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Abstract— This paper describes the theory and the simulation
of an improved velocity potential approach for path planning by
which a mobile robot avoids standing and/or moving obstacles
by using the hydrodynamic potential. This potential function for
path planning is feasible for guiding a mobile robot to avoid
an arbitrarily moving obstacle and to reach the goal in real
time without finding the local maximum or minimum points in
all cases. In this theory, there are two problems. One is that
a mobile robot accelerates rapidly when it avoids a moving
obstacle. The other is that a mobile robot has a discontinuous
velocity when it is passing a moving obstacle. An ellipse field,
which is obtained by using the conformal transformation, and
a correction function, which generates the continuous velocity
field, are installed in the previous potential function to cope
with the difficulty. As a result, a mobile robot can gradually
avoid a moving obstacle from further away, and can be safely
guided without rapid acceleration.

I. INTRODUCTION

Autonomous robots are demanded extensively in many
fields for reducing the work quantity of humans and giving
us a comfortable life. Especially, the expectation of moving
robots in a real environment is too much, so mobile robots
should be constructed. However, there are few such mobile
robots for use in daily life, because existing mobile robots
are only moving in a limited environment and/or the humans
must keep watching the robots. One of the bottlenecks is the
relation between the robot and humans who are arbitrarily
moving around the robot when the robot is running in a
real environment. That is, a mobile robot should avoid such
moving humans and/or obstacles.

There have been two main streams in solving the problem
of path planning. One is Artificial Intelligence (AI). When
only ambiguous geometry of the environment is available
to the robot, AI approach is useful. The other is Artificial
Potential approach. When perfect geometric information of
the environment is available, the physical field approach
is more attractive than AI approach because of its high
efficiency in path planning [1][2]. Recently, the performances
of sensors are getting well. Therefore, we assume that the
environment information is already given in this research.

Artificial Potential functions have been proposed and
investigated since Khatib [3]. In these theories, the effect
of a goal is represented by attractive potential, and that of
the obstacles or the boundary is represented by repulsive
potential. A mobile robot applies the force generated by
artificial potentials as control inputs to the driving system.
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Khatib’s potential has a stagnation point due to the effects
of a interference between the obstacle and the goal. Khosla
has proposed a solution to the problem by using the potential
satisfying the Laplace equation [4]. If it satisfies the Laplace
equation, a mobile robot can reach the goal without finding
the local maximum or minimum point in all cases.

The usefulness of this theory can be understood easily
by supposing the following situation. A shallow vessel is
filled with water. A body with a closed boundary can be
introduced inside the vessel. This body may move itself.
When the drain point in the vessel is opened, the flow is
generated. A particle in the water moves toward the drain
point smoothly from any location (Fig. 1). A mobile robot
is controlled by using the same dynamics as the flow of the
water. A two-dimensional flow is represented by a complex
potential function of hydrodynamics, and the velocity of the
flow is obtained by differentiating the potential. When a
mobile robot utilizes the velocity vector of the flow for the
guidance, it can be guided along the stream line.

We had already proposed an application of the hydro-
dynamic potential in path planning for a mobile robot to
avoid the obstacles and to reach the goal [5]. Hydrodynamic
potential is constructed by superposing potential of a sink,
a source (Fig. 1) and a dipole (Fig. 2), which represented a
goal, a standing obstacle and a moving obstacle, respectively.
In solving hydrodynamic problems, the boundary condition
must be satisfied simultaneously at any point on the boundary
of the body. However, in path planning problems, boundary
condition should be satisfied only on the boundary of the
robot body. That is, the volume of the computation with
the complex potential function is very small, therefore, a
mobile robot can avoid even moving obstacles. In addition,
a mobile robot can move by switching the other flow of
next calculation in real time in every cases even if it cannot
achieve the planned flow.

In our previous research [5], a mobile robot can avoid the
plural obstacles by using the superposition of the weighted
flow fields where the largest weight is allotted to the flow
generated by the nearest obstacle. A mobile robot can avoid
the boundary of passage by introducing virtual obstacles
synchronized with the movement of the robot along the
boundary. A mobile robot can avoid the the obstacles even
when the robot is trapped in a bottleneck narrower than the
diameter of the mobile robot by using the vortex flow fields.

