
  

  

Abstract—The present work is motivated by the need to 
develop a generic method modeling the biomimetic undulatory 
motion for fish robots with long fin propulsors. Combined with 
mechanical design of long fins proposed in current literatures, 
we explore the application of coupled nonlinear oscillators in the 
modeling of swimming gaits and propose a kinematic modeling 
framework. Coupled nonlinear oscillators can also be regarded 
as models of artificial Central Pattern Generators (CPGs) for 
swimming gait control of fish robots. The advantages of this 
method over the normal sinusoidal functions based method are 
discussed. The synchronization of multiple oscillators is derived, 
which can be utilized for the coordination of multiple joints of 
fish robots and the online gait transition. The framework is 
applied and tested in swimming motion control of an eight-DOF 
undulatory fin prototype. The effectiveness of the control is 
shown through experiments. 

I. INTRODUCTION 
NDULATORY swimming modes are adopted by many 
fishes as a major way of propulsion in aquatic 

locomotion [1]. Fish obtaining thrust through undulatory fin 
motion show remarkable flexibility and maneuverability in 
locomotion, which renders the undulatory fin an ideal model 
for the biomimetic propulsor design in robotic fishes [2]. 
Such fins consist of a set of muscles and bones and can 
produce backward traveling wave toward the opposite 
direction of heading during steady swimming [1-3]. To 
achieve the similar performance as real fish, mechanism of 
undulatory propulsor is routinely made of parallel-connected 
fin rays covered by flexible membrane materials, which 
resembles actual fins of real fishes. Each biomimetic fin ray is 
driven by an actuator (an electric motor, for instance). 
Usually a significant number of degrees of freedom (DOF) 
are involved in the fin movements [3, 4]. Multiple fin rays 
oscillate coordinately under certain control schemes and 
expand a travelling wave on the fin membrane.  

Borrowed from the legged robot, the control signals applied 
on the actuators of fin rays are called gaits [4]. The modeling 
of undulatory fin motion is such a process that coordinated 
swimming gaits are derived to produce travelling wave on the 
long fin. The well-developed modeling scheme is important 
because they directly determine the performance of 
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swimming. In recently proposed undulatory long fin 
prototypes [3-6], sine or cosine functions are commonly 
employed as the gait generator. These gait models can 
successfully control the motion of long fins. However, the 
modeling method needs to be improved in two major aspects. 
Firstly, it is not suitable for online gait generation and gait 
tuning. The amplitude, natural frequency and the phase lag of 
a sine generator is defined based on the pre-selected fin 
motions. And these parameters cannot be online tuned for the 
need of adaptation to environment because this may cause the 
instability of motion, which will be discussed in this paper. 
Secondly, this modeling method is not generic. When used 
for different fin motions or different fin prototypes it has to be 
tailored to accommodate various applications.    

The present work is motivated by the need to develop a 
generic method modeling the biomimetic undulatory motion 
for fish robots with long fin propulsors. Instead of using 
normal sinusoidal gait generators, we explore the application 
of coupled nonlinear oscillators in modeling of swimming 
gaits and propose a kinematic modeling framework. 
Recently, coupled nonlinear oscillators are more and more 
often employed to model the rhythmic movements in robotics 
areas such as legged walking, flying and swimming [7-10]. 
They can also be regarded as models of artificial Central 
Pattern Generators (CPGs) which are used in the inter-limb 
coordination for multi-DOF robots and more recently in 
swimming gait generation of fish robots [9, 11, 12]. 
Compared with the sinusoidal function based gait generator, 
the method discussed in this paper is expected to have the 
following advantages: i) the swimming gait is not pre-defined 
but online generated, which makes the adaptive swimming to 
the environment feasible; ii) different types of gait patterns 
can be generated to achieve versatile aquatic locomotion; iii) 
an analytical and generic solution to the problem of modeling 
the biomimetic undulatory fin motion is provided; iv) the 
swimming gait can be online tuned with simple control 
signals. These features will be illustrated through experiments 
on an eight-DOF long fin prototype.  

