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Abstract— The author has proposed a novel method for gen-
erating a dynamic gait based on anterior-posterior asymmetric
impact posture tilting the robot’s center of mass forward.
The primary purpose of this method is to asymmetrize the
impact posture by actuating the robot’s telescopic-legs to make
overcoming the potential barrier at mid-stance easy, and the
mechanical energy is accordingly restored. We have already
validated our method through numerical investigations of a
planar rimless wheel model with telescopic legs. The results
implied that the robot motion becomes remarkably high-speed
and the need of ankle brake was indicated. This paper then
extends the method to a planar telescopic-legged biped model
incorporating the brake effect of ankle spring, and numerically
investigate the gait properties. We also discuss the role of
anterior-posterior asymmetric shape of human foot from the
viewpoint of zero moment point.

I. INTRODUCTION

Limit cycle walkers can generate natural and energy-
efficient dynamic gaits utilizing their own physical dynamics
and passivity. By applying a suitable actuation rule to the
robot, efficient level walking can be achieved [1][2][3][4][5],
however, guaranteeing the limit cycle stability is another
problem and is not easy.

One of the most impeditive problems in stable limit cycle
generation is the potential barrier at mid-stance. The robot
must start walking with a suitable and sufficient initial
momentum to overcome the potential barrier and to reach
the next impact. It is not easy to guarantee overcoming the
potential barrier only with intuitive control laws in limit cycle
walking. It is also difficult to start walking from a standing
posture smoothly and we must search the suitable initial
conditions through a trial and error process.

The potential barrier in dynamic gait originally comes
from the fact that limit cycle walkers have anterior-posterior
symmetric impact posture as shown in Fig. 1 (a). To solve
this problem, the author proposed a method for generating
a gait that guarantees to overcome the potential barrier by
asymmetrizing the impact posture as shown in Fig. 1 (b). The
primary purpose of this method is to tilt or shift the robot’s
center of mass (CoM) forward for overcoming the potential
barrier at mid-stance easily. The easiest way to asymmetrize
the impact posture is to extend the stance leg during stance
phases using the prismatic joints or knee joints. The author
numerically investigated the validity of the proposed method
using a telescopic-legged rimless wheel model shown in Fig.
2 (a), and performed parameter study in [6]. We showed the
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Fig. 1. Relations between impact posture and potential barrier
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Fig. 2. Telescopic-legged rimless wheel that can climb up slopes

possibility of stable gait generation on level ground using
the model, and extended it to climbing up a steep slope as
shown in Fig. 2 (b). The simulation results implied that the
generated level gaits are remarkably high-speed and the robot
would jump because of the overly rapid motion. Through our
investigations, the need of ankle brake has been indicated.
The importance of forward-bending impact posture has been
also discussed in several related works [2][3][4].

On the other hand, the author has wondered about the
meaning of anterior-posterior asymmetry of human foot. As
the authors have shown, such as in virtual passive dynamic
walking, the stance leg of limit cycle walkers must be driven
forward during stance phases to generate an energy-efficient
level gait without creating negative input power [5][7]. The
zero moment point (ZMP) is then shifted posterior to the
ankle joint. This implies that the heel-side must be longer
than toe-side in robot foot. Human foot is, however, formed
of inverse shape and this implies that it can drive the stance
leg backward only. In other words, human foot is not suitable
to drive the body forward.

Based on the observations, in this paper, we extend our
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gait generation method to a planar telescopic-legged biped
robot with feet incorporating a brake spring and numeri-
cally investigate the gait descriptors, especially the behavior
of ZMP. Through numerical simulations, we discuss the
anterior-posterior asymmetry of human foot from the ZMP
point of view.