In this theory, there are two problems. One is that a
mobile robot accelerates rapidly when it avoids the moving
obstacle. The other is that a mobile robot has a discontinuous
velocity when it is passing the moving obstacle. Therefore,
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Fig. 1. The Flow Field G1(z) with the
Standing Obstacle Z1 and the Goal Zg

Fig. 2. The Flow Field D1(z)
with the Moving Obstacle

we propose a new improved velocity potential approach of
hydrodynamic potential in this research. An ellipse field,
which is obtained by using the conformal transformation,
and a correction function, which generates the continuous
velocity field, are installed in the previous potential function
to cope with the difficulty.

In this paper, first, our previous theory of the hydrody-
namic potential is described. Second, the ellipse field is
introduced. Third, the correction function is utilized. Finally,
simulations and the effectiveness of our research are shown.

II. OUR PREVIOUS HYDRODYNAMIC POTENTIAL

We assume that the dynamics of the mobile robot are
governed by a first order delay system. This means that
any control command to the robot will be realized in the
control system with the delay time that is nearly equal to the
time constant T . To cope with the delay time, the diameter
of an avoidance circle for an obstacle is increased by the
distance where the obstacle moves during the period T . The
assumption leads us to focus the guidance of the robot on the
path planning. We had applied the hydrodynamic potential
successfully to the path planning [5]. Refer to the paper [6]
for the details of the potential .

The complex flow potential Gj(z) in the complex plane z
which has resulted from both a sink m at zg and a cylinder
aj at zj is represented by the following equation: (Fig. 1)

Gj(z) = −m log(z − zg)(z − z̃j) + m log(z − zj) (1)

where z̃j denotes a point which is the mirror image with
circle zg, satisfying (zg−zj)(¯̃zj−z̄j) = a2

j (z̄j is the complex
conjugate of zj). The dynamic of the flow in the shallow
vessel suggests that the goal in the robotics field can be
represented by a sink in the flow field and the obstacle by a
cylinder whether it moves or not.

When an obstacle is moving with a velocity uje
iαj , the

flow is described by a doublet as follows: (Fig. 2)

Dj(z) = −
a2

juje
iαj

z − zj
(2)

The total navigation function, including a single standing
obstacle and a moving obstacle, is constructed by Gj(z) and
Dj(z). Generally, a complex conjugate velocity for hydro-
dynamic potential F is obtained by v̄ = dF(z)/dz. That is,
the guiding velocity of the robot is obtained by differentiating
the composed potential both Eq. (1) and Eq. (2) and this flow
field is shown in Fig. 3.

Fig. 3. The Flow Field by Using
Gj(z) + Dj(z)

Fig. 4. The Flow Field by Using
Gj(z) + Dj(z) with bj(z)

As the flow velocity becomes infinite at a sink according
to its singularity, the function Gj(z) is correction by the
following function h(z) so that the navigation velocity may
be limited to finite value.

h(z) = (1 − e−c1|z−zst| + ε)|z − zg|(1 − e−c2|z−zg|) (3)

where zst denotes start point, ε does a coefficient controlling
the velocity at the start point, ε > 0. c1 is a coefficient con-
trolling the acceleration at the start point, c2 is a coefficient
controlling the deceleration at the goal.

The doublet expressed by Eq. (2) generates attracting flow
in the back side while it does repelling flow in the front
side. This means that the robot will chase after an obstacle
immediately after passing by it. Correction function bj(z) is
introduced for correcting Dj(z) to assure the robot avoids
and does not chase after the obstacle as shown below,

bj(z) =
{

1, for αj − π
2 ≤ 6 (z − zj) ≤ αj + π

2
0, for other (4)

where αj denotes direction of the obstacle movement.
The path to avoid an obstacle j and to reach the goal is

denoted by the velocity v̄j as shown in the following: (Fig. 4)

v̄j(z) = h(z)G
′

j(z) + bj(z)D
′

j(z) (5)

where ′ denotes differentiating operation by z. The equations
for plural obstacles are omitted in this paper (Refer to [5]).

