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Abstract— Transferring human skills to dextrous robots in
an easy, fast and robust way is one of the key challenges that
still have to be tackled in order to bring robots to our every-day
life. However, many problems remain unsolved. In particular,
researchers are seeking new paradigms along with efficient
and robust task representations that facilitate adaptation to
new contexts and provide a means to appropriately react to
unforeseen situations.

In this paper, we present a new method for robot behaviour
synthesis, where intrinsic characteristics of ’Structured UKR
manifolds’ [13] are used to derive a closed-loop controller
based on motion data obtained by the ’Robot Skill Synthesis
via Human Learning’ paradigm [10]. We apply the method
to the task of swapping Chinese health balls with a real 16
DOF robotic hand. Our results indicate that the marriage of
’Structured UKR manifolds’ with the ’Robot Skill Synthesis via
Human Learning’ paradigm yields an efficient way of realising
a dexterous manipulation capability on real robots.

I. INTRODUCTION

The vision of the robot helper that assists the human in
his every-day life has been the motor for research in many
domains and since many years. One of the key challenges on
the way to making this vision real is the possibility to transfer
human skills to dextrous robots in an easy, fast and robust
manner. In pursuit of this far reaching goal, a lot of work
has been carried out in robotics in the fields of imitation
learning and learning from observation/demonstration [1],
(21, [3], [41, [S], [11], [12].

Perhaps the simplest form of transferring skills to a robot
consists of directly copying the motor commands of the
demonstrator to the robot. Whereas this approach can be very
effective, its application generally turns out to be impossible
in most cases as the motor commands are either not available
or inappropriate for the robot.

While extensive research effort in imitation learning is
indeed focussed on overcoming these two major problems,
we follow the approach of Oztop et al. [10], who studied the
skill transfer from human instructors to a robotic platform
and proposed the idea to consider the robot as a tool for
the human. By doing so, the human includes the robot in
his body schema and automatically uses his visuo-motor
learning capacity for generating appropriate training data
directly on the robot. Following this paradigm, Oztop et al.
recorded data from a robot hand - controlled by a human
via a motion capture system - performing the swapping of
Chinese health balls as described in Fig. 1. Afterwards, they
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Fig. 1. Schematic visualisation of the Chinese health balls swapping. For
our implementation on the real robot hand, we restricted the movements to
the four fingers excluding the thumb.
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were able to represent this manipulation using an open-loop
controller which was able to achieve the same ball swapping
task without human guidance. However, as the proposed
controller framework did not allow for the incorporation
of any sensory feedback, it was limited to actuating the
represented motion in a feed-forward manner and thus was
not able to react to unforeseen situations.

In this paper, we propose a method to derive a closed-loop
controller for the same ball swapping task taking the current
positions of the balls into account and using them as control
parameters for the underlying hand motion.

As a basis for the control framework, we introduce a new
way of using Structured UKR manifolds for representing the
motion data together with their corresponding manipulation
states — in our case the 2D positions of the balls in the
palm plane. In combination with the inherent characteristics
of the Structured UKR manifold — a modified version of
Unsupervised Kernel Regression which we have shown in
previous work [13], [14] to be well suited to representing
human motion capture data — the representation then lends
itself to a simple and robust feedback control scheme that
allows for closed-loop motion control.

This paper is primarily intended to present the Structured
UKR closed-loop control as a new extension of the existing
Structured UKR framework, which includes the robust rep-
resentation of motions by construction [13], by learning [14]
and its use for motion recognition and segmentation [16].

The robotic hand that we used for the implementation of
the proposed controller framework is the five-fingered 16
degrees of freedom (DOF) Gifu Hand IIT ([8]; Dainichi Co.
Ltd., Japan) consisting of a thumb and four fingers (Fig.



Fig. 2. (a) The Gifu Hand III. (b) The ball tracking setup. The camera for
recording the pictures used by the colour blob tracker is positioned above
the hand viewing in the direction of the palm plane. (¢) Exemplary picture
of the colour blob tracker camera shown in (b). Tracked blobs (ellipses) are
marked by surrounding lines: the two balls with green and blue ellipses; the
reference points with red and green.

