the wheel-

less body on the ground is high, and large energy will be lost

in the locomotion, if the normal serpentine motion is used.

We proved that the “Sinus Lifting”, observed in real snakes,

is one of the effective ways to improve the locomotion

efficiency of the wheel-less ACM, and we already proved that

the smooth serpentine motion can be generated [2]. However,

the rate of the improvement of the energy efficiency is

limited, because of the sliding motion between the body and

the ground.

Therefore, we focused on the “Loop Gait” for the wheel-

less ACM. The loop gait is the motion of the ACM when

forming a loop shape. First, the front and the rear segment

of the ACM are connected to each other to form a loop

shape. Then, by the synchronized swinging motion of each
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Fig. 1. ACM-R7
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Fig. 2. Joint Mechanism of ACM-R7

Fig. 3. Joint Motion

joint, the looped body of the ACM generates a whole-body

rolling motion, just like a spinning wheel rim on the ground.

The loop gait is much suitable for moving on flat terrain,

because there exists several drawbacks, such as the instability

problem, due to comparatively high center of mass. However,

the loop gait has the amazing advantage of high efficiency.

Because, although joints of the ACM body make swinging
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Fig. 4. Gripper and Rod

TABLE I

SPECIFICATION OF ACM-R7

Dimension 1589 × 140 × 74 mm

Mass 11.7 kg

Number of Joint 18

Motor 6W DC Motor × 18

Joint Torque 16 Nm

Joint Angle Range ± 90 deg

CPU SH2 7047 (Renesas)

Battery NiMH 7.2V 900mAh × 9

motion, just as in the case of serpentine motion, the looped

ACM can create infinite spinning motion of the whole body

and there is no sliding motion between the body and the

ground, the motion is fast and energy efficient.

Until now, several robots which make the loop gait have

already been proposed, such as Polybot [3] [4] and MTRAN

[6]. They are moduler robots, which transform into a snake,

a loop and other various shapes. They can move straight,

and make accelerated motion by changing their ellipse shape

[5]. MTRAN accomplished it with the neural oscillators

“CPG” [7]. In addition, the terrain adaptive motion by using

touch sensors has also been studied and Polybot has already

achieved the step climbing motion with the loop gait [8].

However, most of them are in the experimental stage and

the performances of the mechanisms were limited. Of course

they were not made as a watertight structure. The control

methods were also in the preliminary stage and simple

ellipses were introduced for their basic shapes.

In this paper, we discuss about the development of a new

type of snake-like robot, ACM-R7, having the mechanism to

form a loop shape and having a rugged watertight structure.

We also propose the new fundamental shape of the loop gait

named “Serpenoid Oval” and discuss the modified serpenoid

ovals for steering and obstacle avoidance. The performance

of the developed ACM-R7 and its control methods based on

serpenoid oval is successfully verified by the several motion

experiments.

II. DESIGN OF ACM-R7 CAPABLE OF LOOP GAIT

We have developed the snake like robot “ACM-R7” which

has the above-mentioned properties (Fig. 1). It has 18 joints

and the total length is 1.6 m. The orthogonal rotation 1 DOF

joints are connected alternately. The specification of ACM-

R7 is shown in Table I.

A. Joint Mechanism

The joint torque should be large to lift the body in the

loop gait. The wide motion range of the joint is required to

form a loop shape. Therefore, the coupled drive mechanism
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Fig. 5. Standard Shape of Serpenoid Oval
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Fig. 6. Curvature of the Serpenoid-oval (Cf = 1, Ct = 0, C1 = 0)

is installed to each joint to increase the output torque and the

motion range. In this mechanism, the outputs of two motors

are combined and drive two joints as shown in Fig. 2 (a) (b).

The detail of the joint mechanism is shown in Fig. 2(c). First,

the two Link-As are rotated by two motors independently.