III. FLOW FIELD BY USING ELLIPSE

Each of Figs. 5(a)–(d) shows the flow field by changing
only one of the parameters of Fig. 3 respectively. Fig. 5(a)
shows it by half m instead of Fig. 3. Similarly, Fig. 5(b)
shows it by two times m. Fig. 5(c) shows it by half uj , and
Fig. 5(d) shows it by two times uj . The increase of m or
the decrease of uj reduce the chasing area. However, there
are two problems for set of m or uj as follows.

One is that a standard velocity of a mobile robot without
avoiding obstacles is set by using the constant value m. If
m is larger, the velocity of a mobile robot is larger. And a
mobile robot cannot move at a velocity that is faster than the
maximum velocity of the robot. Therefore, it is difficult to
change the value of m for only to reduce the chasing area.

The other is that uj is set by using a velocity of a moving
obstacle. That is, a mobile robot cannot set uj . And uj is
always changed. Thus, a mobile robot rushes according to
the value of uj though it can avoid the arbitrarily moving
obstacle in real time. So, it is necessary to make a velocity
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(a) Using half m (b) Using two times m

(c) Using half uj (d) Using two times uj

Fig. 5. Comparison of the Flow Fields by Using Gj(z) + Dj(z)

of a mobile robot slow for making use of a real robot. To
get an appropriate velocity, a mobile robot avoids gradually
when the moving obstacle is found in the further away. That
is, an ellipse flow field mapped from an avoidance circle of
a moving obstacle is used. The major axis of the ellipse is
set to the direction of the moving obstacle αj .

A. Conformal Transformation

It is assumed that the following equation denotes the
relation of the complex numbers between z = x+iy (z ∈ A)
and w = u + iv (w ∈ S).

w = f(z) (6)

If the point z in A is made to correspond to the point w in S
by f(z), it is called a map (transformation) from A (z-plane)
to S (w-plane). If two arbitrarily vectors in A are mapped
attended with the same expansion and contraction and the
rotation, it is called the “Conformal Transformation (CT)”.
If using CT, a minute area in the z-plane is mapped to the
w-plane with the similar figure kept (the angle kept).

B. Zhukovsky Transformation

The following equation is called the “Zhukovsky Trans-
formation (ZT)” for corresponding Eq. (6).

w = z +
d2

z
; (d > 0) (7)

This is a method of mapping a circle to an ellipse in the CT.
If Eq. (7) is differentiated, then

dw

dz
= 1 − d2

z2
(8)

Therefore, Eq. (7) is a continuous function excluding z = 0.
That is, the mapping z ←→ w of Eq. (7) denotes the CT.

If an arbitrarily point in the z-plane is represented by
z = reiθ, and its corresponding point in the w-plane is
represented by w = u + iv, then

u + iv = reiθ +
d2

r
e−iθ (9)

Fig. 6. z-plane Fig. 7. w-plane
Fig. 8. The Flow Field
around Ellipse

Fig. 9. The Ellipse Flow Field by
using Gj(z) + Dj(z)

Fig. 10. The Ellipse Flow Field by
using Gj(z) + Dj(z) with bj(z)

Therefore,

u =
(

r +
d2

r

)
cos θ, v =

(
r − d2

r

)
sin θ (10)

1) Mapping to the Segment: If r = d, then Eq. (10) can be
transformed as shown in the following: (Fig. 6 and Fig. 7)

u = 2d cos θ, v = 0 (11)

In Eq. (11), the corresponding point w rounds on the segment
with −2d and 2d at both ends when a point z rounds from
θ = 0 to 2π on the circumference of d in the radius in the
z-plane. That is, a circle of d in radius in the z-plane can be
mapped to the segment of 4d in length in the w-plane.

2) Mapping to the Ellipse: If r > d, then Eq. (10) can be
transformed by eliminating θ as shown in the following:

u2(
r + d2

r

)2 +
v2(

r − d2

r

)2 = 1 (12)

This is the equation of the ellipse of which the center is on
the origin, the major axis is represented by (r + d2

r ) and the
minor axis is represented by (r − d2

r ).
3) Mapping to the Hyperbola: If r < d, then Eq. (10) can

be transformed by eliminating r as shown in the following:

u2

(
√

2d cos θ)2
− v2

(
√

2d sin θ)2
= 1 (13)

This is the equation of the hyperbola of which two focuses
are (2d, 0) and (−2d, 0). The circle can be mapped not only
to the ellipse, but also the surroundings of the ellipse to the
corresponding points respectively as shown in Fig. 7.

