
SoF-SLAM:
Segments-on-Floor-based Monocular SLAM

Guoxuan Zhang and Il Hong Suh, Senior Member, IEEE

Abstract— In this paper, we propose a novel monocu-
lar SLAM method in corridor environment which employs
Segments-on-Floor (SoF) as feature data. Given that the height
of the camera and the angle between the camera and the floor
are known, an image of the SoF can be efficiently distinguished
from the other space-lines by a simple data-association method,
deriving the line correspondence from a simplified homography
matrix of two sequentially gathered images. Furthermore, use
of SoF simplifies the analysis of the geometrical property of the
camera projection matrix. Therefore, we can reconstruct SoF
by using a one-step inverse projection. Once SoF is calculated
from visual data processing, they are then used in a normal
SLAM process as feature data. We employ a simple particle
filter in our corridor SLAM. Experimental results show that it is
sufficient for mapping a moderately sized building environment.

I. INTRODUCTION

Vision-based Simultaneous Localization And Mapping
(vSLAM) methods have advantages over range sensor-based
SLAM methods, in that, unlike the restricted functionality of
proximity detection provided by the range sensor, the vision
sensor provides richer information for robots to perceive and
move and manipulate its surrounding environment. Thanks
to the development of 3D computer vision technologies in the
past decade, extracting distance information from multiple
viewing angles has become a well utilized technique in the
field of robot navigation.

The stereo camera is a well known device for capturing
information in the three-dimensional world. A stereo camera
is a device that can reconstruct a 3D image given two
separate viewpoints of the same scene. In contrast, a
monocular camera can only reconstruct 3D image by using
images gathered sequentially at different time instances. If
the camera becomes frozen in the same position and the
environment is composed of only still objects it becomes
impossible to create 3D images using a monocular camera
without any knowledge of the external world. However, if
the camera is kept in motion, then it is possible to reconstruct
a 3D scene from two images by analyzing the disparity
of the same features presented at different images. In this
sense, a mobile robot provides a natural platform to carry a
monocular camera for reconstructing a 3D environment.

This work was supported by the Technology Innovation Program of
MKE/KEIT [2008-F-038-01, Development of Context Adaptive Cognition
Technology]

G. Zhang is with the Division of Computer Science and Engineer-
ing, College of Engineering, Hanyang University, Korea. (E-mail:
imzgx@incorl.hanyang.ac.kr).

I. H. Suh is with the Division of Computer Science and Engineer-
ing, College of Engineering, Hanyang University, Korea. (E-mail: ih-
suh@hanyang.ac.kr. All correspondence should be addressed to I. H. Suh.)

Fig. 1. Examples of indoor environment that include rich sources of
lines. These are formed by floor tiles, furniture, interior moldings, doors,
boundaries between walls and floor or ceilings.

On the other hand, the most commonly used visual feature
in vSLAM is the point-based feature. The point-based visual
feature can be easily identified, and many 3D computer
vision algorithms are more suite for this type of feature.
However, when a map is composed of clouds of many 3D
points, the map has never provided any physical meaning
of these 3D points, since a point has zero dimensions in a
mathematical sense. A common solution to this problem is
to render a surface into densely clustered points in such a
way that the cluster of points become easier to understand
by the human eye.

As a line spans the one-dimensional space, and, therefore,
it is possible to describe the environment only by means
of lines. It is worth noting that the geometrical property
of one-dimensionality of the lines also has the advantage
over zero dimensionality of points, in the sense that lines
can provide stable and long distance guidance for robot
navigation. As Fig. 1 shows, there are a lot of linear
components in structured indoor environments for a robot
to perform vSLAM.

In many previous studies related to line-based vSLAM,
the line was commonly treated as a general 3D-space object,
and consequently, there was large uncertainty when a line
was initialized. In one of the early works [1]–[4], the 3D line
was represented as a line lies on a plane, and the plane was
determined by two rays back-projected from two end points
of the image segment [1]. In [2], the line was encoded in
several small edge landmarks, called ‘edgelets’, which could
also be used to represent a curved line. In [3] and [4], the 3D
line was represented using Plücker coordinates. The former

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 2083

represented the hypothetical line as a geometric series, and
the latter adopted the Inverse Depth Parameterization (IDP)
method [5]. What these pioneering works had in common
was that all approaches were verified only in small-sized real
experimental environments.