2(a)). While the thumb provides four independent joints
resulting in four DOF, the fingers only have three DOF as
- in each case - the two distal joints are coupled. For the
ball swapping task, the Gifu Hand was mounted on a PA-10
robot arm (Mitsubishi Heavy Industries) in order to adjust the
orientation of the Gifu Hand in a similar way as in [10] (see
Fig. 2(b)). In addition, a camera was placed above the scene
and directed towards the palm of the hand (cf. Fig. 2(b)).
Using the camera pictures, a colour blob tracker provides
2D positions in the palm plane of the two balls relative to
the reference blobs near the wrist (see Fig. 2(c)).

The remainder of this paper is organised as follows: In
Section II, we briefly review Structured UKR which we use
as a basis for the training of the motion representation de-
scribed in Section III. The feedback control for the manipu-
lation task is detailed in Section IV, and Section V addresses
the experimental results of the proposed framework using the
Gifu Hand III. Section VI provides a short conclusion.

II. UNSUPERVISED KERNEL REGRESSION

Unsupervised Kernel Regression (UKR) is a recent ap-
proach to learning non-linear continuous manifold repre-
sentations, that is, to finding a lower dimensional (latent)
representation X = (x1,Xa,...,Xy) € RN of a set
of observed data Y = (y1,y2,...,¥yn) € RN and
a corresponding functional relationship y = f(x). It was
introduced as the unsupervised counterpart of the Nadaraya-
Watson kernel regression estimator by Meinecke et al. in
[7]. Further development has lead to the inclusion of general
loss functions, a landmark variant, and the generalisation to
local polynomial regression [6]. In its basic form, UKR uses
the Nadaraya-Watson estimator [9], [18] as smooth mapping
f:x € R? — y € R? from latent to observed data space:

Zy —Xl) (1)
> Ke(x—x;)

The original estimator gives a smooth, continuous general-
isation of the functional relationship between two random
variables x and y described by the given data samples
(xi;¥i). Here, Kg(-) is a density kernel (e.g., Gaussian)
with associated bandwidth parameters ©.
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UKR treats Eq.1 as a mapping from latent space to the
original data space in which the manifold is embedded and
from which the observed data samples Y = {y;},i = 1..N
are taken. The associated set X = {x;},7 = 1..N now plays
the role of the input data to the regression function (1). Here,
they are treated as latent parameters corresponding to Y. As
the scaling and positioning of the x;’s are free, the formerly
crucial bandwidth parameter ® becomes irrelevant and we
can use unit bandwidths. Thus, the regression function can
be denoted as

bi(x;X) = ZI_(?(X Xij) @)
N
£ X) = > yibi(sX) = Yb(xX). ()

where b(x; X) = (b (x; X), ba(x; X), ..., by (x; X)) T € RN
is a vector of basis functions representing the effects of the
kernels parametrised by the latent parameters.

As objective function for the UKR training, the following
reconstruction error is used:

NZHyz (xi; X

Here, B(X) = (b(x1;X), b(x2;X),...,b(xy; X)) is an
N X N basis function matrix. Note that moving the x;
infinitely apart from each other results in B(X) being the
identity matrix which corresponds to a trivial minimisation
solution R(X) 0. In order to prevent this undesired
case, several regularisation methods are possible [6]. Most
notably, with UKR one can very efficiently perform leave-
one-out cross-validation, that is, reconstruct each y; without
using the y; term itself. To this end, the only additional
step is to zero the diagonal of B(X) before normalising
its column sums to 1. For a preselected density kernel, the
highly non-linear reconstruction error (4) only depends on
the set of latent parameters X and thus can be optimised
with respect to X by gradient-based methods. As such
methods often suffer from getting stuck in poor local minima,
an appropriate initialisation is important. In the case of
UKR, results from spectral embeddings, e.g. performed with
Isomap [17], can easily be used for the initialisation. An
inverse mapping x = f~!(y;X) from data space to latent
space is not directly supported in UKR. Instead, one may use
an orthogonal projection to define a mapping X = g(y; X) =
arg miny ||y — f(x; X)||? which approximates f=1(-).