C. Using the Conformal Transformation

To map the circle, that denotes the moving obstacle, to the
ellipse is that ZT is applied to Eq. (2). That is,

Dj(z) =
(

r +
d2

r

)
cos α + i

(
r − d2

r

)
sinα (14)
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(a) Initial state (b) Rotation to x-axis

(c) Mapping to
the Ellipse field

(d) Returning to the
first angle

Fig. 11. Rotation of Ellipse

Fig. 12. The Relation Be-
tween z-plane and w-plane

Fig. 8 shows the flow field of the ellipse doublet. Fig. 9
shows the flow field Gj(z)+Dj(z) with the ellipse. Fig. 10
shows the flow field Gj(z) + Dj(z) with the ellipse and
bj(z). If using the ellipse doublet, it can be found that the
flow field around the moving obstacle becomes wider than
the previous flow field (Compare Fig. 3 and Fig. 9, Fig. 4
and Fig. 10). Therefore, a mobile robot can gradually avoid
a moving obstacle from further away by using the ellipse.

D. Rotation of Ellipse

If using Eq. (14), the direction of the major axis is only
on the direction of x-axis. Therefore, the rotation matrix is
used for mapping the direction of the moving obstacle to the
direction of the ellipse.

We assume that w denotes the corresponding point of
which the point Z in the z-plane rotates αj . And its rotation
matrix is represented by R1 as the following:

W = R1Z; R1 =
[

cos αj sinαj

sinαj − cos αj

]
(15)

Figs. 11(a)–(d) show the sequence of the transformations for
rotating the ellipse. First, Fig. 11(a) shows the obstacle with
progressing the direction to the left-down, and its flow field is
represented by Eq. (5). Second, Fig. 11(b) shows the starting
to rotate for x-axis with the mapping into the ellipse, and its
equation is represented by the following:

v̄j(w) = R1

(
h(z)G

′

j(z) + bj(z)D
′

j(z)
)

(16)

Third, the corresponding point w and the velocity v̄j(w) in
the w-plane can be satisfied the relation between the point
z and the velocity v̄j(z) in the z-plane by using Eq. (16) as
shown in Fig. 12. This transformation is shown in Fig. 11(c),
and Eq. (14) is substituted in Eq. (16) as the following:

v̄j(w)= R1

(
h(w)G

′

j(w) + bj(w)

(
D

′

j(w) +
(duj)2

D′
j(w)

))
(17)

Finally, the rotation matrix for returning to the first angle is
represented by the following:

R2 =
[

cos(−αj) sin(−αj)
sin(−αj) − cos(−αj)

]
(18)

(a) Previous bj(z) (b) New bj(z)

Fig. 13. Arrangement of areas in bj(z)

And it becomes the following: (Fig. 11(d))

v̄j(w) = R

(
h(w)G

′

j(w) + bj(w)

(
D

′

j(w) +
(duj)2

D′
j(w)

))
(19)

where R denotes the combining R2R1 as the following:

R = R2R1 =
[

cos 2αj sin 2αj

− sin 2αj − cos 2αj

]
(20)

The differences between Eq. (19) and Eq. (5) are just R and
(duj)2/D

′

j(w). Especially, the size of the ellipse is generated
by corresponding (duj)2. This parameter is included in the
velocity of a moving obstacle uj , so a mobile robot can
gradually avoid from an early stage according to the velocity
of the moving obstacle .

IV. IMPROVEMENT OF CORRECTION FUNCTION

In the previous equations [5], the correction function bj(z)
is not continuous. This means that the velocity of the mobile
robot is changed rapidly at a discontinuous point, because
bj(z) have only two values: 0 and 1. So, it is necessary to
define the new bj(z) for set a continuous function.