The most challenging problem in monocular SLAM is that
the robot has to move forward when visual data is gathered
from a forward-facing camera. Unlike many line-based
vSLAM studies where the moving trajectory is perpendicular
to the optical axis of the camera, we mount our camera in
the same direction as that of the robot movement.

The motivation of our work is to fully exploit the con-
straints of the Segments-on-Floor (SoF) as feature data. If
we restrict ourselves to treating only SoF, the challenging
problem of data-association becomes easier to control, and
it also has some benefit on the process of reconstructing the
segment map from sequential images. Since our approach
exclusively uses SoF as sensory input in SLAM processing,
we name it SoF-SLAM. For the purpose of future exten-
sion, neither Manhattan world assumption [6] nor vanishing
component-related computation were used in our work and,
all of the two-view geometries are dealt with in a general
computational framework.

This paper is structured as follows. Section II presents
the visual data processing for SoF, which provides the
foundational mathematics for our research. In Section III,
we discuss the development of vSLAM strategy using SoF as
feature data. Experiments using an actual robot platform and
conclusions are presented in Sections IV and V, respectively.

II. VISUAL DATA PROCESSING

A. Basic Geometry

A line is an infinitely-extending one-dimensional figure
that has no curvature; a segment is a part of a line bounded
by two distinct end points. In this paper, we use the terms
line and segment indiscriminately whenever the meaning is
clear from its context.

In the image plane, two points x1 = (x1, y1, 1)
T and x2 =

(x2, y2, 1)
T can determine a line l given by l = x1 × x2.

Globally we represent a line by two end points in 2-vector
space; however, locally, while comparing the similarity or
computing the sensor model, we represent a line by the polar
coordinate form of l = (ρ, θ)T , where ρ is the length of the
incidence line from the origin of the reference coordinate
frame to line l, and θ is the angle between the line l and the
horizontal axis.

In this paper, the endpoints representation of the line
uses the world coordinate frame, and the polar-coordinate
representation uses the camera coordinate frame as their
respective reference coordinate frames. The reason for this
classification is that the polar coordinate is more efficient for
the purpose of comparison between similar sensor data, but if
the robot is far from the origin of the world coordinate frame,
then the accumulated error is prone to be magnified if the
robot still maintains the polar coordinate based on the world
origin. Therefore, the robot has to maintain the endpoints
representation in the world coordinate frame, but whenever

Fig. 2. Line correspondence of SoF in consecutive images, where space
segment L on floor is projected to image plane π and π′ as l and l′,
respectively. There exists a homography for l and l′ related to L.

it needs to perform a similarity comparison, the segments
should be temporarily transformed into polar coordinates
based on the camera coordinate frame.

A homography matrix, H, is a mapping that transforms
points from one plane to another while maintaining collinear-
ity. We are concerned with two cases of homography
mapping: first, for a fixed camera center there exists a
homography between coplanar space points and the corre-
sponding points at the image plane. We will use this property
in Section II.C. Second, for moving camera centers there
exists a homography between two image planes provided the
two images are related by the same coplanar space points.
We will use this property in Section II.B. For two planes π
and π′, if x, l ∈ π and x′, l′ ∈ π′, then under the point
transformation x′ = Hx, the line transforms as l′ = H−T l.

When the camera calibration matrix, K, is given from
an explicit calibration process, and the coordinates of the
camera center C̃ and the rotation matrix of the camera R
are provided by a SLAM process, then we can project a 3D
point X = (X,Y, Z, 1)T to an image point x = (x, y, 1)T

through the camera projection matrix P:

x = PX (1)

The 3× 4 homogeneous camera projection matrix P can
be further represented as follows:

P = KR[I | −C̃] (2)

Here I is the 3× 3 identity matrix. We adopted the world
coordinate frame as Fig. 2 shows, where the floor is defined
by the X-Y plane, and the position of the robot always has
a fixed value of 0 along the Z-Axis.

B. Line Correspondence

Unlike point-based vSLAM approaches in which each
individual feature data is encoded in a unique descriptor,
in line-based vSLAM, feature data is only encoded in a
geometric object. No explicit descriptor can be directly used
to compare similarity, but the geometric properties must be
extracted every time for comparison. After a robot moves
from one position to another, the robot must then be able
to decide which segment in the second image corresponds
to the segment in the first image. This is the form of the
data-association problem expressed in line-based vSLAM
approaches.

2084

(a) Light reflection (b) Robot rotation

Fig. 3. The length and the angle of segments suffer from severe changes
in the real environment.