In its original form, UKR is a purely unsupervised ap-
proach to continuous manifold learning. In order to enable
to incorporate prior knowledge about the structure of the
training data, we introduced a structured version of UKR
training (e.g. [14]). With Structured UKR, it is possible to
represent data with a temporal context, like trajectories of
hand positions, in a very easy and robust way. In particular,
due to the specific training of Structured UKR, the order
of the represented time series of training observations y; is
reflected in their latent parameters x; and is captured by one
specific latent time dimension. In order to represent periodic
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Fig. 3. (a) Recorded trajectories of both balls projected onto the x /y-palm
plane. Corresponding ball 1 / ball 2 positions are connected by grey lines.
The black points mark the trajectory of grey line centre points. Ball positions
are normalised such that the wrist reference points (cf. Fig. 2(c)) are at
(=1,0)T and (1,0)7. (b) 2D Isomap embedding of all composed hand
posture/ball positions observations. The periodic nature is clearly visible.
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motions, we use the periodic kernel K (x;
exp [—30%sin®(z; — 2;)].

The chronological order of periodic sequences S, =
(¥7,¥%,...,¥%. ), 0=1..Ns with corresponding latent pa-
rameters (x§,x5,...,x% ) can be propagated by including a
penalty term P, 4(X) = S22 SN (74, — TG 1y.4,)
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in the UKR objective function. d; denotes the latent time (or

phase) dimension. For further details, see [7], [6], [14].

III. TRAINING OF THE STRUCTURED UKR MODEL

As a basis for the training of the Structured UKR manifold,
we recorded a sequence of hand postures together with the
corresponding ball positions during four successful cycles
of the ball swapping manipulation generated by the original
open-loop controller from Oztop et al. [10] (see video [15]).

Figure 3(2) shows the recorded ball pair trajectories (each
position normalised such that the reference points shown in
Fig. 2(c) are (—1,0)T and (1,0)T, respectively) and gives
an impression of the symmetry in their movements. In order
to represent the recorded motion, a 1D latent space (g = 1)
has been chosen.

In the case of representing the ball swapping task in
a way that inherently facilitates a closed-loop control, a
fixed relationship between observed hand postures and the
corresponding ball positions is required in order to maintain
the association of one specific hand posture to the corre-
sponding pair of ball positions that we observed during the
data recording.

Correspondingly, we keep the ball positions as part of the
observations by creating an ’observation vector’ o consisting
of the 16D hand posture ® and the 2D ball positions p; and
p2 : o = (®T,p! pI)T. Including the ball positions in
the observations however comes with an unfavourable side
effect: the periodic cycle of the combined observations then
spans over the complete cycle of the ball motion, that is,
swapping the balls until each one has returned to its initial
position. This however requires two swappings of the kind
depicted in Fig. 1 and therefore two times the same hand
motion. For the recorded data, this can be seen in Fig.
3(b) which depicts a 2D Isomap embedding of the training
data of four single ball swappings (or bringing the balls
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Fig. 4. Visualisations of the data and four trained models from the
perspective of the ball positions. Depicted are the normalised positions of
Ball 1 (coloured dots; normalised such that the wrist reference points —
cf. Fig. 2(c) — are at (—1,0)” and (1,0)7) in the recorded data and the
Ball 1 trajectory as represented in the trained models (red line) for different
bandwidth parameters ©: (a) 10, (b) 20, (¢) 30, (d) 40. The colours of the
dots encode the RMSE between recorded and corresponding represented
16D hand posture as visualised in the colour legend. The gray lines depict
the projection errors for the Ball 1 positions resulting from reproducing the
recorded composed observations: & = f(g(0)).

back to their initial positions twice). A closer inspection
of the embedding (see Fig. 3(b), zoomed area) reveals the
expected effect: the data is embedded in only two cycles. In
other words, the combination of ball and hand movements
to observation vectors consequentially yields data whose
periodicity spans over the whole period of the ball movement
and thus over two periods of the hand movement. The net
effect of these characteristics of the composed observations
is that the basic hand movement is represented twice in the
manifold, resulting in two (slightly different) movements for
swapping ball 1 or ball 2, respectively.