The role of bj(z) is to avoid the chasing a moving
obstacle immediately after passing by it. If adjusting the
relation between a sink m and a velocity uj , the chasing
motion of the moving obstacle can be avoided as shown in
Figs. 5(a)–(d). However, the velocity of a moving obstacle
is not continuous and is irregular in real environment. If m
changes frequently up and down according to the changing
uj , the velocity of a mobile robot changes too frequently
though the motion of chasing the moving obstacle does not
occur. Therefore, it is necessary for the method of using no
changing the value of m to avoid the chasing motion. That
is, bj(z) is a necessity function.

Fig. 13(a) shows the arrangement of areas of 1 and 0 by
using the previous bj(z). These two values of 1 and 0 are
changed on the point where the angle between the direction
of the mobile robot and the direction of the obstacle is π

2 . So,
Dj(z) is neglected immediately when the moving obstacle
has passed. To solve this problem, the following new bj(z) is

1424



redefined instead of the previous bj(z) as shown in Eq. (4).

bj(z) =



1, for αj − π
2 ≤ 6 (z − zj) ≤ αj + π

2

1 + cos 2βj

2
, for αj + π

2 < 6 (z − zj) < αj + γ
or αj − γ < 6 (z − zj) < αj − π

2

0, for other
(21)

where αj denotes the direction of the moving obstacle, γ
denotes the terminal angle for using cosine function, βj is
represented by the following.

βj = 6 (z − zj) −
(
αj +

π

2

)
(22)

A cosine function is installed at the discontinuous point, so
bj(z) is changed smoothly from 1 to 0 in Eq. (21). Fig. 13(a)
shows the arrangement of areas of 1 and 0 by using the
previous bj(z). Fig. 13(b) shows the arrangement of areas
of 1, (1 + cos 2βj)/2 and 0 by using the new bj(z).

Figs. 14(a)–(d) show the flow fields by using the new
correction function bj(z), where Figs. 14(a),(b) use γ = π
and Figs. 14(c),(d) use γ = 3π

4 . The overshooting paths, that
is chasing curve to the moving obstacle, by using γ = 3π

4
are smaller than the overshooting paths by using γ = π.
Therefore, we decide to use γ = 3π

4 in the simulation of the
next chapter.

Compare Figs. 14(a),(c) and Fig. 4 by using the circle.
And also compare Figs. 14(b),(d) and Fig. 10 by using the
ellipse. It can be found that the discontinuous points are
appeared as shown in Fig. 4 and Fig. 10. However, no
discontinuous point is appeared as shown in Figs. 14(a)–(d).
That is, it can be shown that the new correction function
bj(z) has no discontinuous point and no chasing the moving
obstacle. Moreover, it can be found that the flow field by
using ellipse is wider than the flow field by using circle.
That is, using an avoidance ellipse is more safety than using
avoidance circle. Therefore, hereinafter, we decide to use the
style of Fig. 14(d) for avoiding the moving obstacle.

V. SIMULATION

The flow field to the preceding chapter is drawn without
actual move of the obstacle. The reason is that the charac-
teristic of the flow field with the moving obstacle cannot be
displayed simply. However, the moving obstacle will move
itself in the real environment. Therefore, we investigate the
usefulness of the new method in the simulation.

A. Our Previous Method

Fig. 15 shows our previous simulation by using Hydro-
dynamic Potential where a mobile robot avoids one moving
obstacle and can reach the goal. In this figure, many circles
display the location of both the mobile robot and the moving
obstacle respectively at the constant interval. Before the start
of the simulation, the obstacle stands the right side, and the
mobile robot stands the left side in the simulation display
area. Moreover, the goal is set at the right side. The moving
obstacle moves to the left direction and the mobile robot
moves to the right direction after starting this simulation. If

(a) The Flow Field Around the
Circle by using γ = π

(b) The Flow Field Around the
Ellipse by using γ = π

(c) The Flow Field Around the
Circle by using γ = 3π

4

(d) The Flow Field Around the
Ellipse by using γ = 3π

4

Fig. 14. The Flow Fields by using New bj(z)

the distance between two circles is long, it is shown that
the velocity is fast. In the intersection on near the center of
display area, it can be seen that the mobile robot can avoid
the moving obstacle. However, the velocity of the mobile
robot accelerates rapidly when it avoids a moving obstacle.