In Fig. 2, πF denotes the floor plane, π and π′ denote
consecutive image planes made by the robot motion, and C
and C′ denote corresponding camera centers. The spatial
SoF L is projected to π and π′ as l and l′, respectively.
Since the plane made by L and C is PT l, and the plane
made by L and C′ is P′T l′, we can, therefore parameterize
L by a 2× 4 matrix as follows:

L =

[
lTP
l′TP′

]
(3)

where P and P′ are projection matrices corresponding to
C and C′, respectively. Unfortunately, before we can apply
equation (3) to calculate the parameters of line L, we need to
decide the correspondence between l and l′. In other words,
lines l and l′ should be data-associated. It is impossible to
determine the line correspondence from the relative position
or length of segments by a simple comparison, because these
measurements suffer from severe lighting conditions, as Fig.
3 (a) illustrates, and due to the motion of the robot, especially
when the robot is performing rotation as shown in Fig. 3 (b).
Accordingly the relative transition and rotation of the robot
have to be considered in the data-association process.

Returning to Fig. 2, let us suppose that the position of the
robot corresponding to image planes π and π′ are X and
X′, and the relative transition and rotation of X′ against X
are represented by t̄ and R̄, respectively. Since all SoF exist
on the plane πF , so there exists a homography H between π
and π′; and the lines, l and l′, projected by the same spatial
line L must be associated with H. If we can compute this
H, then the line correspondence problem can be solved.

We follow the method described in [7], and set C as the
origin of the world coordinate frame. The projection matrices
become:

P = K[I | 0] (4)
P′ = K′[R̄ | t̄] (5)

Here K and K′ are the camera calibration matrices of C
and C′, respectively. The floor πF has coordinates πF =
(nT , h)T , where n is the normal of πF , and therefore n =
(0, 0, 1)T , and h is the height of the camera. All points
XF = (X̃T

F , 1)
T on πF satisfy the condition as follows:

nT X̃F + h = 0 (6)

When neither K nor K′ are taken into account, the
homography for the cameras P = [I | 0], P′ = [R̄ | t̄]
is

H = R̄− t̄nT /h (7)

After applying the transformations K and K′ to the
images, we finally obtain the cameras P = K[I | 0] and
P′ = K′[R̄ | t̄], and the resulting homography is

H = K′(R̄− [0 0 t̄]/h)K−1 (8)

where 0 is the 3 × 1 zero-vector. Since the internal
parameters of the camera have not changed within our
vSLAM process, accordingly K = K′ for all instances.
Equation (8) means that for any spatial line L on the floor,
we can find the data-associated line l and l′ using H.

For most robots, the values of R̄ and t̄ are usually
provided by the odometer reading, and the error is rather
small between two consecutive data readings. Given these
two values, in Fig. 2 the homography H between two robot
image planes π and π′ can be calculated from equation (8).
Since lines l and l′ are imaged by the same spatial line L,
theoretically l′ = H−T l. However, due to uncontrollable
odometer and imaging errors, this is hardly the case. To
find the corresponding line l′ at π′ relating to l at π, we
transform the line l to get a newly mapped line l′′ = H−T l,
and check if they are imaged from the same SoF by using
the next criterion:

ε = α(ρ′ − ρ′′) + β(θ′ − θ′′) < Θ (9)

Here l′ = (ρ′, θ′), l′′ = (ρ′′, θ′′); α, β and Θ are predefined
parameters for checking the similarity between two lines,
and ε is the measured error between them. If equation (9)
is satisfied, and the line l′ and l′′ overlap at π′, then we
treat l and l′ as if they are data-associated. We say that two
segments overlap in the same image, when the first segment
is projected onto the second segment they share the same
part in the direction of the second segment.

C. Simplified Projection Matrix

As was noted in equation (3), as soon as the line corre-
spondence of l and l′ can be identified between two image
planes π and π′, then the spatial line L on the floor can
be uniquely determined. This calculation not only needs
to consider two projection matrices, P and P′, but also
the resulting space line L, expressed in a 2 × 4 matrix,
further manipulation, therefore becomes a more complicated
process. In the remainder of this section we will introduce
a new homography constructed in the context of a 1-view
2-planar geometric relationship.