The paper is structured as follows. Firstly, the mechanisms 
of undulatory fin design in current fish robots are discussed in 
Section II. In Section III, we focus on the gait generation by 
nonlinear oscillators. The synchronization of multiple 
oscillators is detailed. This property is utilized for the 
coordination of multiple joints of fish robots and the online 
gait transition. The modeling method is applied in control of 
an eight-DOF fish prototype to achieve undulatory swimming 
locomotion. The effectiveness of the control is tested through 
experiments, which are presented in Section IV. 
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frequency or amplitude of a sine generator) may cause 
discontinuity or instability of motions. For example, when a 
fish robot performs accelerating swimming by increasing the 
frequency of fin ray oscillation, the sine gait function is not 
suitable. To illustrate this, we record the oscillatory motion of 
a fin ray driven by a servomotor with rotary encoder in 
experiment and show the result in Fig. 5. At an arbitrary time 
instance t*, the oscillation frequency is changed. It can be 
observed that the online changing of the frequency results in 
instability of motion.    

 
Fig. 5.  An example of motion instability recorded in experiment. A fin ray is 
driven by a servo motor and controlled with a sine function. The angular 
position is shown and normalized to 1. The change of frequency is changed 
from 1Hz to 2Hz at t*.  

The smooth transition of swimming gaits is important for 
robots because it ensures there is no jerk or discontinuity in 
locomotion. It can be solved by using a nonlinear oscillator as 
the gait generator. Here the Hopf oscillator is selected, which 
is defined by: 

2 2 2( ) 2u k A u v u fvπ= − − −                        (1) 
2 2 2( ) 2v k A u v v fuπ= − − +                        (2) 

where u and v are two state variables of the oscillator which 
are all functions of time t, A is a positive number that 
determines the amplitude of the steady state oscillation, f is 
the oscillation frequency and k is a positive constant which 
regulates the speed of convergence. 

 
Fig. 6.  An example of fin ray motion controlled by Hopf oscillator. State u of 
the oscillator is used as the control signal, i.e. θ(t)=u(t). The change of 
frequency is changed from 1Hz to 2Hz at t*.  

Fig. 6 shows the motion of a fin ray controlled by Hopf 
oscillator. The state of the oscillator, u, is adopted as the gait 
generator. It can be seen that the oscillation naturally become 
faster with smooth transition, which is different from the case 
shown in Fig. 5. Another attraction of this nonlinear oscillator 
is its limit cycle behavior [17, 18]. The states u and v always 
asymptotically converge to a limit cycle with radius A as time 
gets large. These properties make the nonlinear oscillator an 
ideal tool to model the swimming gaits in fish robots.   

B. Generation of Different Gait Patterns 
The steady states output of the Hopf oscillator have 

harmonic patterns (Fig. 6). Therefore it is suitable to model 
the swimming gait depicted in Fig. 3b. Non-harmonic gait can 
also be achieved with Hopf oscillator by applying adaptive 
frequencies in one cycle of fin ray oscillation. It can be 
assumed that the asymmetry of the wave shape depicted in 
Fig. 3c is resulted from the different frequencies involved in 
one cycle. The switching of frequencies depends on the shape 

of the non-harmonic wave. Here we assume that there are two 
different frequencies in the oscillation accounting for the fast 
rising phase and slow decline phase respectively (Fig. 3c). 
The uni-polar sigmoid function is employed to perform the 
switching of frequencies. Then the frequency is defined by: 

nominal nominal (2 1)
2 2 (1 )(1 )v

f ff
e τ

α
α α α −

−= +
− +

                 (3) 

where the fnominal is  the nominal frequency of the fin ray 
oscillation and it equals to the reciprocal of the period T, α is a 
shape ratio that determines how much time the rising phase 
takes in one cycle and 0.5≤α<1, τ is a positive time constant 
that tunes the speed of switching, v is a state of oscillator 
defined in (1) and (2). Fig. 7 shows gait patterns generated by 
the nonlinear oscillator. With (3), both harmonic gait (α=0.5, 
i.e. rising phase equals decline phase) and non-harmonic gait 
(α>0.5) are obtained. Equation (3) gives a solution to the 
problem that the shape of undulatory wave can be adjusted by 
tuning of only one parameter, α. The sigmoid function 
ensures that the switching is continuous for α. Therefore, the 
gait pattern can also be online tuned smoothly.  

 
Fig. 7.  The swimming gait patterns modeled by Hopf oscillator (θ=u). In this 
example, frequency f=1Hz and τ =40. The amplitude is normalized to 1.  

