
  

  

Abstract—In many practical environments, the desired 
speech signal is usually contaminated not only by stationary 
noise but also nonstationay interferences, such as competing 
speech. This paper proposes a speech enhancement method 
which can extract desired speech in a multiple interferences and 
reverberant environment. The proposed method uses transfer 
function ratio beamformer and multi-channel adaptive filter 
algorithm. The virtual sound source concept is proposed to 
simplify the theoretical treatment for multiple competing 
speeches. In addition, a transfer function ratio estimation 
method in a more practical scenario is also proposed. The 
experiments are performed in a real room acoustic 
environment. 

I. INTRODUCTION 
T is important for robot to understand spoken language and 
respond to auditory events. However, the speech signal of 

interest is usually contaminated by competing speech, 
reverberation or background noise. Microphone array based 
techniques have been proposed to solve the speech 
enhancement problems for more than three decades [1-3].  

In recent years, microphone array have been widely used 
for the robot audition system [4], [5]. Takeda et al. [6] 
proposed a step-size parameter adaptation technique of 
multi-channel semi-blind independent component analysis 
(ICA) for a barge-in-able robot audition system. For the 
barge-in-able robot, the user can interrupt and begin speaking 
while the robot is speaking. For robot audition, the 
recognition of the front talker is critical for smooth 
interactions. Hence, Kim et al. [7] presented an enhanced 
speech detection method which can separate and recognize 
speech signals originating from the front even in the noisy 
environment. The robot audition system consists of a voice 
activity detection based on the complex spectrum circle 
centroid and a maximum signel-to-noise beamformer. The 
environment may contain various types of noise, such as 
diffused noise, directiondal noise, and noise from the robot. 
Hosoya et al. [8] proposed a noise reduction method which 
consists of four-stage signal processing using a square 
microphone array with four microphones.  

Despite the effort to enhance target speech for robot 
audition, a robust interface is still considered a difficult 
problem due to the variety of environments. In particular, 
some aggressive enhancement techniques could result in 
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distorted speech signals and degrade the recognition 
performance, especially under competing speech situation. 
This paper considers speech enhancement problem under 
multiple speech sources in a reverberant and noisy 
environment condition and we focus on reconstructing the 
desired speech while suppressing competing speech sources 
and stationary noise using beamformer based technique 
rather than ICA based method. In a reverberant environment, 
the transfer function (TF) from source to microphone should 
be explicitly modeled [9] to replace the simple delay 
assumption. However, estimating the TF in a real 
environment is a complicated work. Rather than estimating 
the TF, this paper uses the transfer function ratio (TFR) based 
beamformer [10] for noise reduction. 

For mobile robots, it is cumbersome and impractical to 
analyze the TFR of each interference signal. Therefore, this 
paper proposes the virtual sound source perspective 
explained by singular value decomposition (SVD) method to 
simplify the complexity of multiple interference signals. This 
paper proposes a two-stage speech enhancement algorithm 
using the TFR beamformer and the multi-channel adaptive 
filter algorithm. The TFR beamformer can be considered a 
prefilter to filter out the major component of the virtual sound 
source first and the residual noise from TFR beamformer 
output can be suppressed by multi-channel adaptive filter for 
dual-objectives optimization. In addition, this paper considers 
the TFR estimation in a more practical scenario and the 
proposed TFR estimation can be referred to [11]. The 
proposed algorithm is implemented in the frequency domain 
and the performance is evaluated in the real environment. The 
proposed algorithm is also tested by an automatic speech 
recognition system (ASR) for the application consideration. 

II. PROBLEM FORMULATION 

A. Problem Description 
Consider P speech sources and M microphones in the 

reverberant and noisy environment (M > P). The received 
signal of the m-th microphone can be written as: 

∑
=

+⊗=
P

p
mpmpm tntstatx

1
)()()()(                                                (1) 

where each symbol in (1) represents: 
⊗                    convolution operation; 

)(tamp
            the transfer function from the p-th sound source 

to the m-th microphone;   
)(1 ts               the desired speech signal; 
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)(~)(2 tsts P  the nonstationary interfering speech signals 
(competing speech signals); 

)(tnm             the (directional or omni-directional) 
stationarynoise of the m-th microphone. 