In Fig. 4, a spatial point, X = (X,Y, Z, 1)T , is projected
to an image point x = (x, y, 1)T on the plane π by a
projection matrix P which was related to the camera center
C, as evidence in equation (1). We replace P with the
elements-enumerated form, [p1 p2 p3 p4], where pi denotes

2085

Fig. 4. If the internal and external camera parameters are given, then the
inverse projection from image to floor can be simplified as per a simple
homography.

the i-th column vector of P, and we repeat equation (1) in
detail:

 x
y
1

 =
[

p1 p2 p3 p4

]
X
Y
Z
1

 (10)

As we stated before, for the spatial point X on floor πF it
has the zero value on the Z-Axis, that is X = (X,Y, 0, 1)T ,
and consequently equation (10) becomes: x

y
1

 =
[

p1 p2 p4

] X
Y
1

 (11)

We represent the 3 × 3 matrix [p1 p2 p4] as HF . Since
HF transforms any points on the floor πF to the image
plane π, therefore, HF is a homography and is also an
invertible matrix. After the projection matrix is reduced to a
homography matrix HF , we can project the image point x
to a space point X̃ = (X,Y, 1)T inversely:

X̃ = H−1
F x (12)

Furthermore, for any data-associated line l′, we can recon-
struct the corresponding spatial line L̃ using the equation:

L̃ = HT
F l

′ (13)

The whole process of visual data processing is shown in
Fig. 5. After this step, the segments on floor L̃ can be
distinguished from all the other confusing segments from
various spatial structures, and be ready for use in the map
building process. In next section, we use the final segment
L̃ as sensor data to feed into the SLAM process.

III. VSLAM USING SOF

A. SLAM Algorithm

The SLAM algorithms can be divided into two large
families. The first group uses Kalman filters, and the
extended Kalman filter (EKF-SLAM) is representative of this
family. The second family of SLAM algorithms is based
on particle filters, and representative of this family is the
FastSLAM - a mix of Rao-Blackwellized particle filter and
Kalman filtering [8].

Among the particle filter-based SLAM algorithms, DP-
SLAM is one of the best known approaches which uses

Algorithm: Extracting SoF

1) Move from position X to position X′.
2) Calculate t̄ and R̄ for consecutive robot positions X and X′ from

the odometer readings.
3) Extract segments l and l′ for two sequentially gathered images I

and I′, corresponding to X and X′.
4) Transform each segment l in I to l′′ in I′ using the homography

matrix of equation (8).
5) Check the similarity between l′′ and l′ using equation (9), and choose

the most similar l̃ among l′ as the corresponding line to l.
6) Project l̃ inversely to segment L̃ on floor using equation (13).
7) Return L̃ and go to Step 1).

Fig. 5. The algorithm for extracting SoF

a particle filter to maintain a joint probability distribution
over maps and robot positions [9]. DP-SLAM relies on
laser sensor data and aims to achieve truly simultaneous
localization and mapping without landmarks. DP-SLAM is
known for its accuracy and that, in most cases, no special
loop closing techniques are required for building a complete
map. When performing the SLAM process it makes only a
single pass over the sensor data.

Inspired by the work of DP-SLAM, we devised our SLAM
algorithm based on a simple particle filter, but with visual
data as sensory input to the SLAM process. For simplicity
we used only a single map to track the observed segment
data. This is a common trick used by the earlier researchers
in an attempt to avoid the complicated work of map copying.
In this method, a single map is maintained and used for
localization for all of the particles. At each iteration a single
most likely particle is chosen under competing strategies,
and all other particles are ignored during the mapping stage.
In traditional methods the map was normally updated only
once based upon this greedy choice of robot position. We
slightly revised the map update process, as our approach
is able to update all related map data at each initialization
step by using observed feature data. This was done mainly
on behalf of the parameterized line information. At the next
SLAM computational cycle, the chosen particle is resampled
based on movements made by the robot, and the number of
produced particles are the same as the number of particles
applied in the previous step.

We adopt the strategy of using only a single map in our
SLAM algorithm for another reason. As a novel approach of
vSLAM, we intended to evaluate the mapping performance
of using SoF as sensory input data on the SLAM process,
but not to evaluate the whole performance of vSLAM. We
gave more weight to the evaluation of the ability to perform
vSLAM merely relying on using SoF as feature data.

In our particle filter, both of the motion model and the
sensor model took the form of a Gaussian distribution. In
the motion model, the mean is determined by the odometer
reading; in the sensor model, the mean is determined by the
values of ρ and θ based on the camera coordinate frame,
which was temporarily calculated from two endpoints in the
world coordinate frame.