B. New Method by using Conformal Transformation

Fig. 16 shows the simulation with the new method by
using CT. That is, the ellipse flow field is used in this
simulation. The initial conditions of Fig. 16 is the same
as those of Fig. 15. In comparison of Fig. 15, Fig. 16 and
Fig. 17, the difference of their velocities is shown. It can be
seen that the maximum velocity of the new method is a half
maximum velocity of our previous method. As a result, the
effectiveness of our method by using the ellipse flow field
can be shown.

C. New Method with Applying Correction Function

Fig. 18 shows the simulation with applying the correction
function bj(z) in Fig. 15. And Fig. 19 shows the simulation
with applying correction function bj(z) in Fig. 16. Similarity,
Fig. 20 also shows the difference of their velocities. It
can be seen that the case of Fig. 19 is smoother than the
case of Fig. 18. The blue line as shown in Fig. 17 has a
discontinuous point at the maximum velocity point. However,
the blue line as shown in Fig. 20 has no discontinuous point
at all time. As a result, the effectiveness of our method by
using the new correction function can be shown.

D. Discussion

Is the robot motion considered? If the robot is just in front
of the obstacle, how does the robot move? These answers
are very simple. That is, the robot can move while touching
the avoidance circle of the obstacle. If the obstacle does
not move, the robot can always avoid the obstacle. If the

1425



Fig. 15. The Flow Field by using the Previous Method

Fig. 16. The Flow Field by using the Conformal Transformation

Fig. 17. The velocities of Fig. 15 and Fig. 16

obstacle moves, the robot can avoid the obstacle by using
an increased diameter of an avoidance circle to cope with
the delay time that is nearly equal to the time constant T .
Therefore, the robot can always avoid the obstacle in real
time. In this paper, we discuss that this increased velocity by
the moving obstacle is reduced. That is, it is assumed that the
robot can search the obstacle from further away. Generally,
if the robot faces just in front of the moving obstacle that
has a rapid velocity that is larger than the maximum velocity
of the robot, the robot can not avoid the moving obstacle in
any manner. If the obstacle is in further away and using the
proposed method, the robot can avoid the moving obstacle
without a rapid velocity. Note that the increased velocity
faces the avoidance direction in our proposed method and
this is safety if the robot can achieve the velocity and can
search the obstacle from further away.

It might be seemed that it is questionable that Fig. 17 and
Fig. 20 come from both the ellipse field and the correction
function, and they are only influenced by the parameters of
m and uj . However, the m and the uj are the same value,
respectively in each simulation. The m denotes a sink value
and the standard robot velocity comes from the m. That is,
the m can not be changed. This can be seen by the vertical
constant velocity lines shown in Fig. 17 and Fig. 20. On the
other hand, the uj denotes the obstacle velocity. That is, the
uj can not be changed too. All distances of many circles
of the moving obstacles shown in both Fig. 15 and Fig. 16,
and also both Fig. 18 and Fig. 19 are the same, respectively.
Therefore, the changing velocities of these simulations come
from the other factors. The factors are using both the ellipse
field and the correction function.

Fig. 18. The Flow Field of Fig. 15 with the new bj(z)

Fig. 19. The Flow Field of Fig. 16 with the new bj(z)

Fig. 20. The velocities of Fig. 18 and Fig. 19

VI. CONCLUSION

In this paper, we proposed the improved method by apply-
ing the Conformal Transformation and the new correction
function to our previous Hydrodynamic Potential method for
path planning of a mobile robot to avoid the moving obstacle
smoothly. A mobile robot can gradually avoid a moving
obstacle from further away, and can be safely guided without
rapid acceleration. And the new correction function has no
discontinuous velocity. So, a mobile robot can pass a moving
obstacle smoothly. If a mobile robot avoids the arbitrarily
moving obstacle with quick changing of velocity at the
near of the obstacle, the guidance velocity becomes large.
However, if using our new method, the velocity variation of
the robot can be reduced. We will construct an experiment
on a real mobile robot by using the new method and will
investigate the usefulness of our research in the future.
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