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Abstract— Using graph theory, this paper investigates how a
group of vehicles, endowed with local positioning capabilities
(range and bearing to other vehicles), can keep a predefined
formation. We propose a longitudinal and lateral controller that
stabilizes a system of several vehicles as well as a collision avoid-
ance mechanism. The stability of our approach is supported by
a mathematical analysis as well as realistic simulations.

I. INTRODUCTION

Since the 1990s, and the start of the California’s Partners

for Advanced Transit and Highways (PATH) project [1],

several works have shown that when multiple cars drive

together in platoons, traffic throughput and safety can be

increased [19]. Platooning is a complex task that requires au-

tomobiles to be able to drive in a controlled and coordinated

fashion. One aspect of platooning is to control formations of

vehicles. Managing formations of non-holonomic vehicles

has received a lot of attention in the last decade and is

known to be difficult when only local positioning is avail-

able [7, 17, 20]. Our work considers that vehicles have only

range and bearing information to the neighboring vehicles

and no communication available. Hence, we inspire ourselves

from potential fields [8] and graph theoretic [3] approaches

and use a decentralized Laplacian feedback control [2] to

solve a consensus problem [13] with the ultimate goal of

guiding a formation of vehicles. Unlike most of the research

on formation control focusing on differential drive robots,

we consider here non-holonomic vehicles which can only

move forward or backward in a direction tangent to their

orientation.

As in [14, 15], we propose a control strategy and analyze

its stability when driving multiple cars. Such strategies

always rely on longitudinal and lateral control that are

intrinsically linked due to non-holonomicity. In Section III,

we augment an existing lateral control policy explained in [9]

with a simple longitudinal PI (Proportional, Integral) con-

troller and we prove its stability on a single vehicle. Further

(in Section IV), we use the graph theory and the Laplacian

feedback control (explained in Section II) in conjunction with

our single car controller to keep a predefined formation of

multiple vehicles. The stability of the whole system is also

proven.

Finally, using the mathematical framework provided by

graph theory, we add an active collision avoidance mecha-
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nism that makes use of both longitudinal and lateral axes.

Not only does it enable the agents to avoid obstacles on the

road, but also to avoid themselves while converging to the

desired formation. In Section V, we test our approach in

Webots [10], a realistic robotic simulator for which we built

a car physics plugin. Section VI concludes this paper.

II. BACKGROUND

A. Basic Notions of Graph Theory

In this section the main graph theory notions that we

will use are summarized. A directed simple graph with N
elements is defined as a pair G = (V, E), where

• V = {vi, i = 1 . . .N} is the vertex set,

• E ⊆ V × V is the edge set.

The elements of E are ordered pairs of elements ek =
(vi, vj) with k = {1 . . . |E|}. The i-th node neighbors subset

is defined as Ni = {∀vj ∈ V : (vi, vj) ∈ E}. Given such a

graph, we can define the incidence matrix I ∈ R
N×|E| as:

Ii,k =







−1 if ek = (vi, vj)
1 if ek = (vj , vi)
0 otherwise

where ek is the k-th edge of G. When we deal with undirected

graphs a random orientation for the edges can be chosen

and the incidence matrix calculated. The definition of the

incidence matrix allows us to define the Laplacian matrix as

L = I · W · IT (1)

where the weight matrix W ∈ R
|E|×|E| is a diagonal matrix

whose element Wk,k relates to the importance of each edge

ek. In particular, if at least one weight Wk,k differs from 1,

the Laplacian matrix is addressed as the weighted Laplacian

matrix.

B. The Consensus Problem

The consensus problem [13] is a well-known and widely

studied problem in the field of decentralized control. It

starts by considering all the agents of a group as holonomic

kinematic models:

ẋi = ui

where xi is the state of the i-th agent. The solution of the

consensus problem for a graph of N agents, whose goal is

to drive the whole system to a final common state, can be

solved with a Laplacian-based feedback method if the graph

is connected. The feedback control is in the form

ẋ = u = −Lx. (2)
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Fig. 1. Representation of the problem to solve.

To extend the consensus problem to more than one dimen-

sion, the Kronecker product can be used:
[

ẋ
ẏ

]

= −L⊗ I2

[

x
y

]

(3)

where I2 is the 2 × 2 identity matrix. We can conclude that

if we consider the state xi(t) of each robot i (or agent) to

be its position, we can drive a group of holonomic robots to

a rendez-vous point in x, y-coordinates with Equation 3.