II. MODELING OF TELESCOPIC-LEGGED BIPED

A. Modeling of Biped Robot

1) Dynamic equation: Fig. 3 shows the planar telescopic-
legged biped model. Let the stance leg and swing leg be Leg
1 and Leg 2, and qi =

[
xi zi θi bi

]T
be the generalized

coordinate vector for Leg i. The corresponding dynamic
equation becomes

M i(qi)q̈i + hi(qi, q̇i) = 04×1, (1)

and we then augment them by adding the holonomic con-
straint forces and control inputs. The two legs are connected
at the hip joint. We also assume that the foot mass and
thin are ignorable or the foot dynamics does not affect
the walking motion at all. Let q =

[
qT

1 qT
2

]T
be the

generalized coordinate vector of the whole walking system,
the dynamic equation then becomes

M(q)q̈ + h(q, q̇) = Su + J(q)Tλ, J(q)q̇ = 04×1, (2)

where Su ∈ R
8 is the control input vector, J(q)Tλ ∈ R

8

is the holonomic constraint force vector for connecting the
two legs. The terms in Eq. (2) are detailed as

M(q) =
[

M1(q1) 04×4

04×4 M2(q2)

]
, (3)

h(q, q̇) =
[

h1(q1, q̇1)
h2(q2, q̇2)

]
. (4)

By eliminating λ from Eq. (2), the dynamic equation is
arranged as

M (q)q̈ = Y (q) (Su − h(q, q̇))
−J(q)TX(q)−1J̇(q, q̇)q̇, (5)

Y (q) = I8 − J(q)TX(q)−1J(q)M (q)−1, (6)

X(q) = J(q)M(q)−1J(q)T. (7)

The control input vector is also detailed as

Su =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 1
1 0 0
0 0 0
0 0 0
0 0 −1
0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣ u1

u2

uH

⎤
⎦ . (8)

The ankle-joint torque, uA, is added later.
2) Transition equations: The positions are exchanged in

accordance with the geometrical conditions as follows:

x+
1 = 0, z+

1 = 0, θ+
1 = θ−2 , θ+

2 = θ−1 , (9)

x+
2 = x+

1 + l1 sin θ+
1 − l2 sin θ+

2 = −x−
2 , (10)

z+
2 = z+

1 + l1 cos θ+
1 − l2 cos θ+

2 = −z−2 = 0. (11)
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Fig. 3. Model of planar telescopic-legged biped robot with feet

Next, the transition equations for the velocities are de-
scribed. We first calculate the velocities just after impact
without switching the legs. After that, we exchange the
velocities of Leg 1 for those of Leg 2. Assuming that Leg
1 leaves the floor just after impact, the inelastic collision is
modeled as

M(q)q̇+ = M(q)q̇− − JI(q)TλI , (12)

JI(q)q̇+ = 07×1. (13)

The Jacobian matrix JI(q) is derived as follows. The
conditions that the tip of Leg 2 is fixed on the floor without
slipping just after impact are given by

ẋ+
2 = 0, ż+

2 = 0. (14)

We also assume that the prismatic joints of the legs are
mechanically locked at impact, and the conditions are given
by

ḃ+
1 = 0, ḃ+

2 = 0. (15)

Following these conditions, the lengths of both legs, l1 :=
a + b1 and l2 := a + b2, are treated as constants at impact.
In addition, the conditions that the hip positions of both legs
are identical are given by

d
dt

(x1 + l1 sin θ1)
+ =

d
dt

(x2 + l2 sin θ2)
+ , (16)

d
dt

(z1 + l1 cos θ1)
+ =

d
dt

(z2 + l2 cos θ2)
+

, (17)

and these lead to

ẋ+
1 + l1θ̇

+

1 cos θ1 = ẋ+
2 + l2θ̇

+

2 cos θ2, (18)

ż+
1 − l1θ̇

+

1 sin θ1 = ż+
2 − l2θ̇

+

2 sin θ2. (19)

To cancel out the tracking error, we further consider another
condition that the relative hip-joint, θH := θ1 − θ2 is
mechanically locked at impact:

θ̇
+

H = 0. (20)
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Following the above conditions, we can precisely achieve
y ≡ yd without PD feedback because all velocities of the
output just after impact, ẏ+, become zero. The control input
can be specified only by feed-forward of the desired acceler-
ation, and we can examine the gait efficiency reflecting the
desired trajectories accurately.

Summarizing the above seven velocity constraint condi-
tions of (14), (15), (18), (19) and (20), matrix JI(q) ∈ R

7×8

is specified as follows:

JI(q) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 J13 J14 −1 0 J17 J18

0 1 J23 J24 0 −1 J27 J28

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (21)

where

J13 = l1 cos θ1, J14 = sin θ1, J17 = −l2 cos θ2,

J18 = − sin θ2, J23 = −l1 sin θ1, J24 = cos θ1,

J27 = l2 sin θ2, J28 = − cos θ2.