C. Coordination of Multiple Fin Ray Motions 
Now we move to the next step: establish the connections 

for multiple oscillators to achieve coordinated swimming 
motion, i.e. synchronization of multiple nonlinear oscillators. 
In fin motion control, the motion pattern of all fin rays can be 
generated with the identical oscillator because those fin rays 
are similar in mechanical structure. Here we adopt the method 
used to model the CPGs for quadruped locomotion in [19] 
and modify it to derive the swimming gaits for biomimetic 
fins.  

Without lose of generality, we consider the canonical form 
of identical nonlinear dynamical systems defined in (1) and 
(2) [17]: 

2 2
,1

2 2
,2

(1 ) 2
( )

(1 ) 2
ui i i i

i i i
vi i i i

pk u v u fv
F

pk u v v fu
π
π

⎡ ⎤ ⎡ ⎤− − −
= + = +⎢ ⎥ ⎢ ⎥− − + ⎣ ⎦⎣ ⎦

X X P    (4) 

where F(Xi) represents a nonlinear system defined by the 
Hopf oscillator, Xi=(ui, vi)T is the state vector of the ith system 
and Pi=(pu,1, pv,2)T is a perturbation vector. The coupling of 
oscillators can be achieved in the way that one oscillator 
perturbs another and in order that a stable phase difference 
between the two oscillators are maintained. This phenomenon 
is a case of phase locking.  

We firstly derive the coupling term for two Hopf oscillators 
and extend the couplings to multiple oscillators afterwards. 
For the ease of deriving, transform (4) into the phase-radius 
form in polar coordinates by using relations ui=ricosφi and 
vi=risinφi: 
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,i ipϕϕ ω= +                                        (5) 

,( , )i r i i r ir F r pϕ= +                                  (6) 
where (ri, φi)T is the system state vector in polar coordinates, 
ω (ω=2πf) is the natural frequency of the unperturbed system, 
Fr is the dynamical system describing the evolution of ri, 
Pc,i=(pr,i, pφ,i)T corresponds to Pi. Its two elements are 
components of the perturbation acting in direction of the 
radius and phase respectively. To simplify the problem, we 
assume that perturbation is one-directional: oscillator one 
perturbs oscillator two and there is no reverse perturbation. In 
this case, P1 equals to zero. P2 is unknown and needs to be 
derived.  

In a phase locking regime, two oscillators evolve with 
stable phase difference φd:  

2 1 const.dϕ ϕ ϕ= − ≈                              (7) 
Combine (5) and (7), we obtain 

2 1 ,2d d pϕϕ ϕ ϕ ω= − = +                            (8) 
where ωd=ω1-ω2. In polar coordinate system, we can think 
that the phase difference is caused by perturbation acting in 
direction of phase, i.e. tangential to the limit cycle. This 
direction for oscillator two (unperturbed) is given by: 

2
,2 2 2

2

( sin , cos )
| |

T
ϕ ϕ ϕ= = −Xe

X
                  (9) 

The perturbation on the phase is obtained by 

,2 2 ,2
Tpϕ ϕ= ⋅P e                              (10) 

The two oscillators are synchronized with a constant phase 
difference φd after a short transient phase evolving (from 0 to 
t0). Therefore, in steady state we have: 

0

lim 0
t

dt t
dtϕ

→∞
=∫                                     (11) 

The integration of (11) over time t can be done implicitly 
by integration over φ2 in the steady state of the system. If we 
assume that the system evolves into the steady state since 
φ2=Φ0 (at t=t0), then phase locking is maintained after 
φ2=Φ>Φ0 (t>t0). Equation (11) can be rewritten as: 

0

0 0

2( 1)

, 2 22
0

lim 0
j

d res d dj
j

d d
π

π
ϕ ϕ ϕ ϕ ϕ

∞Φ Φ + +

Φ→∞ Φ Φ +
=

= = =∑∫ ∫     (12) 

The phase locking with arbitrary phase difference is 
achieved through the coupling between two oscillators. The 
following coupling scheme is employed (adopted from [19]): 

[ ]2 1 1 10 cos( ) Trε ε ϕ γ= = +P QRX                (13) 
where ε is a positive constant that determines the coupling 
strength, γ is the rotation angle, Q is the coupling matrix and 
R is the rotation matrix which are defined by: 