Link-A is connected to the fore unit with Link-B and ball

joints. Then, the pitch joint is driven when the Link-As are

rotated in the same direction. If the Link-As are rotated in the

different direction, the yaw joint is driven. The output torque

of the pitch axis joint is twice as large as a mechanism in

which one joint is moved by one motor. Furthermore the

joint angle range is 90 degree (pitch axis). The pitch axis

joints are mainly used in the loop gait. The wide angle range

makes it easy to archive a loop shape. The joint mechanism

is covered with bellows and oil seals, so that ACM-R7 can

move in wet and dusty environments.

It is believed that the importance of the loop gait was

increased, because a waterproof and dustproof robot capable

of the loop gait in outdoor environments has been developed.

B. Connecting Mechanism with the Gripper

A gripper is attached to the end of ACM-R7 (Fig. 4).

ACM-R7 becomes a loop shape by grasping the rod at the

opposite end with the gripper. The gripper is driven by a

worm gear to prevent its accidental opening. Therefore, the

gripper is able to keep the grasping, even if the motor output

is turned off.

III. SERPENOID OVAL FOR THE KINEMATICS OF THE

LOOP GAIT

A. Proposal of Serpenoid Oval

There are various loop shapes like circles, ellipses and

combinations of circular arcs and lines. However, a combi-

nation of circular arcs and lines is not smooth. An ellipse has

parts of which curvature varies widely. Further, it is difficult

to apply an ellipse to a robot as we discuss later. Therefore,

we propose the serpenoid oval which is an applied shape of
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Fig. 9. Comparison of Derivative of Curvature of Loop Shapes

a serpenoid curve. The shape of a serpenoid oval is smooth,

because the curvature of it changes sinusoidally.

Serpenoid oval is defined by a shape control method,

which has been developed for snake-like robots [9]. In this

method, the shape of a snake-like robot is expressed in

3D curve by defining two curvatures. The curvatures are

functions of body trunk length. The curvatures of a serpenoid

oval are defined by the following equations.

κp, κy: Curvature

s: Body Trunk Arc Length

t: Time

Lt: Total Length of the Loop

Tt: Cycle Time

Cf : Coefficient of Flatness

Ct: Coefficient for Turning

C1: Coefficient for Posture Offset

κp(s, t) =
2π

Lt

{

1 − Cf · cos 2π

(

2s

Lt

−

t

Tt

)}

(1)

κy(s, t) =
2π

Lt

[(

Ct +
C1

2

)

{

1 + cos 2π

(

2s

Lt

−

t

Tt

)}

− C1

]

(2)

The cycle time Tt changes locomotion velocity, not af-

fecting the shape of a serpenoid oval. Therefore, we discuss

the equations with t = 0 to ignore the influence of Tt.

The meanings of the coefficients (Cf , Ct, C1) are described

in the following parts. First of all, the standard shape of a
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Fig. 10. Change of the Flatness of Serpenoid Oval

serpenoid oval is shown in Fig. 5 (Cf = 1, Ct = 0, C1 = 0).

The relationship between the arc length and the curvatures

is shown in Fig. 6.

Compared to the other loop shapes, the smoothness of the

change of the curvatures is the most characteristic point of

a serpenoid oval. The change of the joint angle is smooth

if the change of the curvature is smooth. Thus the loop gait

based on a serpenoid oval is able to move fast.

The comparison of the loop shapes (a serpenoid oval, an

ellipse and a combination of circle arc and line) is shown

in Fig. 7. The relationship between the arc length and the

curvatures are shown in Fig. 8. The derivatives of Fig. 8 are

shown in Fig. 9. This serpenoid oval is the standard shape

which is shown in Fig. 5. The total length and the aspect

ratio of all shapes are equal.

The curvatures and the derivatives of curvatures of the

serpenoid oval change smoothly. However, the derivative

of curvature of the combination of the circle arc and the

line reaches an infinite value. It means that the joint speed

becomes very fast when the shape is applied to the robot.

The change of the curvature of the ellipse is also larger

than serpenoid oval. In addition, it is difficult to express

the curvature of an ellipse by the arc length s, because an

ellipse is generally defined by other parameters. Therefore a

serpenoid oval is suitable as a basic shape for the loop gait.