III. FROM COORDINATES TO CONTROL VARIABLES

The solution of the consensus problem briefly outlined

above is based on the assumption that the agents are modeled

as bodyless, holonomic vehicles. This section is dedicated

to finding the appropriate translation between the holonomic

control variables ẋ(t), ẏ(t) and the non-holonomic control

variables of a simplistic car, namely v(t) and φ(t), the speed

and steering angle respectively.

A. Vehicle Model

Although this assumption holds only for low speed and

small steering angles, we will consider throughout this work

the following bicycle model as our car model:







ẋ = cos(θ) · v
ẏ = sin(θ) · v
θ̇ = tan(φ)

L
· v

where [x, y]T defines the position of the midpoint of the rear

axle in an Euclidean reference frame, θ means the orientation

of the car relative to the x-axis, L is the wheelbase, φ is

the steering angle (the angle of the front wheels relative

the car’s local x-axis) and v is the current speed. We note

that in this paper all the mathematical analyses consider an

unbounded steering angle whereas all simulations assume

that the steering angle is limited (|φ| < φmax).

B. Lateral Control

Let us consider the problem represented on Figure 1. We

are given (from the Laplacian control feedback) a horizontal

and vertical displacement rate ẋ and ẏ. This displacement

enables us to create a line (the goal line) that passes through

the [xG, yG]T = [x, y]T + ∆t[ẋ, ẏ]T point (the goal point)

where ∆t is a positive time horizon (in the sequel we set
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Fig. 2. Phase portrait showing a region of the e⊥, eθ, ed-space, generated
with l1 = L = 3.0, l2 = 4.0, l3 = 1.0 and φmax = 0.45.

∆t = 1 [s]). We assume here for simplicity that the wanted

final direction for all vehicles is parallel to the global x-axis

(we assume that vehicles are able to determine this direction,

which could be done by analyzing the road markings for

example). Hence the orientation θ of a vehicle is equal to the

heading error −eθ with respect to the goal line. The lateral

and longitudinal errors with the goal line are e⊥ = yG − y
and ed = xG − x respectively. The goal of this section is to

create a control that reaches the goal point with the correct

orientation.

From the vehicle model and as partly explained in [9], we

can deduce that:






ė⊥ = sin(eθ) · v
ėθ = − tan(φ)

L
· v

ėd = − cos(eθ) · v
. (4)

[9] explains a lateral controller able to bring e⊥ and eθ to

0. If the vehicle moves forward (v > 0), the control law

sketched for φ in Figure 1 is stable. To reach the goal line,

we can apply:

tan(φ(t)) =
− cos(eθ(t))e⊥(t) − (l1 + l2) sin(eθ(t))

l1 − (l1 + l2) cos(eθ(t)) + sin(eθ(t))e⊥(t)
(5)

where l1 and l2 are two positive control constants. If the

vehicle moves backward the control law needs to be slightly

modified. In this work, our mathematical developments focus

only on a forward motion of the vehicles. Nevertheless, they

are also valid for the backward motion if instead of using

(5) we use

tan(φ(t)) =
− cos(eθ(t))e⊥(t) − (l1 + l2) sin(eθ(t))

l1 + (l1 + l2) cos(eθ(t)) − sin(eθ(t))e⊥(t)
.

C. Adding the Longitudinal Control

The key point is to control the speed v(t) of the car so

as to reach the goal point without making the whole system

unstable. Let us use a simple proportional control:

v(t) = l3ed(t)

with l3 a positive constant. Figure 2 shows four trajectories

of this new controller in the e⊥, eθ, ed-space. In this phase
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Fig. 3. Phase portrait showing a region of the e⊥, eθ, ed-space, generated
with l1 = L = 3.0, l2 = 4.0, l3 = 1.0, vG = 1.0, KI = 0.1 and
φmax = 0.45.

portrait, the steering angle was limited to 0.45 [rad]. We can

observe (and it is expected) that the error ed goes to 0, setting

the speed v to 0, thus stopping the convergence of e⊥ and

eθ.