Codifications in which the balls are indistinguishable
would overcome this drawback, but at the same time break
up the periodicity of the ball motion. Since this periodicity
is a key characteristics of the manipulation, we decided to
follow the straightforward approach described above which
also produced good results for the closed-loop control. The
motion represented with UKR, when synthesised in an open-
loop fashion (see video [15]), however, performs worse than
the original controller and only manages to swap the balls
every second trial. Indeed, including the sensory feedback in
the control loop afterwards yielded much better results, as
will be detailed in the following section.

In order to train the manifolds, we applied the method for
learning Structured UKR manifolds reviewed in Sec. II. The
set of observations consisted of 1757 composed vectors com-
prising 16D hand postures (finger joint angle vectors; only
12 of the 16 dimensions have effectively varying values) and
two 2D ball positions resulting in total in d = 20 dimensions.
For the latent space, we specify the dimensionality of ¢ = 1
which corresponds to the latent time dimension. To take
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bottom right corner of each box). See the text for a detailed description.

the periodicity of the manipulation into account, we chose
Ky = K¢ (cf. Sec. II). The latent initialisation is realised
using the mapping atan2*(-) = Z + 1 atan2() € [0; 7] of
the 2D Isomap embedding of the training data (see Fig. 3(b)).

With these settings, we trained the Structured UKR mani-
folds for different inverse bandwidth parameters © and eval-
vated them concerning their appropriateness for the specific
task. To this end, we compute the manifold reproductions
6; = f(g(o;)) of the training data {o;} as a basis, where
o= (®7,p!,pl)T and & — (&7, pT. pY)T.

Figure 4 shows the results for © = 10,20, 30, and 40 from
the perspective of the ball-1-trajectories: the points depict the
p1-parts of the training data; their colour encode the root
mean square error (RMSE) between the corresponding hand
postures & and &. The red lines visualise the P, trajectory
resulting from mapping the whole range of latent parameters
X back to the observation space, giving an impression of the
smoothness of the trained manifold.

Whereas the model for the smallest inverse kernel band-
width parameter © = 10 (Fig. 4(2)) yields the smoothest
representation, it also results in the highest RMSEs for
the reproduced hand postures. Indeed, using this model for
generating the ball swapping motion could not produce any
ball swappings. By increasing © (i.e. decreasing the kernel
bandwidth) to 20 (Fig. 4(b)), the RMSEs decrease, but at the
price of a less smooth representation as shown by the ball-1-
trajectory. However, only a further increase of © to 30 (Fig.
4(c)) sufficiently improved the hand posture synthesis ability,
eventually leading to a model that is able to reproduce the
ball swapping (see video [15]). A further increase of © as
shown in Fig. 4(d) further decreases the RMSEs in most
parts of the mapping, but also results in a more over-fitted
solution. As this, however, did not improve the open-loop
behaviour of the representation, we chose the model trained
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Schematic overview over the different steps of the feedback control using Structured UKR manifolds (the corresp. step number is marked in the

with © = 30 (Fig. 4(c)) as basis for the feedback control
presented in the next section.

IV. FEEDBACK CONTROL USING STRUCTURED UKR

The training of the Structured UKR manifold described
in the last section yields a representation of the underlying
manipulation that provides us on the one hand with infor-
mation about valid combinations of hand postures and ball
positions, and on the other hand with knowledge about the
chronological order of the data.