Typically, the transfer function )(tamp
 is assumed to be 

time-invariant over the observation period. In this paper, the 
competing speech signals, )(~)(2 tsts P , are regarded as 
interference signals. Applying the short time Fourier 
transform (STFT) operation to (1) yields: 

( )∑
=

+=
P

p
mpmpm kNkSAkX

1
,),()(),( ωωωω                               (2) 

where k is the frame number and ω is the frequency band. 
),( ωkX m , ),( ωkS p

 and ( )ω,kNm  are the STFT of the 
respective signals. )(ωmpA  is the time-invariant transfer 
function from the p-th source to the m-th microphone. The 
objective of this work is to reconstruct the desired speech 
from the microphone received signal. 
B. Virtual Sound Source Perspective 

When the desired speech signal and the stationary noise are 
absent, the microphone received signal can be expressed in 
the matrix form as: 

),()(),( III ωωω kk SX A=                                                         (3) 

where 
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Assume the rank of the transfer function matrix )(I ωA  is R 
and )(I ωA  can be decomposed by SVD: 

)()V)D(U()(A ωωωω Η=I                                                       (4) 
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)(σ ωr  are the nonzero singular values of )(I ωA  with 
0)()()( 21 >≥≥≥ ωσωσωσ RL . )(r ωv  and )(ωru  are the 

input and output singular vectors of )(I ωA  respectively 
which construct the interference subspace. The idea of virtual 
sound source is characterized as the following (from (3) and 
(4)) and (3) can be rewritten as: 
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From (5), the MIMO acoustic system of (3) can be treated as 
the single-input multiple-output (SIMO) acoustic system. The 
single input is the virtual sound source ),( ωkSV  with the TF 

),()( ωω kVV ΔA + . The virtual sound source is formed by 
mapping the interference signals ),(I ωkS  along the most 
sensitive input direction )(1 ωv  which in turn is scaled by the 
maximum singular value )(σ1 ω . The TF of the virtual sound 
source consists of two parts, time-invariant part )(ωVA  and 
time-varying part ),( ωkVΔ . This paper considers that )(ωVA  
is constructed by the highest gain output direction )(1 ωu  and 

),( ωkVΔ  is the linear combination of )(~)( R2 ωω uu  with 
time-varying coefficients ),( ωα ki . 

III. SUPPRESS INTERFERENCE AND STATIONARY NOISE 
SIGNALS  

This section presents the proposed TFR based beamformer 
and multi-channel adaptive filter for suppressing the noise 
signals ( ),(~),(2 ωω kSkS P and ),( ωkNm ). According to 
section II-B, equation (2) can be written as 
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For the virtual sound source components, we consider 
),()( ωω kSA VmV  and ),(),( ωω kSk VmVΔ  to be the principal 

part and residual part respectively, since )(ωVA  is the highest 
gain output direction of the transfer function matrix )(I ωA  
and ),()( ωω kSA VmV  is constructed by the principal 
interference subspace. If the sound source number is two, i.e., 
P=2, then the residual part is zero. 

A. Transfer Function Ratio Based Beamformer 

The system architecture for suppressing the interference and 
stationary noise signals is shown in Fig. 1. This paper uses the 
TFR and multi-channel adaptive filter techniques for noise 
reduction problems. Hence, M microphones received signals 
are separated into M-1 microphone pairs for the subsequent 
signal processing. It is supposed that the TFRs defined in (7) 
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have been identified using the method introduced in [11]. The 
TFRs for the desired speech and virtual sound source are 
defined as 
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First, this paper employs the TFR of the virtual sound source 
to remove the principal part of the virtual sound source for 
each microphone pair: 
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                                                                                            (8) 
Equation (8) represents that the spatial null is placed toward 
the principal part direction of the virtual sound source by 
using two microphones. If the sound source number is two 
( 0),( =Δ ωkmV ), equation (8) means that the spatial null is 
placed toward the only competing speech directly. The TFR 
beamformer output ),( ωkBm  consists of 3 terms: distorted 
desired speech signal, residual virtual sound source and 
stationary noise. Since the TFR )(1 ωmH  and )(ωmVH  are 
known and we assume ))()(( 1 ωω mVm HH −  is non-zero. 
To mitigate the distortion on the desired speech signal, (8) is 
multiplied by 1