As we are investigating a platooning technique where

vehicles try to reach a predefined speed, let us assume that

the goal point moves along the goal line at a speed vG > 0
(see Figure 1) known by all vehicles. In practice (and if

this speed is not known by all cars), vehicles can use a PI

controller to estimate it [5]:

v(t) = l3ed(t) + KI ·
t

∫

0

ed(τ)dτ (6)

Intuitively, if vG stays constant, KI ·
∫ t

0
ed(τ)dτ should reach

vG as the time t tends to infinity. The error dynamics (4)

become:






ė⊥(t) = sin(eθ(t)) · v(t)

ėθ(t) = − tan(φ(t))
L

· v(t)
ėd(t) = − cos(eθ(t)) · v(t) + vG

with v(t) = l3ed(t) + vG and φ(t) as in Equation 5. This

system has two sets of fixed points in the e⊥, eθ, ed-space:

(0, 2kπ, 0) and (0, π + 2kπ,−2vG/l3) with k ∈ Z. The

linearized Jacobian of our system around (0, 2kπ, 0) is:

J0 =





0 vG 0

− vG

Ll2
− (l1+l2)vG

Ll2
0

0 0 −l3



 .

It yields as eigenvalues:

{

λ1 = −l3

λ2,3 = −vG
l1+l2±

√
−4Ll2+(l1+l2)2

2Ll2

Under our current constraints (l1, l2, l3, L, vG > 0), the

real part of all the eigenvalues are negative. We conclude

that the fixed points (0, 2kπ, 0) are asymptotically stable.

Furthermore, as the real part of two eigenvalues of the

Jacobian around the other set of fixed points are positive,

V
i

V
i-1V i+1

Fig. 4. Chain or string of vehicles solving the rendez-vous problem.

the fixed points (0, π+2kπ,−2vG/l3) are unstable. This not

only demonstrates that our system is stable when operating

around (0, 0, 0) but also that it converges to this nominal

operation point. Figure 3 shows the same four trajectories as

in Figure 2 converging to a moving goal point using the PI

speed controller of Equation 6 in the e⊥, eθ, ed-space.

We have seen in this section that given some displacement

∆t[ẋ, ẏ]T with respect to a car position, we can build a goal

point [xG, yG]T , that if moving (vG 6= 0), can be reached

with the controller given by Equations 5 and 6.

IV. VEHICULAR CONSENSUS

To simplify our upcoming multi-vehicle analysis we will

first transform our system and control law to coordinates

relative to the goal point (i.e. the translation along the x-

axis induced by the speed vG is ignored):







ẋ(t) = cos(θ(t)) · v(t) − vG

ẏ(t) = sin(θ(t)) · v(t)

θ̇(t) = tan(φ)
L

· v(t)

with

tan(φ(t)) =
− cos(θ(t))∆y(t) − (l1 + l2) sin(θ(t))

−l1 + (l1 + l2) cos(θ(t)) − sin(θ(t))∆y(t)

v(t) = l3(xG(t) − x(t)) + vG.

where ∆y(t) = y(t)−yG(t). xG(t) and yG(t) become inputs

to the system. We note that [xG(t)+vG ·t, yG(t)]T represents

the goal point position in time. After linearization of the

system around the nominal regime (x(t) = xG(t), y(t) =
yG(t) and θ(t) = 0), we obtain:





ẋ(t)
ẏ(t)

θ̇(t)



 = A ·





x(t)
y(t)
θ(t)



 + B ·
[

xG(t)
yG(t)

]

with

A =





−l3 0 0
0 0 vG

0 − vG

Ll2
− (l1+l2)vG

Ll2



 , B =





l3 0
0 0
0 vG

Ll2



 .

A. String Stability

Let us consider now a fleet of N vehicles that have to solve

the rendez-vous problem. We propose to link each vehicle as

in Figure 4, thus forming a chain. The idea is to give as

input to the controller of each car V i the position of the
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Fig. 5. Block diagram of the controller of each individual vehicle i within
the car chain.

previous car V i−1, thus yielding a linearized system P i for

each vehicle:




ẋi(t)
ẏi(t)

θ̇i(t)



 = A ·





xi(t)
yi(t)
θi(t)



 + B ·
[

xi−1(t)
yi−1(t)

]

This system is sketched in Figure 5 where we have separated

the system in three sub-blocks Hx, Hy and Hθ representing

the transfer functions from the input [xi−1(t), yi−1(t)]T to

the output [xi(t), yi(t)]T .

This system is identical to the one explained in Section III-

C and is stable. The question now is whether the whole

system (with its N vehicles) is stable – in other words,

whether the disturbances grow or attenuate as they propagate

through our system of vehicles [12]. This is regarded in

litterature as string stability [18]. Sheikholeslam and Desoer

in [16] state that a cascaded system of identical vehicles (with

a transfer function P (s)) is string stable if |P (jω)| < 1 for

all ω. We note that this result is a sufficient condition to prove

string stability, but it is not a necessary condition. Hence if

we can prove that our transfer functions Hx, Hy and Hθ all

have gains lower than 1, then our chain of vehicles is stable.