Matrix J(q) in Eq. (2) is also derived as

J(q) =

⎡
⎢⎢⎣

1 0 J13 J14 −1 0 J17 J18

0 1 J23 J24 0 −1 J27 J28

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

⎤
⎥⎥⎦ . (22)

We can finally accomplish the transition by replacing q̇+
1

with q̇+
2 in q̇+ =

[
q̇+

1 q̇+
2

]T
.

B. Control laws

We choose the two telescopic-leg lengths and the relative
hip angle as the control output. The output vector, y ∈ R

3,
is then defined as

y =

⎡
⎣ b1

b2

θH

⎤
⎦ = STq, (23)

and its second-order derivative with respect to time becomes

ÿ = STq̈ = A(q)u + B(q, q̇), (24)

where

A(q) = S
(
I8 − M(q)−1J(q)TX(q)−1J(q)

)
×M(q)−1S, (25)

B(q, q̇) = −STM (q)−1h(q, q̇) + STM (q)−1J(q)T

×X(q)−1
(
J(q)M(q)−1h(q, q̇) − J̇(q, q̇)q̇

)
. (26)

Then we can consider the following control input for achiev-
ing y → yd.

u = A(q)−1 (v − B(q, q̇)) (27)

v = ÿd + KD (ẏd − ẏ) + KP (yd − y) (28)

By adding the condition of Eq. (20), all elements of ẏ+

become zero and the trajectory tracking control without any
tracking errors, y ≡ yd(t), is achieved only by the feed-
forward control of the desired accelerations.

The time-dependent desired trajectories, yd(t), are speci-
fied as 5-order functions for smoothly interporating between
the boundary conditions, and all the outputs are smoothly
controlled from the initial conditions to the final ones in
each step.

III. NUMERICAL ANALYSES

A. Starting from Standing Posture

We first consider a starting control and stable gait genera-
tion from a static standing posture. The robot starts walking
from a standing posture (b1 = b2 = b, θ1 = θ2 = 0) and
static condition (θ̇1 = θ̇2 = 0, ḃ1 = ḃ2 = 0), and generate
the dynamic gait while updating the desired trajectories in
accordance with the following strategy.

The telescopic-leg length of the stance leg, b1, is controlled
to follow its desired time-dependent trajectory, b1d(t), from
the length just after impact, b+

1 , to the terminal value, b+Δb.
We consider a time-dependent 5-order function to smoothly
interpolate the values, and update the coefficients at every
impact. The telescopic-leg length of the swing leg, b2, and
the relative hip angle, θH , are also controlled to follow their
desired trajectories, b2d(t) and θHd(t), in the same manner
as b1. This will result in that, after the second impact, b1

is controlled from b − Δb to b + Δb, b2 is controlled from
b + Δb to b − Δb, and θH is controlled from −α to α by
following their smooth desired trajectories. The telescopic-
legged rimless wheel must start with a small initial velocity
to fall down [6], whereas a biped robot can start the walking
from a static standing posture only by creating the first
impact posture because this results in shifting the CoM
forward.

Fig. 4 shows the simulation results of dynamic walking
from a static standing posture where Δb = 0.05 [m]. We
can see that a stable 1-period gait is generated. Fig. 5 shows
the stick diagram for one cycle. The system parameters
were chosen as listed in Table I. The desired settling time
for shortening the swing-leg length, T 2

set, were chosen as a
shorter value than others to guarantee the foot clearance.

The most remarkable result is the high walking speed. In
this case, the walking speed converged to 1.31 [m/s]. It is
reported that the average walking speed of adult humans is 82
[m/min] (= 1.367 [m/s]) in [8]. We can find that the walking
speed of the generated gait approaches to that of humans.
Compared to the results of virtual passive dynamic walking
and energy tracking control [5][7], the obtained walking
speed is found to be remarkably fast. Although we cannot
avoid the deterioration of energy-efficiency, the proposed
approach enables the robot to generate a remarkably high-
speed gait that the previous methods could not achieve. Note
also that the gait generation does not depend on the effect
of semicircular feet [9][10].