1 ))()()(( −− ωωω mVmmr HHD  as: 

),()(
))()()((),(),(

11

1
1

ωω
ωωωωω

kSA
HHDkBkG

r

mVmmrmm

=
−= −

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1
1

1
1

1
1

1
1

))()()((),(),(
)(
)(

),(

))()()((),(
)(
)(

),(

−

−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ−Δ+

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

ωωωωω
ω
ω

ω

ωωωω
ω
ω

ω

mVmmrVmV
mV

V
V

mVmmrm
mV

V

HHDkSk
A
A

k

HHDkN
A
A

kN

                                                                                            (9) 
where 
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)(ωmrD  is used to adjust the desired speech signal distortion 
to the same reference and r is the reference microphone 
number which we can select. 

The noise part of output signal ),( ωkGm  still contains the 
residual part of the virtual sound source and stationary noise, 
and hence the multi-channel adaptive filter stage is employed 
here to minimize the noise in ),( ωkGm . Let us sum all the 
output signals ),( ωkGm  with the weighting function 

),( ωkQm : 
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where * represents the complex conjugation. The noise 
components can be cancelled if  

),(),(),(),( 22 ωωωω kZkQkk −=Η ZQ                                            (11) 

where H represents conjugation transpose; 
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Fig. 1. The system architecture for interference signal and stationary noise suppression 
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The solution of ),( ωkQ  can be found by using adaptive 
algorithm suggested in section III-B when ),(1 ωkS  is silent 
(desired speech inactive periods). Once the weight vector 

),( ωkQ  is obtained, the beamformer output can be given as: 
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B. Multi-channel Adaptive Algorithm 

For the real environment, it is unlikely to remove the noise 
completely and hence the output signal ),( ωkYr  can be 
expressed as: 
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where ),( ωken  is the residual noise and it is anticipated that 
the desired speech signal components are dominant compared 
to the residual noise. Therefore, equation (12) can be written 
as: 
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According to (11), the error signal at frequency ω and frame k 
is written as: 

),(),(),(),(),( 22 ωωωωωε kkkZkQkZ ZQΗ−−=                 (15) 

The optimal set of filter coefficients vectors ),( ωkQ  can be 
found using the formula: 

),(),(min ωεωε kk ZZQ

∗                                                             (16) 

To avoid amplifying the term ),( ωken  in (14) and arriving at 
a trivial solution of (16), a penalty function is added into (16) 
as: 
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where μ  is the penalty parameter;  
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amplifying the noise term in (14). Thus, the normalized 
least-mean-square (NLMS) solution of (17) is given by: 
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where λ  is the small positive step size. Notably, if the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
solution ),(ˆ ωkQ  can meet the constraint of (17), the noise 
components in (10) can not only be minimized but also be 
attenuated again using (12). 

IV. EXPERIMENTAL RESULTS 
The proposed algorithm was tested in a real environment 

with dimensions 10 m × 6 m × 3.6 m and the reverberation 
time at 1000 Hz is 0.52 second. A uniform linear microphone 
array of eight un-calibrated microphones separated by 0.05 m 
was constructed for this experiment. The amplified 
microphone signals were sampled at 8 kHz and 16 bits. The 
microphone array was placed on a mobile robot at a distance 
of 2 m from the wall. The arrangement of microphone array 
and sound sources is shown in Fig. 2. The desired speech 
signal at 0° consists of sentences from TCC-300 database [12] 
spoken by 150 males and 150 females. The interference 
signals 1, 2 and 4 are speech signals spoken by 3 females and 
interference signal 3 is the speech signal spoken by a male. 
The position of each sound source is fixed in this experiment. 
Two speech enhancement algorithms, delay and sum 
beamformer (DSB) [1] and reference signal based adaptive 
beamformer (RAB) implemented in frequency domain [13] 
are adopted to compare with the proposed algorithm. For 
RAB and the proposed algorithm, we assume the perfect 
desired speech detection system exists, allowing the adaptive 
noise cancellation system to adapt filter weight during 
inactive periods of desired speech. The STFT size is 1024 
with 320 shift samples and 64 zero padding samples. The 
parameters of λ , μ  and β  are set to 0.2, 1 and 2+2i and the 
step size of all adaptive algorithm is set to 0.2. Five 