The transfer functions of our system (7) are:

Hx(s) =
l3

s + l3

Hy(s) =
v2

G

Ll2s2 + vG(l1 + l2)s + v2
G

Hθ(s) =
svG

Ll2s2 + vG(l1 + l2)s + v2
G

.

Their gains are:

|Hx(jω)| =
l23

ω2 + l23

|Hy(jω)| =
v4

G

L2l22ω
4 + ((l1 + l2)2 − 2Ll2)v2

Gω2 + v4
G

|Hθ(jω)| =
v2

Gω2

L2l22ω
4 + ((l1 + l2)2 − 2Ll2)v2

Gω2 + v4
G

,

yielding the following two sufficient (and resonable) condi-

tions:

L ≤ (l1 + l2)
2

2l2
(7)

l1 ≥ 1 (8)

V
i

V
k

V l

(a)

k l

-L

+

x i y i. .
[ ]

T

∆t

(b)

Fig. 6. Integration of the Laplacian feedback control into our system of
cars. (a) Assuming that the car Vi is connected to the other cars Vk and
V l, (b) we create the block diagram that aggregates all car positions and
generates a new goal point to reach.

such that all gains are lower than 1 for all ω. Hence the

system is string stable if it satisfies Equations 7 and 8.

Additionally, we note that each element of the string is BIBO

(Bounded Input Bounded Output) stable.

B. Back to Graph Theory

The key result just obtained allows us to link vehicles

together in any way (provided that only bounded inputs are

given to each controller) whilst keeping our graph of agents

stable. In particular, we can use Equation 3 as a way to

use the Laplacian feedback control to achieve the consensus.

Consider the transformation of the system depicted Figure 5

to the one on Figure 6. Positions for all vehicles (e.g., V i,

Vk, V l) can be aggregated through the Laplacian equation

resulting in a displacement vector ∆t[ẋ, ẏ]. Adding the

corresponding displacement vector to each car position will

produce each goal point.

1) Decentralization: In the context of platooning on high-

ways without any additional road infrastructure, we need

to decentralize the Laplacian feedback control presented in

Section II-B, as well as use only relative coordinates. To do

so, we make the assumption that any vehicle V i is able to

measure its distance ei,j and azimut αi,j to other neighboring

vehicles Vj . Hence we can transform Equation 3 for each

vehicle V i:














ẋi = −
∑

vj∈Ni

Li,j · ei,j cos(αi,j)

ẏi = −
∑

vj∈Ni

Li,j · ei,j sin(αi,j)
. (9)

In Figure 7, we have linked two vehicles using the above

decentralized law with the incidence matrix I = [1,−1]T

and the weight matrix W = [1]. We have also enforced their

speed to be vG = 1.0 [m/s]. Both cars converge to (0, 0, 0)
in the e⊥, eθ, ed-space and reach the same position in the

global coordinate frame.

C. Creating Formations

Until now we have considered that all cars should converge

to the same spatial location. This is, of course, neither possi-

ble nor desirable: the vehicles should keep instead predefined

distances with their neighbors. In [4] it is explained how to
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Laplacian feedback control in the x, y, θ-space. We have used l1 = L =
3.0, l2 = 4.0, l3 = 1.0, vG = 1.0, KI = 0.1 and φmax = 0.45.
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Fig. 8. Trajectories of four cars converging to a rectangular formation.

use the Laplacian approach to achieve formation control.

Equation 2 can be modified to accomodate a bias vector b
enabling the system to reach a specific configuration:

ẋ = u = −L(x − b).

Hence Equation 9 becomes:














ẋi = −
∑

vj∈Ni

Li,j ·
(

ei,j cos(αi,j) − bx
i,j

)

ẏi = −
∑

vj∈Ni

Li,j ·
(

ei,j sin(αi,j) − by
i,j

) .

with bx
i,j and by

i,j being the desired longitudinal and lateral

offset between the vehicles V i and Vj respectively.