Exploiting these two main characteristics of the manifold,
a closed-loop feedback control system can be implemented
as shown in the schematic overview in Fig. 5:

In the first step (Fig. 5, box 1), the current ball positions
p1(t) and po(¢) are extracted from the camera image as a de-
scription of the current manipulation state. These points are
treated (separately) as two versions of partial observations of
the manipulation: o}y, = (x,p{,*)” and o}, = (x,,p3)’,
respectively. Here, the x denotes unspecified values.

Considering both ball positions at the same time is also
possible and also more logical at first sight. However, since
usually not all possible combinations of ball positions are
represented in manifold and the orthogonal projection of a
non-represented combination onto the manifold may yield a
latent position that is appropriate for neither of the actually
observed ball positions, this approach yielded worse results
in the experiments.

In the second step (Fig. 5, box 2), the partial observations
are projected into the UKR latent space: X = g(o*; X). Here,
however, only the specified part of the data is considered (p1
or py) by modifying the orthogonal UKR projection g(-)
accordingly: g(y; X) = argminy || S(y — £(x; X)) || with
S being a d X d diagonal matrix with elements s;; = 1
if observation dimension ¢ is specified and s;; = 0 else.
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Exemplary results of (a) the UKR open loop control and (b-¢) the UKR closed-loop control. Whereas the open loop control does not react to

unforeseen situations, the closed-loop control adapts to the current manipulation context. The results can be seen best in the corresponding video [15].

This ’partial observation projection’ then yields the latent
parameter — and thus the point in time or phase of the
manipulation — which best matches to the observed ball
position. In addition, it also provides means to determine
the corresponding full reconstruction o from the manifold
representation using the UKR mapping f(%; X). Since balls 1
and 2 are identical, we can use this reconstruction to find the
ball whose position best matches with its reconstruction. The
ball position yielding the smallest reconstruction error then
defines the %(¢) used in the following process. In addition, if
the reconstruction error of one of the balls exceeds a certain
threshold, the manipulation can get halted.

For the manipulation control, however, we are more
interested in the represented expected future development
of the movement. Thus, in the third step (Fig. 5, box 3),
starting from the identified current latent position within the
manipulation (i.e. %X(t)), we set up a list of k successive
“future’ latent parameters using A as fixed sample distance:
X) o,y = R(O+F1A, R()+24, ..., K(t)+kA). This list
constitutes the latent representation of a plan for a short-
term feed-forward motion whereas the combination of the
parameters £ and A specifies the coarseness/speed (”step
size” A) and the length/duration (k - A) of the feed-forward
part of the control.

In step four (Fig. 5, box 4), this plan is mapped
back into the observation space by means of the UKR
mapping f(x;X). The resulting observations 05’: @ =
(6,2, 672, ..., 6F"2) correspond to the expected actions
(i.e. finger movements) and reactions (i.e. ball movements)
from a proceeding manipulation.

Since the changes of the ball positions are directly induced
by the observed finger movements, however, we also expect
that the actuation of these actions result in the ball positions
that are similar to the represented ones. Thus, in step five of
the feedback control (Fig. 5, box 5), these expected future
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hand postures are actuated in their chronological order to
perform the next steps of the desired manipulation.

After the finger movement, the resulting change of the
manipulation state — i.e. the displacement of the balls — is
observed by the camera and evaluated in order to adapt the
hand motion and set up a new short-term feed-forward plan.
In this way, the control loop is closed and restarts in box 1.

V. EXPERIMENTS

The experiments focus on the qualitative evaluation of the
behaviour of the closed-loop control using the presented new
extension of UKR in comparison to the UKR control without
this extension. They are intended to demonstrate the benefits
and new possibilities of the extended control scheme.

The UKR closed-loop controller uses the control scheme
presented in the last section with the manifold described in
Sec. III. For the UKR open loop control, we use the same
trained UKR manifold as a basis for the motion generation,
whereas in this case, no feedback about the current ball po-
sitions is used. Instead, the latent space is regularly sampled
with a fixed step size A. The resulting latent value z(k)
zot+k-A, (k=1,2,..) is mapped back to observation space
by means of o(k) — (® (k). p1 (k)7 p2(k)")T = £(x(k))
and the corresponding hand joints angles ® (k) are actuated
(while the ball positions p; (k) and p» (k) are ignored). Thus,
the represented movement is produced in a purely feed-
forward manner. The speed of the movement can be varied
with the size of A.