From Fig. 4(d), we can see that sufficiently large ground
reaction force is generated during stance phases compared
to the case of the telescopic-legged rimless wheel. This is
because the lower part of the leg is heavy.

From Fig. 4(e), we can see that negative input power
occurs during posterior half of cycle. This is caused by the
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Fig. 4. Simulation results of dynamic walking from standing posture where
Δb = 0.05 [m]

tracking control to the time-dependent desired trajectories.
As mentioned later, the gait generation becomes impossible
as Δb decreases more. In this case, the robot must utilize
the ankle-joint actuation or it cannot obtain sufficient driving
force to overcome the potential barrier.

B. Efficiency Analysis Considering Ankle-joint Torque

In the case of the telescopic-legged rimless wheel, re-
markably high-speed level gaits near-running were generated
[6]. In return for it, however, the motion was too rapid to
satisfy the desired settling-time condition for the telescopic-
leg actuation. As a candidate of the solution to this problem,
a brake effect by the ankle-joint actuation can be considered.
By driving the stance leg backward, we can extend the time
margin, i.e., the step period.

TABLE I

PHYSICAL AND CONTROL PARAMETERS OF BIPED WALKING SYSTEM

mH 10.0 kg
m 5.0 kg
a 0.50 m
b 0.50 m

α 0.60 rad
T 1
set 0.40 s

T 2
set 0.30 s

T H
set 0.40 s

Fig. 5. Stick diagram for steady gait where Δb = 0.05 [m]

θ1

uA
k

Fig. 6. Foot mechanism with elastic element

In this section, we consider the foot mechanism with an
elastic element as shown in Fig. 6, and apply its effect as the
ankle-joint torque to the robot. We assume that the elastic
element becomes natural length when θ1 = 0, and the ankle-
joint torque, uA, is then given by

uA = −kθ1, (29)

where k [N·m] is a positive constant which stands for
the elastic coefficient. The ankle-joint torque vector then
becomes

SAuA =
[

0 0 1 0 0 0 0 0
]T

uA, (30)

and we add this to the right-hand side of Eq. (2) to calculate
λ. Also note that h(q, q̇) in Eq. (26) must be replaced with
h(q, q̇) − SAuA to calculate B(q, q̇).

Fig. 7 shows the gait descriptors with respect to Δb
changing it by 0.005 [m]. We plotted the results, however,
only in the case the generated gait was 1-period stable. The
elastic coefficient, k, was chosen as 0.0, 5.0, 10.0, 15.0 and
20.0 [N·m].

From Fig. 7(a), we can see that the step period mono-
tonically decreases with the increase of Δb in all cases.
In addition, enough settling-time margin is created when k
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Fig. 7. Gait descriptors with respect to Δb for five values of k

is large. The maximum desired settling time is chosen as
T 1

set = T H
set = 0.40 [s], and the step period must be longer

than it. In all cases, this condition becomes impossible to
be met as the impact posture is asymmetrized. When Δb
is large, the larger k becomes, the longer the settling-time
margin becomes by the brake effect of uA. When Δb is
small (Δb ≤ 0.02 [m]), however, this tendency reverses. In
addition, stable gaits are generated even if Δb = 0.01 [m]
where k = 10.0, 15.0, and 20.0. This is because uA becomes
positive during the first phase of cycle or when θ1 is negative
and it helps to overcome the potential barrier.

From Fig. 7(b), we can see that the walking speed mono-
tonically increases with the increase of Δb in all cases. The
step length is identical to the horizontal distance the robot
travels, ΔXg [m], and it satisfies

ΔX2
g = (a + b + Δb)2 + (a + b − Δb)2

−2(a + b + Δb)(a + b − Δb) cosα, (31)
∂ΔX2

g

∂Δb
= 4 (1 + cosα) Δb. (32)

Then we can find that it monotonically increases with respect
to Δb. Since the walking speed is calculated as ΔXg/T
[m/s], we can conclude that the walking speed increases
by the synergistic effect of the increment of ΔXg and
the decrement of step period. The increasing tendency of
ΔXg is less than that of Δb, however, the walking speed

fundamentally changes inversely proportional to the step
period.