0 0
1 0
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

Q  and 
cos sin
sin cos

γ γ
γ γ

−⎡ ⎤
= ⎢ ⎥
⎣ ⎦

R  

By substituting (13) into (10), we obtain the perturbation 
pφ,2 on the phase. Then substitute the result into (12), we can 
find the phase difference by integration: 

, 12 (cos cos sin sin ) 0d res d d drϕ πω ε π ϕ γ ϕ γ= + + =     (14) 
By solving (14) we obtain: 

1

1

2cos ( )d
d r

ωϕ γ
ε

−= − +                        (15) 

It can be seen that in steady state (ωd≈0) the phase 
difference is completely determined by the rotation angle γ. In 
order to achieve the arbitrary phase difference, we can first 
choose a proper γ.  Substitute (15) into (13), the coupling term 
P2 is obtained: 

[ ]2 1 10 ( sin cos ) T
d du vε ϕ ϕ= +P               (16) 

The synchronization of multiple oscillators is an extension 
of two mutually interacting oscillators. Based on (15) and 
(16), the undulatory swimming motion can be implemented 
on multi-DOF long fins with the following gait generator:  

( )i i it Auθ =                                   (17) 

 ( )e i
i

i

f xA
d

=                                  (18) 

2 2

2 2
1 1

0(1 ) 2
sin cos(1 ) 2

i i i i i

i i d i di i i i

u k u v u fv
v u vk u v v fu

π ε
ϕ ϕπ − −

⎡ ⎤− − −⎡ ⎤ ⎡ ⎤
= +⎢ ⎥⎢ ⎥ ⎢ ⎥+− − +⎣ ⎦ ⎣ ⎦⎣ ⎦

i = 1, 2, 3, …, n                                                                 (19) 

 
2

d
m

n
πϕ = −                              (20) 

0 1
positive const. 1

i
i

ε
=⎧

= ⎨ >⎩
                   (21) 

where n is the number of DOF (actuators) involved in fin 
movement, m is the number of waves on the long fin, Ai is the 
amplitude of the ith oscillator. Equation (17)-(21) can be 
thought as model of CPG controlling the undulatory 
swimming. Output equation (17) generates harmonic gait 
control signals for fin rays. Combined with (3), the 
non-harmonic wave is also achieved. 
 

IV. EXPERIMENTS ON AN EIGHT-DOF BIOMIMETIC FIN 
In this section, the CPG model is applied to the control of 

an eight-DOF undulatory fin prototype. The purpose is to test 
the performance of the gait generator given by (17)-(21). The 
advantages of the nonlinear oscillator based approach 
discussed in Section I is illustrated through the experiments. 

A. Experimental Setup 
The experiments were conducted on a biomimetic 

undulatory fin prototype (Fig. 8a). Eight fin ray modules are 
equally spaced along the body and driven by eight servo 
motors respectively (n=8). The mechanism is similar as what 
is shown in Fig. 1c. The detailed mechanical design can be 
found in [4]. 

Equations (17)-(21) is solved in LabVIEWTM development 
environment and implemented with the CompactRIOTM 
embedded controller (Fig. 8b). Gait signals obtained from 
(17) are coded into 50Hz PWM signals to control the servo 
motor. The nonlinear differential equations are solved with 
the fourth-order Runge-Kutta method [20]. Given that (0, 0) 
is a stable equilibrium point of the Hopf oscillator the initial 
value should avoid this point [17]. They can be set as any 
values near the limit cycle.  
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Fig. 8.  Experimental setup for the undulatory fin motion control based on 
coupled nonlinear oscillators: (a) a biomimetic long fin prototype submerged 
in a water tank and (b) the CompactRIOTM embedded controller. 

B. Configuration of Gait Generators 
The CPGs defined by (19) are connected in the way that the 

behavior of one CPG is perturbed by the previous one in order 
to maintain a stable phase difference between them, which 
forms a one-way chain structure. For the experimental 
platform shown in Fig. 8a, the CPG model is used to generate 
eight gait signals to control the oscillation of fin rays, which 
can be illustrated in Fig. 9. 

 
Fig. 9.  Control architecture based on CPGs. The CPGs (oscillators) are 
connected with a serial chain structure. 