TABLE I 
FIVE KINDS OF EXPERIMENTAL CONDITIONS 

C1 Desired speech at 0° and stationary noise at -30° 

C2 Desired speech at 0°, stationary noise at -30° and interference 
signal at one of (30°, 60°, 70°, -60°) 

C3 Desired speech at 0°, stationary noise at -30° and interference 
signals at two of (30°, 60°, 70°, -60°) 

C4 Desired speech at 0°, stationary noise at -30° and interference 
signals at three of (30°, 60°, 70°, -60°) 

C5
Desired speech at 0°, stationary noise at -30° and interference 
signals at 30°, 60°, 70° and -60° 

Fig. 2. Arrangement of microphone array and sources 
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conditions denoted from C1 to C5 for the experiments are 
listed in Table I. The average SINR is defined as 

[ ]{ }
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where  )(⋅E  is the expectation operation. 

A. Interference signals and stationary noise suppression 
evaluation 

This section evaluates the interference signals and 
stationary noise suppression ability of the proposed algorithm 
and hence the output ),( ωkY r

ss  is sent for waveform 
assessment. For the proposed algorithm, the reference 
microphone number r is set to one. For the RAB algorithm, 
the pre-recorded speech signals of the first microphone are 
chosen as the desired signal and hence the minimum criterion 
can be written as 
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Q
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where ),(ˆ ωkX  is the vector containing the linear 
combination of present microphone received signal and 

),(~)( 11 ωω kSAm . ),(~
1 ωkS  is the representative speech signal at 

0° in Fig. 3 and ),(~)( 11 ωω kSAm  are the pre-recorded speech 
signals which can be recorded when the environment is quiet. 

),( ωkD  is the desired signal set to ),(~)( 111 ωω kSA  in this 
section. The filter weight ),( ωkQ  can be trained when the 
desired speech signal is inactive.  

 Two objective performance indices are used to measure 
the waveform property directly. The first is frequency 
weighted segmental SINR (FWSINR) defined as 
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where k is the frame when the desired speech signal is 
active.  ),( ωkC  is the frequency weighting at frame k for the 
ear’s critical bands ω [14]. Within the band ω, 2

,ωσ s
 is the 

signal component power of the reference signal )(,1 tx s
 and 

2
,ωσ in

 is the power of noise signal )()(,1 tygtx ys −  for the same 
segment. Note that )(,1 tx s

 is the signal component recorded 
by the first microphone, 

yg  is the gain factor and )(ty  is the 
output of the algorithm.The second quality measure is 
segmental noise level (segNL) 
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where )(ty  is the algorithm output when )(1 ts  is silent and 
)(~)(2 tsts P  and )(tnm  are all active. I is the length of the 

frame. 
The third quality measure is log spectral distortion (LSD) 
defined as 
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where ),( ωkY  is the STFT of the algorithm output. Note that 
a lower LSD level corresponds to a better performance. The 
experimental results are shown in Fig. 3 and Mic#1 represents 
the contaminated speech recorded by the first microphone. 
The ranges of average input SINR are -3 dB to 3 dB. The test 
sentences for each figure are 200. As can be seen, the best 
performance is obtained by the proposed algorithm and the 
DSB performs worst. Since the DSB aligns only the direct 
path signal, it does not take reflections into account and no 
nulls are placed directly in interference signal directions. 