From Fig. 7(c), we can see that the specific resistance (SR)
monotonically increases with the increase of Δb in all cases.
It is natural that the consumed energy increases with respect
to the leg extension and its control speed, and this result
implies that the increasing tendency of the consumed energy
(average input power) is more than that of the walking speed.
As a candidate of solution to improve the energy-efficiency,
extension of the desired settling-time in accordance with the
step period extended by the brake effect of uA. We would
like to leave the detailed analysis for another opportunity.

Note that we did not take uA into account to calculate the
SR because it is not an input torque but an elastic force. The
average input power is thus defined as

p =
1
T

∫ T−

0+

(∣∣∣ḃ1u1

∣∣∣ +
∣∣∣ḃ2u2

∣∣∣ +
∣∣∣θ̇HuH

∣∣∣) dt. (33)

Fig. 7(e) plots θ1 and Xg just after impact. We plotted the
analysis results where k = 20.0 only because the impact
posture is uniquely determined according to Δb regardless
of k. In all cases, the values of X+

g are negative, that is, the
generated impact postures cannot guarantee to overcome the
potential barrier. Also the values of θ+

1 are always negative.
This implies that the hip position does not shift anterior to
the forefoot point at impact. Let’s consider these results from
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the angular momentum point of view. Let L [kg·m2/s] be the
angular momentum around the foot point, its time-derivative
then satisfies

L̇ = uA + MgXg, (34)

where M [kg] is the robot’s total mass. The angular momen-
tum draws a curve convex downward with respect to time in
the presence of potential barrier [11]. If the robot achieves
the sufficient condition for overcoming the potential barrier,
X+

g ≥ 0, however, L̇ becomes always positive and L then
monotonically increases. The analysis results imply that a
dynamic gait achieving X+

g ≥ 0 or L̇ ≥ 0 is extremely high-
speed and is hard to be realized. In other words, achieving
X+

g < 0 or creating the phase with L̇ < 0 prevents the
excessive forward acceleration for generating a stable gait.

Let RZ [N] be the vertical ground reaction force, then the
X-position of ZMP of the biped model is given by

Xzmp =
kθ1

RZ
. (35)

Fig. 7(f) plots its maximum values. We omitted the result
where k = 0.0 [N·m] because the value is always kept
zero. We can see that the values monotonically increase
with respect to Δb and there is a significant change in the
increasing tendency of the maximum ZMP around Δb =
0.055 [m] in all cases. Fig. 8 shows the steady ZMP pattern
with respect to time for two Δb where k = 20.0. In the
case of Δb = 0.040 [m], there is a change or indifferentiable
point in the ZMP motion just prior to impact. This is because
the telescopic-leg actuation is completed at this instant (the
desired settling time, t = Tset1), and the robot begins to fall
down as a 1-dof rigid body. As a result, the peak just prior to
the settling time yields the maximum value of ZMP. Whereas
in the case of Δb = 0.070 [m], there is little time-margin
and the heel-strike occurs just after the settling time, and the
peak during the control phases yields the maximum ZMP. In
each case, the properties that the ZMP moves from heel to
toe, and that the ZMP remains within the area anterior to the
ankle joint during most part of cycle are the same and are
similar to human walking.

In addition, note that the forefoot must be longer than
30 [cm] where k = 20.0 [N·m] as shown in Fig. 7 (f).
In humans, as shown in Fig. 9, the heel would rise up or
the motion of forefoot weight-bearing [8] would start in this
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Fig. 8. Time evolutions of Xzmp for two values of Δb
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Fig. 9. Foot flat weight-bearing (a) and forefoot weight-bearing (b)

case. In the future, we should investigate the gait properties
and perform numerical simulations taking forefoot weight-
bearing in to account.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have extended the gait generation method
based on asymmetric impact posture to a planar telescopic-
legged biped with feet, and conducted parameter study taking
the ankle-joint actuation into account. We also discussed the
role of asymmetric shape of human foot from the viewpoint
of the ankle brake effect. The simulation results showed that
the ankle-joint torque as a brake is effective to generate a
stable gait in terms of extending the time margin, and the
toe-side must be longer than heel-side to cover the ZMP.

Another way to create an impact posture tilting forward
is bending the knee joints. Now we are examining the effect
using various walking models and the results will be reported
in our future paper. Utilizing the upper body is also an
interesting approach and is left as a future work.
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