B. Change of Flatness

It is possible to change the flatness of the serpenoid oval by

changing the definition of the curvatures with the coefficient

of the flatness Cf . The relationship between Cf and the

flatness of serpenoid oval is shown in Fig10. The flatness can

be changed by the control of the value of Cf . The standard

value is Cf = 1. A serpenoid oval becomes a flat shape

when Cf becomes large. In contrast, the shape changes to a
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Fig. 11. Height of the Center of Serpenoid Oval

circle, if Cf is close to zero. If Cf has a negative value, the

shape is rounded 90 degrees from the shape in which Cf is

positive.

Fig. 11 shows the relationship between Cf and the height

of the center of the serpenoid oval. When a serpenoid oval

becomes flat, the position of the center of mass is lowered

and it is difficult to fall. Therefore, the flat loop shape is

effective, when ACM moves over obstacles or climbs a slope

with the loop gait.

On the other hand, a serpenoid oval which is close to

a circle is suitable for high speed locomotion, because the

bending speed of the joint is slow when the shape is close to

a circle. The bending speed is determined by the derivative of

κp. The maximum value of the derivative of κp is calculated

from the following equation.

dκp

ds max
=

8π2

L2
t

Cf (3)

Therefore, the maximum locomotion speed becomes fast by

increasing Cf instead of by rising of the position of the

center of mass.

C. Turning

We introduce the coefficient for turning and the coefficient

for posture offset to make the turning motion. The lower part,

which touches the ground, has to be bent horizontally to

make turning motion in the loop gait. However, it is difficult

to bend only the lower part because of the loop shape. In our

method of turning, the whole loop shape is bent horizontally.

The degree of bending is determined by Ct. The relation-

ship between Ct and the shape of a serpenoid oval is shown

in Fig. 12. Serpenoid oval is not bent when Ct = 0. The

whole shape becomes bent when Ct is increased. Even if

the flatness of a serpenoid oval is changed, it is bent. Fig. 12

shows the shape of the serpenoid ovals with different values

of Cf and Ct. It is bent to the opposite direction when the

value of Ct becomes negative.

The relationship between the arc length and the curvatures

(Cf = 1.0, Ct = 0.5, C1 = 0.2) is shown in Fig. 13. κp

is the same as in straight motion, and κy is also changed

sinusoidally.

The meaning and calculation method of C1 is defined as

follows; The position gap between the head and the tail will

be observed (Fig. 14), when the loop shape is bent with C1 =
0. C1 is the coefficient to offset the gap. The calculation

method of C1 was developed as follows.

Fig. 12. Relationship between Serpenoid Oval and Ct
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Fig. 14. Difference of the Shape by C1

First, it is assumed that Cf is constant, and the loop shape

is calculated. Ct is changed in increments of 0.01. The value

of C1 which makes the gap minimum is calculated in each

Ct. Next, the relationship between Ct and C1 is calculated

in each Cf (Cf = 0 to 1.5, with increments of 0.1). The

relationship between Ct and C1 in each Cf is approximated

by a linear function. Fig. 15 shows them. For example, the

function of C1 is approximated by the following equation.

C1 = 0.410 · Ct (4)

Then the relationship between Cf and the gradient of the

Fig. 15 is approximated by a quadratic function. Therefore

C1 is expressed in the following equation with Ct and Cf .

C1 =
(

−0.136C2
f − 0.298Cf + 0.841

)

Ct (5)

The serpenoid oval is bent horizontally without the gap by

defining C1 from Eq. 5.

An approximation error is observed when the continuous

model is approximated to the discrete model. There may

be a gap in the discrete model, even if there is no gap in

the continuous model. A large gap should be reduced by

recalculation and adjustment of the joints. However we did

not make adjustments, because the gap is thought to be small

enough to be absorbed with mechanical elasticity.
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IV. EXPERIMENT

A. Control Method

The loop gait with a serpenoid oval was tested using ACM-

R7.