   (a) 

C1 C2 C3 C4 C5
-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

Condition

FW
S

IN
R

 (d
B

)

Proposed
RAB
DSB
Mic#1

 
   (b) 

C1 C2 C3 C4 C5
56

58

60

62

64

66

68

70

72

Condition

se
gN

L 
(d

B
)

Proposed
RAB
DSB
Mic#1

 
   (c) 

C1 C2 C3 C4 C5
6

8

10

12

14

16

18

20

22

Condition

LS
D

Proposed
RAB
DSB
Mic#1

 
Fig. 3. (a) FWSINR results  

(b) segNL results (c) LSD results 
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  For the RAB algorithm, the finite impulse response 
coefficients ),( ωkQ are trained to achieve two objectives 
simultaneously during the desired speech inactive periods: to 
suppress the interference and stationary noise signals, and to 
adjust the distorted desired speech of each microphone 

),(~)( 11 ωω kSAm  to the same channel effect ),(~)( 111 ωω kSA . 
However, the finite number of taps and NLMS adaptive 
algorithm are unlikely to achieve these two objectives fully at 
the same time especially for complex channel dynamics. (e.g., 
competing speeches are present). It is unlike the proposed 
algorithm which separates these two objectives. The 
proposed algorithm suppresses competing speech and adjusts 
desired speech channel effect first using TFR techniques and 
then minimizes the residual noise with multi-channel 
adaptive filter. This is the reason why RAB performs better 
than DSB but worse than the proposed algorithm. 

B. Automatic Speech Recognition Tests 
ASR systems are sensitive to additive noise and speech 

distortion, especially for the competing speech. Therefore, 
this section utilizes the ASR rates to measure the performance 
of the proposed algorithm. The ASR system [15] that we use 
is the Hidden Markov Model (HMM) based Mandarin 
keyword spotting recognition system. The feature vector is 
26-dimensional Mel Frequency Cepstral Coefficients 
(MFCC) and the TCC-300 database with some white noise is 
used for training. The testing database is speaker independent 
3332 words spoken by 11 female and 18 male and each word 
consists of one Chinese name. The vocabulary size is 121 
Chinese names. The testing data are played at the desired 
speech position in Fig. 2 and the time domain speech 
enhancement output is sent directly to the ASR system for 
further processing. The recognition result is considered 
correct when the output Chinese name of the ASR system is 
completely the same with the input. The correct rates, when 
tested on the clean 3332 words ( )(1 ts ) and on the received 
signal of the first microphone ( )()( 111 tsta ⊗ ), are 100 % and 
90.49 % respectively. The recognition results for different 
conditions are summarized in Table II and the correct rate of 
each condition is obtained by using random 500 Chinese 
names from the testing database. As can be seen, the 
proposed algorithm has the best correct rate and Table II also 
indicates that ASR system can be considered an application 
of the proposed algorithm.  

V. CONCLUSION 
This paper proposes speech enhancement method to 

perform desired speech extraction and multiple competing 
speeches and stationary noise signals suppression. Unlike the 
generalized sidelobe canceler (GSC) structure comprised of 
three building blocks [3] or the RAB structure [13] which 
minimizes the noise signals and equalizes the channel effect 
using only adaptive filters, this paper proposes a two-stage 
speech enhancement algorithm using the TFR beamformer 
and the multi-channel adaptive filter algorithm. The virtual 
sound source concept which transforms the multiple 
competing speeches from MIMO to SIMO acoustic system is 
presented to simplify the complicated acoustic system and a 
novel TFR estimation method for more practical scenario is  

 
 
 
 
 
 
 
 
 
 
also derived [11]. The performance of the proposed algorithm 
was tested in a real, noisy and reverberant environment and 
we also showed the improvement on correct rate using 
Mandarin ASR system. An efficient desired speech signal 
detection system is a further research topic. 
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TABLE II 
ASR CORRECT RATES (%) 

Input 
SINR Condition Proposed RSAB DSB Mic#1

-3 ~ 3 
(dB) 

C1 77.6 47.8 39.2 5.4 
C2 66.8 54.8 50 13.6 
C3 63 48.2 42.8 11 
C4 41.4 28.6 22 2.4 
C5 67.2 60.8 57.6 16 
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