As both controls are based on exactly the same UKR
representation of the underlying motion, the capability of
performing the ball swapping is equally present in both meth-
ods. However, by incorporating the ball position feedback
with the new control scheme presented in the last section,
the robot gains the ability to adequately react to unforeseen
events or control failures. The exemplary sequences shown



in Fig. 6 illustrate the different behaviours of open loop and
closed-loop control for the same initial ball configuration.

Figure 6(a) shows intermediate hand postures from the
open loop control. Here, pics. 1-5 show an unsuccessful
attempt to swap the balls. Indeed, as the open loop control
cannot react to unachieved sub-goals of the control, the
following movement (pics. 6-11) continues as if the blue
(bottom left) ball had been correctly moved between red (top
right) ball and the palm (cf. Fig. 6(b), pic. 11 for the targeted
configuration) and thus tries in the following to bring the red
ball to the position to which the blue ball returned.

Figure 6(b) depicts the same initial ball configuration as in
Fig. 6(a), but using the closed-loop control (on the basis of
the same UKR representation). Here, again, pics. 1-5 show
an unsuccessful attempt to swap the balls. But, as the closed-
loop control recognises that the blue ball returned to its initial
position, the adequate part of the control is repeated (pics.
7-10) and the goal is eventually reached (pic. 11).

Figure 6(c) shows a control scenario in which the blue (left
bottom) ball is manually pushed back to the initial position
to prevent the ball from swapping. In this sequence, three
attempts to push the ball to the correct position can be seen
(pics. 1-4, 5-9, and 10-11).

Readers are encouraged to refer to the accompanying
video [15] associated with Fig. 6 as it very intuitively
demonstrates the effects of the closed-loop control and its
superiority compared to the open loop version.

Whereas the closed-loop manipulations (Figs. 6(b-c)) are
not perfect in the sense that no errors occur during the ball
swapping, the closed-loop control scheme, however, better
exploits the underlying UKR representation. It realises a hand
motion which is adapted to the current ball configuration and
better reacts to unforeseen disturbances during the manipula-
tion. One interesting observation is that the repeated “trying”
of the robot to accomplish the sub-goal of bringing one ball
in a specific position gives the impression that the robot has
a kind of awareness of the current situation yielding a very
natural looking manipulation motion.

VI. CONCLUSION

In this paper, we presented a new closed-loop controller
scheme which operates on the predefined clear structure of
Structured UKR manifolds - a modified version of Unsuper-
vised Kernel Regression which we have shown in previous
work to be well suited to representing human motion data.

The new control scheme extends the existing framework of
Structured UKR manifolds that provides means for represent-
ing, actuating, and recognising motions. The new mechanism
now allows for considering partial observations as sensory
input in order to perform a closed-loop control. Using this
controller scheme, we have successfully implemented the
ball swapping task on a real 16 DOF robot hand, namely
the Gifu III Hand, using the positions of the balls as sensory
feedback.

In addition to the proof of the presented concept on a
real robot, we could also show that our new control is
able to better exploit the underlying motion representation
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in order to realise a more sophisticated manipulation which
adequately adapts to the current situation.

In future work, we plan to combine the closed-loop
scheme presented in this paper with a more complex man-
ifold providing more than one latent dimension and thus a
broader range of different versions of the same manipulation
for different motion parameters (e.g. ball radius).

Since the closed-loop control is based on the unified
latent structure of Structured UKR Manifolds, we expect the
control scheme to be applicable to all applications that can
be represented in such manifolds. The control scheme then
can be directly used in the presented way, only adjusting the
control parameters k and A defining the length and durations
of the feed forward steps of the control.
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