In order to control a snake-like robot with a serpenoid

oval, a continuous model has to be approximated to a discrete

model. The joint angle of the discrete model is calculated by

integration of the curvatures of the continuous model in the

following equation [9].

i: Joint Axis (p or y)

j: Joint Order in Each Axis

θ: Joint Angle

Lu: Length between Joint Axes

s0: Length from the Edge to the First Joint

θi,j =

∫ s0,i+
j+1

2
Lu

s0,i+
j−1

2
Lu

κi(s)ds (6)

ACM-R7 calculates the joint angle using Eq.6 with the

main CPU mounted on the tail unit. The joint angle value is

transmitted to the local CPU in each unit with CAN BUS.

The joints are proportionally-controlled.

B. Flatness

1) Change of Flatness: The change of flatness of the

serpenoid oval was tested. It was confirmed that the flatness

of a serpenoid oval is changed by Cf . The limitation of the

value of Cf was 1.5 because of the maximum joint angle of

the pitch axis joints.

Fig. 17. Experiment of the Change of the Flatness of Serpenoid Oval with
ACM-R7

Fig. 18. Step Climbing (Step Height: 9cm)

2) Locomotion Velocity: When Cf was 1.0 (standard

shape), the fastest locomotion velocity was 1.0 m/s. In the

experiment, the locomotion acceleration was not controled.

Therefore, the loop shape rolled backward by its acceleration,

when ACM-R7 was moved faster than it.

3) Step Climbing: Step climbing experiment was con-

ducted. ACM-R7 was made to climb the 9cm step with

Cf = 0.5, 1.0, 1.5. It was not able to climb the step when

Cf = 0.5, 1.0, because it rolled backward before the center

of mass got over the edge of the step. When the serpenoid

oval is flat (Cf =1.5), it was able to climb the same step. The

flatness and the dent of the center of a serpenoid oval were

effective to climb the step. The dent fit to the shape of the

edge of the step (Fig. 18(b)).

4) Slope Climbing: The slope climbing performance was

tested on an outdoor slope. The inclination angle was about

33 degree. The locomotion direction was parallel to the

slope. When the loop shape was a standard serpenoid oval

(Cf = 1.0), ACM-R7 rolled down the slope. However, the

flat shaped ACM-R7 (Cf = 1.5) was able to go up the slope

(Fig. 19).

C. Turning

The turning motion was experimented, which is shown in

Fig. 20. ACM-R7 was able to turn, even if the serpenoid oval

is transformed to flat or rounded shape by changing Cf . The

turning radius was controlled by the coefficient of turning Ct.

The relationship between Ct and the turning radius is shown

in Fig. 21. The curve shown in Fig. 21 is the minimum

radius of the curvature of the continuous model, which is

theoretically calculated from κy. When Ct is increased, the

radius of the curvature of the continuous model becomes

small. Then, the experimental turning radius becomes small,
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Fig. 19. Slope Climbing on Grass (The Angle of the Slope: 33 deg)

Fig. 20. Steering Motion

too. Therefore, it became possible, that the ACM in the loop

gait makes turning motion in arbitrary radius.

Outdoor experiments were made on grass, because ACM-

R7 is waterproof and dustproof. The straight and turning

motion is shown in Fig. 22.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

The new snake-like robot ACM-R7, which is suitable for

loop gait, was developed, with waterproof structure. The

new smooth shape “Serpenoid Oval” was proposed for the

loop gait. The shape control method of a serpenoid oval

was formulated to make turning and step climbing. The

experiments confirmed the usefulness of those methods using

ACM-R7.

B. Futureworks

There will be more shape control methods of a serpenoid

oval. Future work will include the formulation of those

methods. In addition, another loop shape that considers the

effect of its own weight should be examined, because only

the kinematics of the loop gait were discussed. The joint

torque is able to be adjusted by the new shape because a

loop shape has redundant joints to fix the posture.
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