Figure 8 shows a group of vehicles converging to a

rectangular formation. In this example, the Laplacian matrix

is:

L =









3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3









and the bias matrices composed of each bias vector are:

bx =









0 0 −10 −10
0 0 −10 −10

10 10 0 0
10 10 0 0









, by =









0 −4 0 −4
4 0 4 0
0 −4 0 −4
4 0 4 0









Thus, by modifying the values of the bias matrices our

system is able to reconfigure into any shape.

D. Collision Avoidance

Although they are not visible, the example depicted on

Figure 8 engendered two collisions (i.e. at least two of the

cars’ bounding boxes overlapped) at 1.2 and 3.2 seconds into

d

dx

y

dy

dy

Fig. 9. Safety bounding box defined as the dangerous region where the
vehicle engages collision avoidance.
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Fig. 10. Trajectories of four cars converging to a rectangular formation
using collision avoidance. The maximal deceleration was set to amax =
4.0 [m/s2].

the run. Fortunately, using graph theory and the Laplacian

feedback control, we can seamlessly add on top of our

formation keeping behavior a distributed collision avoidance

control. Let us define E as the set of all edges (vi, vj) such

that the vehicle Vj is not within the dangerous region of

V i. We denote by dangerous region the spatial region that

is covered by a car driving at its current speed v(t) and

suddently decelerating at its maximum acceleration amax until

halted. For simplicity and as shown in Figure 9, we have

defined it as a simple bounding box where the lateral and

rear distances dy are constant and the frontal distance dx(t)
is dependant on time and equal to:

dx(t) =
v(t)2

2amax

Finally, the behavior between pairs of potentially colliding

vehicles should become repulsive instead of attractive. Hence

we could define the weight Wk,k of each edge ek to be:

Wk,k =

{

1/N if ek ∈ E
−δ/di,j otherwise

where δ is a positive constant and di,j is the distance between

the bodies of car V i and car Vj . An adjustment of the bias

vector is also needed as the repulsion point should be the

same for both cars. Thus if ek = (vi, vj) /∈ E then bx
i,j =

by
i,j = 0.

Figure 10 shows the trajectories generated by four cars

having the same initial conditions as in Figure 8. We note

that each car has a limited acceleration and deceleration of

amax = 4.0 [m/s2]. We can observe that trajectories are

slightly different and result in no collisions anymore.

We have also performed systematic 60 [s] simulation runs

where 2, 4, 8 and 16 vehicles were asked to achieve a

formation on two lanes: pairs of cars are asked to stay

6074



2 4 8 16
0

5

10

15

20

25

30

Number of cars

N
u

m
b

e
r 

o
f 
c
o

lli
s
io

n
s

 

 

With CA

Without CA

Fig. 11. Average number of collisions detected with and without the
collision avoidance mechanism. The error bars represent 95% confidence
intervals.

10 [m] apart and cars in the same pair 4 [m] apart (similiar

to the experiments in Figures 8 and 10). Vehicles were

initially randomly placed in a 20 × 20 [m] area (collisions

due to cars overlapping at time t = 0 are ignored) with

random orientations and random speeds varying between 0

and 20 [m/s]. Results are summarized on Figure 11. We

observe that collisions are significantly reduced and note that

some collisions (due to inadequate initial conditions) were

unavoidable as we limited the maximum acceleration and

deceleration.

Finally, we have obtained a complete system able to keep

a predefined formation at a specified speed whilst actively

avoiding collisions.

E. Notes about Assumptions

Throughout this work we have made several assumptions.

In this section, we explain how to alleviate some of them.

1) Straight trajectory: To simplify our analyses, we have

proposed that vehicles need to reach a goal line. As such our

formations are only able to accomodate trajectories with a

small curvature. Fortunately there are no restrictions on the

curve to reach and the notion of goal curve is valid. The

state of each car simply needs to be converted beforehand

from rectangular coordinates to curvilinear coordinates (as

explained in [15]).

2) Leaderless formations: Formation speed and direction

of motion was a priori known by all vehicles. Hence there

were no need to have a formation leader (not even a virtual

leader). In some sense, this approach is quite unique and

provides an approach that is fully distributed and robust to

failure. We can note that optionally, any number of cars

within the formation can be declared as leaders. The leaders

do not use the Laplacian feedback control and do not need

to be known by the other vehicles (the followers). The

followers will automatically adapt and try their best to keep

the formation with the leaders as anchor points. This strategy

has already been used in [5].

3) Unique identifiers: The Laplacian feedback control

assumes that vehicles are uniquely identified. To perform

platooning, the relative position of the vehicles within the

formation is enough to compute their identifiers. Let us

consider a formation on two lanes, each vehicles can have

either 3 (if it is in leading or trailing row) or 5 neighbors.