2086

Algorithm: SoF-SLAM

1) Move from position X to position X′.
2) Calculate t̄ and R̄ for consecutive robot positions X and X′ from

odometer readings.
3) Sample X′ as N particles using t̄, R̄ and the motion model.
4) For each hypothetical robot position, apply the algorithm in Fig. 5

to derive the image of SoF.
5) For N particles, compare newly observed segments with existing

map data from sensor model, and choose a single particle.
6) For that particle, integrate newly observed segments into existing

map data.
7) Substitute the position maintained by that particle to position X and

return to Step 1).

Fig. 6. The algorithm for SoF-SLAM

B. Line Initialization

As the result of SoF-SLAM, the constructed map is
composed of several SoFs, and each segment is represented
by two endpoints. Therefore, in our case, the map building
means that every segments produced by the SoF extraction
algorithm in Fig. 5, is processed in one of two ways: one
way is for it to be initialized as new feature data and newly
added into the map; the other is that the observed segment is
recognized as existing map data and it is used in the process
of updating the corresponding segment in the previously
constructed map.

It is clear from the algorithm in Fig. 5, that because we
used two consecutively acquired images for extracting SoF,
our algorithm should be classified as delayed initialization.
We adopted an extending-only policy for line updating,
which means that the newly extracted segments are used in
line updating only when it lengthens the existing SoF. We
followed a conservative strategy in our SoF-SLAM because
when the angle and length of the SoF are extracted from
the first image, they are more likely to be changed in the
next observation. Therefore, the lazy methodology is more
suitable for the SoF-SLAM.

Updating the existing segments map data L = (ρ, θ) based
on newly observed segment L′ = (ρ′, θ′) is as follows:

ρ← ργ + ρ′(1− γ)

θ ← θγ + θ′(1− γ) (14)

where γ = δ
1+δ , and δ represents the time of updating

from the first initialization of L to just the previous step.
Equation (14) also coincides with our conservative vSLAM
strategy, because segments are prone to be unstable at the
early initialization stage, but after more and more observed
segments are integrated in the same segments’ map data,
it becomes stable as the weighting parameter γ increases.
Unlike the updating of ρ and θ in which process we applied
a weighting parameter γ for the stability of the map data,
the length of segments are updated as per an extending-only
policy, regardless of δ.

As we have repeatedly stressed that our vSLAM method
is a conservative one, this idea was presented in two more
strategies. We restricted our updating range R for the

(a) Environment (b) Robot platform

Fig. 7. The experiment was conducted in corridor environment and used
a real robot platform.

observed segments. This means that after a segment is
extracted from the algorithm in Fig. 5 it was then checked
for R, and the parts of the segment that were further than R
were not used in the line extension. We also restricted the
updating length L for the existing segments’ map data. This
implies that after the extension step, each segment’s map
data was checked for L, and if it was longer than L, then
the corresponding segment was temporarily switched off for
several steps for continuous updating. The latter parameter
of L has more importance than R, since if the segment is not
correctly initialized for some reason, then the error caused
by this segment can propagate for a long period, and may
severely distort the final map. From our experimental studies,
we chose R = 5m and L = 2R.

The complete SoF-SLAM algorithm is presented in Fig.
6. This algorithm calls the algorithm of Fig. 5 as a sub-
routine in step 4 to extract SoF and uses that as the sensory
data in the SLAM process.

IV. EXPERIMENTAL RESULTS

A. Experiment

We tested our approach through actual robot experiments
in corridor environment, as shown in Fig. 7 (a). The floor is
flat and decorated with rectangular black blocks, each block
has width 0.45m and they are spaced about 2.3m apart. A
Pioneer 3-DX was used as the real robot platform in the
experiment, with one Logitech QuickCam E3500 Webcam
mounted on top of the robot as Fig. 7 (b) shows. The camera
was placed at a height of 100cm from the floor and faced
forward. Images were collected at a resolution of 320× 240
pixels from the camera at a frame rate of 10 fps. Before
the experiment the Webcam was calibrated with a common
checkboard method, and the extracted intrinsic parameters
were used in visual data processing. All image segments
were extracted using Hough transform at the step 3 of the
algorithm of extracting SoF.

As shown in Fig. 7 (a), the robot started from the lower
part of the left corridor, and traveled a loop through the
inside of the 6th floor of IT Building at Hanyang University.
The whole rectangular path is in a dimension of about
11.5m × 24m, and the robot was manually driven during
the experiment.

2087

(a) Odometer data (b) Initial map

Fig. 8. Comparing (a) and (b), the figure of the initially constructed map
is far more accurate than the odometer readings.