In our experiments, we found that the coupling scheme 
given in Fig. 9 works well in steady state swimming. 
However, the gait transition between forward swimming gait 
and backward gait under this chain structure is slow. The 
reason is that each oscillator is synchronized with the 
previous one and the lag dynamics propagates and 
accumulates one by one. Upon application in experiment, an 
alternative solution is to use the coupling scheme shown in 
Fig. 10. All oscillators are synchronized to the first one with 
different stable phase lags depending on the position of the 
associated fin ray on the long fin. It is observed in 
experiments that the actual transition time is significant 
reduced with the revised scheme. 

 
Fig. 10.  A revised coupling scheme for multiple oscillators 

C. Experimental Results 
Experiments were conducted to test the swimming 

performance under CPG-based control. The testing includes 
several aspects: i) online change of wave numbers on the long 
fin by tuning m (Fig. 11a); ii) smooth accelerating 
/decelerating by increasing/decreasing the fin ray oscillation 
frequency f (Fig. 11b); iii) the natural switching between 
harmonic gait and non-harmonic gait through tuning of shape 
ratio α (Fig. 11c); and iv) the forward-backward swimming 
gait transition by flipping the sign of the phase difference φd 
(Fig. 11d). 

 
Fig. 11.  The experimental swimming gait control signals generated by the 
coupled nonlinear oscillators (CPG model): (a)-(d) online tuning of control 
parametesrs and (e) the evolving of gaits for eight fin rays. The amplitudes 
are normalized to 1. Two red straight lines in (e) indicate the stable phase 
differences among fin ray oscillators. Other parameters in (17)-(21) are: n=8, 
ε=1 and k=10,  

The evolving of the swimming gaits for eight fin rays are 
illustrated in Fig. 11e. When t<4s, harmonic (α=0.5) forward 
(φd<0) swimming gaits are applied to generate a half 
waveform (m=0.5) on the long fin. From t=4s, full length 
waveform is performed with the wave number jumps to one 
and the phase lag between two adjacent oscillators increases 
to 45◦ subsequently. We can observe a seamless evolving 
from Fig. 11e. During t=8s~12s, we tested the accelerating 
and decelerating process. The swimming reaches the highest 
speed at t=12s. The oscillations of all fin rays smoothly get 
faster, then smoothly slower. Afterwards, the gait pattern 
naturally transits from harmonic pattern to non-harmonic 
pattern by changing α. From t=20s the natural reverse change 
also illustrated. Finally the transition of forward gaits to 
backward gaits are performed staring form t=20s. The two red 
lines in Fig. 11e shows the difference: in forward swimming, 

(a) 

(b) 

slider 

long fin (sliders) fin ray  
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the motion of the ith oscillator lags behind the (i+1)th while in 
backward swimming the motion of the ith oscillator  leads the 
(i+1)th.  

Note that the control parameters illustrated in Fig. 11a-d 
are modeled with piecewise functions in experiments. It can 
be seen that even if those parameters are not smoothly tuned, 
he gaits are still continuous and smooth. This is one of the 
most attractive properties of the CPG based method. By 
applying the gait control signals shown in Fig 11e, smooth 
and natural locomotion on the long fin prototype is obtained 
in experiments. 

V. CONCLUDING REMARKS 
Kinematic modeling of undulatory fin motion and its 

application in swimming motion control of fish robots are 
discussed in this paper. Experiment shows that the coupled 
nonlinear oscillator based method has advantages in terms of 
the online generation of swimming gaits. We hope that this 
method can form a framework for modeling and control of 
multi-DOF undulatory fin motions. Although the 
hydrodynamic aspects of the locomotion, for example, the 
adaptation to actual flow situation and the energy efficient 
swimming, are not included, the method discussed in the 
present paper is fundamental for performance improvement 
in those aspects. Firstly, this method provides a simple way to 
online switching of motion patterns, which can be achieved 
by tuning corresponding parameters as illustrated in Fig. 11. 
Secondly, the evolving of the gaits maintains smooth and 
continuous as those parameters vary. These features make the 
closed-loop swimming control possible. For example, 
feedback control laws can be developed to tune the 
parameters in Fig. 11a-d. In this case, sensory feedback of 
water environment is incorporated into the modeling 
framework, which will be useful to achieve autonomous or 
adaptive locomotion. For another potential research direction, 
the amplitudes of all fin rays are not necessarily the same. We 
use the same amplitudes in the present paper just to illustrate 
how the model works. The model allows all amplitudes can 
be different and independently controlled. The real-time 
tuning of those amplitudes can influence the swimming 
efficiency, which is also an interest in future.  
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