They are also able to determine whether they are on the

left or right side of the formation. Hence they are capable of

knowing their role within the formation and assign identifiers

to their neighbors and themselves.

4) Obstacle-free roads: Obstacles can be easily integrated

into our framework. If a vehicle detects an obstacle it will

add it to its list of neighbors and handle it as a replusive

agent.

V. EXPERIMENTS

A. Simulated Vehicles

Experiments are conducted in Webots [10], a realistic

mobile robotic simulator for which we have developed a

realistic car simulator plugin [6]. Webots carefully repro-

duces discrete sensors and actuators with their calibrated

nonlinearities and noise features. Our car model incorporates

basic rigid dynamics properties including typical steering

dynamics response. Although not calibrated with an actual

vehicle, we performed several validation runs and tried to

bring the friction (of the tires) and throttle/brake (engine)

model close to the ones of a real vehicle based on literature

information..

The main differences between this real Ackermann steer-

ing vehicle and the simulated model (of Equation 4) are that

steering and speed dynamics include a time lag (dependent

on physical properties) and that the speed is only controllable

through the throttle and brake pedals which have a nonlinear

and noisy relation with the acceleration. Hence we will now

control the speed v(t) given by Equation 6 with:

τ(t) = f−1(l4 · (v(t) − vcurrent(t))

where τ(t) is the throttle (if positive) and brake (if negative)

positions, vcurrent(t) is the current speed, f(·) is the nonlinear

relation between the throttle position and the desired accel-

eration at the current speed and l4 is a positive constant.

We have equiped our simulated vehicles with four simu-

lated SICK LMS 291 sensors as to cover a 360◦ field of view.

The SICK LMS 291 is a laser rangefinder, which scans at 75

Hz over 180◦ with a 0.25◦ angular resolution. Their sensing

range can go up to 80 [m] with an error of about 1 [cm] at 30

[m]. We have implemented a dynamic object detection and

tracking method similiar to the one proposed in [11] where

synthetic scans are created and areas of difference between

consecutive scans are tracked by particle filters.

B. Setup

For each experimental run, four intelligent vehicles are

placed in an area free of obstacles. Vehicles have to perform

the rectangular formation already explained in Section IV-

D for Figure 10 at a speed vG = 10 [m/s]. Their initial

pose is randomly drawn from a normal distribution around
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Fig. 12. Average and standard deviation of the rooted mean square error
of the distances between each car and the desired distances depending on
time.

their desired pose with a standard deviation of 2 [m] in each

direction and of π/4 [rad] for the orientation. We define by

desired pose the pose such that the longitudinal and lateral

distances between each vehicle satisfy the final formation.

Additionally their speed is randomly drawn from a uniform

distribution between 0 and 20 [m/s].

C. Results

We perform four sets of experiments: three sets where the

range and bearing measurements are given to the vehicles

with a zero mean gaussian noise with variance e2
σ, α2

σ

respectively and a last set where these measurements are

gathered from the dynamic object tracker using the laser

rangefinders. The position of each car is monitored during

a run and each run lasts 60 seconds. After 100 runs, the

average rooted mean square error (MSE) between the actual

distances between each pair of cars and the desired distances

is computed. Figure 12 shows the rooted MSE for (eσ,

ασ) = {(0, 0), (2, 0.2), (4, 0.4)}. As the noise grows the

final MSE gets larger, but we observe that in all cases the

formation is stable. The average error on each vehicle link

is lower than a meter even with a noise as high as 4 [m] and

0.4 [rad]. Figure 12 also shows that the convergence of the

last set is steady. When we used the laser rangefinders, we

measured errors of −0.4176± 1.4492 [m] for the range and

0.0449± 0.2143 [rad] for the bearing.

Overall, these simulation results show the good perfor-

mances of our approach and its ability to stabilizes un-

der challenging conditions (videos showing simulated vehi-

cles are available on http://disal.epfl.ch/research/

context_aware_its/videos/).

VI. CONCLUSION

In this paper, we demonstrated that we could drive a

group of automobiles in a specific formation. We have proved

mathematically that our approach is stable. In particular, we

solved the consensus problem for kinematically constrained

vehicles whilst providing an efficient and active collision

avoidance mechanism by exploiting only local measurements

between neighboring vehicles. We also tested the robustness

of our control under realistic conditions.
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