B. Results

The odometer readings were collected during our experi-
ment are plotted in Fig. 8 (a) for reference. The robot was
calibrated before the experiment, and accordingly it showed
a straight trajectory when it was traveling forward; however,
it showed a strong tendency of turning right when changing
direction. As a result, the whole path shows a severe trend
of spinning inward, and forms a twisted rectangle.

Figure 9 (b) shows the initial resulting map before loop
closing. Unlike the figure with the odometer readings, in
the resulting SoF-map, the tendency of turning right was not
there. The degree of matching between segments of the start
and end position is also noticeable. Except for slight mis-
match in moving direction, the distance matching is almost
exact even after traveling a distance of about 70m. These
accuracies were achieved by two complementary elements:
for the segments perpendicular to the robot’s direction of
motion, these provided the longitudinal guidance for robot
motion, which forced the robot to adjust its moving distance
during SLAM. The segments parallel to the moving direction
of the robot provided lateral guidance for the motion, and
caused the robot not to deviate from the correct path.

There were some duplicate lines worth mention. These
lines were formed by the top and bottom of baseboards at
the foot of the side walls. Since the top of baseboards is near
floor plane, they were also extracted as SoF by algorithm of
Fig. 6. In most cases we merged these doubled lines into
one line, but some were missed when the distance between
these lines crossed over a predefined threshold.

We adopted a simple loop closing strategy, after the
mismatch error was detected at the end of forward loop,
the error was propagated through backward loop, forced
it distributed uniformly on the whole path. In the finally
constructed map, there were 99 segments formed in the SoF-
map. Since each segment only needs a pair of end points
which were represented in the form of an ⟨x, y⟩ coordinate
set, the whole map size is very compact. For the purpose of
comparison, the traveling path and the final adjusted SoF-
map are shown in Fig. 9 (a) and (b), respectively. The
demonstration video clip is available from [10].

(a) Loop closing (b) Final map

Fig. 9. After the loop closing, the trajectory of the robot and the final
map are nearly the same as that of Fig 7. (a).

V. CONCLUSIONS AND FUTURE WORK

This paper proposed a novel monocular vSLAM method
which used SoF as feature data in the SLAM algorithm.
The main contribution of our work is to fully exploit the
constraint of the SoF. This choice made the extraction of
SoF easier, and also simplified the line initialization of the
map data from extracted image segments. The experimental
results demonstrated the robustness, accuracy and feasibility
of our proposed SoF-SLAM in the corridor environment.

We believe that the SoF-SLAM provides a good starting
point to building a more precise and linearly presentable
indoor map. Our future work is to incorporate all extractable
segment components to build a complete 3D indoor map by
using only a monocular camera.

REFERENCES

[1] P. Smith, I. Reid, and A. Davison, “Real-time monocular SLAM with
straight lines,” in British Machine Vision Conference, vol. 1, pp. 17-26,
2006.

[2] E. Eade and T. Drummond, “Edge landmarks in monocular SLAM,” in
British Machine Vision Conference, Edimburgh, Scotland, September
2006.

[3] T. Lemaire and S. Lacroix, “Monocular-vision based SLAM using line
segments,” in Proc. of IEEE International Conference on Robotics and
Automation, Rome, Italy, pp. 2791-2796, 2007.

[4] J. Solà and T. Vidal-Calleja and M. Devy, “Undelayed initialization
of line segments in monocular SLAM,” in Proc. of The IEEE/RSJ
International Conference on Intelligent Robots and Systems, October
11-15, St. Louis, USA, 2009.

[5] J. Civera and A. Davison and J. Montiel, “Inverse depth parametriza-
tion for monocular SLAM,” IEEE Transactions on Robotics, vol. 24,
no. 5, 2008.

[6] G. Schindler and F. Dellaert, “Atlanta world: An expectation max-
imization framework for simultaneous low-level edge grouping and
camera calibration in complex man-made environments,” in CVPR,
2004.

[7] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, Cambridge University Press, 2nd Edition, pp. 326-327, 2004.

[8] A. Doucet and N. de Freitas and K. Murphy and S. Russell, “Rao-
blackwellised particle filtering for dynamic bayesian networks,” in
Uncertainty in Artificial Intelligence (UAI), 2000.

[9] A. Eliazar and R. Parr, “DP-SLAM: Fast, Robust Simultaneous
Localization and Mapping Without Predetermined Landmarks,” in
Proc. of The International Joint Conference on Artificial Intelligence,
2003.

[10] http://incorl.hanyang.ac.kr/xe/data/sofslam.avi

2088

