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Abstract—This paper proposes a method for detecting 

vehicles in urban traffic. The proposed method extracts vehicle 

candidates using AdaBoost. The candidate extraction process 

was speeded up further, exploiting inverse perspective 

transform matrix. Then the vehicle candidates were verified by 

the existence of vertical and horizontal edges. The detected 

vehicle regions were corrected by the vertical edges and shadow. 

Our algorithm showed the detection rate of 90.77% in urban 

traffic under normal lighting condition. The proposed algorithm 

can also detect vehicles in heavy rain. Our algorithm takes 

37.13ms on average to detect vehicles in 320 by 240 images on a 

laptop computer (Intel ®  CoreTM2 T7200, 2.00GHz, 1.00GB 

RAM). 

I. INTRODUCTION 

EHICLE detection is a key technology for autonomous 

vehicle systems and driver assistance systems. In 

autonomous vehicles, vehicle detection systems can help the 

vehicles avoid collision with other vehicles. In driver 

assistance systems, vehicle detection systems can provide 

drivers with collision warning to help drivers drive safely. 

Many algorithms for vehicle detection have been proposed 

so far and the algorithms exploited various features of 

vehicles. Vehicle detection systems have high computational 

requirements as they have to process the input images at 

real-time to take actions for avoiding collisions. The majority 

of methods have two basic steps instead of searching the 

whole images to locate potential vehicles. The first step is 

hypothesis generation (HG) in which the location of possible 

vehicles in an image are hypothesized. The second step is 

hypothesis verification (HV) in which tests are performed to 

verify the presence of vehicles in an image [1]. 

Various HG methods have been proposed. Shadows 

underneath vehicles are one of widely used hypothesis [2], [3]. 

Another hypothesis of presence of vehicle is vertical and 

horizontal edges. Vehicles have strong vertical edges on the 

left and the right sides, and strong horizontal edges at the 

bottom of vehicles [4], [5]. 

In HV stage, AdaBoost [6] is widely used as an 

appearance-based verification method recently. Ayoub et al. 

[7] extracted vehicle candidates based on the gradient of 

shadow and verified the candidates using AdaBoost. Song et 

al. [8] extracted vehicle candidates using edge-based method. 
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Then they also verified the candidates by AdaBoost. This 

algorithm assumed that strong horizontal edges of shadows 

underneath vehicles are tire-road contacts. However the shape, 

and the intensity of shadow are highly sensitive to lighting 

and weather conditions, and those assumptions do not always 

hold. 

To detect vehicles in various environments, candidate 

extraction process should be performed based on the 

appearance of vehicles.  Sun et al. used Gabor filters to 

extract features of vehicles [9]. Han et al. extracted features 

of vehicles using histograms of oriented gradients (HoG) [10]. 

Then the features were classified by support vector machines 

(SVMs). However, those methods are not fast enough to run 

in real-time. 

In this paper, we propose a new method for detecting front 

vehicles in urban traffic. In HG step, we extracted vehicle 

candidates using AdaBoost. The candidate extraction process 

was speeded up further by exploiting inverse perspective 

transform (IPT) matrix. In HV step, the candidates were 

verified by the existence of vertical and horizontal edges for 

more accurate detection results. The detected vehicle regions 

were corrected by shadow and edges. The proposed method 

extracted vehicle candidates based on the appearance of 

vehicles. Then the extracted candidates were verified by weak 

hypotheses, because the candidates extracted by our method 

were much more correct than other candidate extraction 

method. Our method can detect vehicles in various 

environments including rainy day. 

Section II describes the proposed algorithm in detail. In 

section III, the results of the proposed algorithm, detection 

rate and false detection rates are presented. Analysis of 

vehicle detection in rainy day is also presented in section III. 

Section IV presents the conclusion.  

II. VEHICLE DETECTION 

A. Camera Installation and Calibration 

Our objective was to detect vehicles that are situated in 

front of the ego-vehicle. Therefore, we installed a camera on 

the front windshield of our experimental vehicle (Fig. 1). 
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Then we computed an IPT matrix which describes the 

relation between the image coordinate and the real world 

coordinate under the assumption that vehicles are on flat road. 

First, we specified markers to be used in the computation and 

measured the real-world coordinates  ,x y  of the markers in 

meter. In this step, we set the origin to be the front-center of 

the experimental vehicle. Second, we specified the image 

coordinates  ,u v corresponding to the real-world 

coordinates of the markers (Fig. 2).  

 

Then the relation between the real-world coordinate  ,x y

and the image coordinate  ,u v  can be expressed as: 
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We can compute the elements of the 3 by 3 IPT matrix, 

using least squares method. Mathematically, the computation 

requires only four matches of image and world coordinates. 

However, we need at least six matching points and the 

matching points should be widely spreaded over the whole 

area of interest. If the matching points are concentrated in a 

small area, the resulting IPT matrix would be over-fitted to 

the small area and would fail to correctly describe the relation 

for the entire area of interest. We computed the IPT matrix 

using 14 correspondences, and estimated the real-world 

coordinates from image coordinates using expression (1) with 

the mean square error of 0.068 m (Fig. 3). 

 

B. AdaBoost Training 

We trained AdaBoost [6] vehicle detector using 24 by 24 

training images. The vehicle image set includes rear views of 

various kinds of vehicles: sedan, bus, truck, and SUV (Fig. 

4a). However, we did not considered detection of special 

purpose vehicles in this research. When we were cropping 

vehicle images, the bottoms of the bounding boxes were 

aligned at the position where road and rear tires contact. The 

left and the right sides of the bounding boxes were aligned at 

the left and the right sides of vehicles, respectively.  

 
Negative image samples include surface of road, traffic 

signs on road, parts of vehicles, and many other objects that 

can be seen on road (Fig. 4b). We cropped 671 vehicle image 

samples and 24,593 non-vehicle image samples. We trained 

AdaBoost vehicle detector using 15 haar-like features: 

original features [6] plus extended features [11] (Fig. 5) . 

 
The resulting cascaded AdaBoost classifier has 22 stages 

with 687 weak classifiers. 

C. Candidate Extraction 

We extracted vehicle candidates that are situated at the 

distance between 6m and 50m from the experimental vehicle, 

because of the limited sight of the camera. Vehicles situated 

beyond 50m are shown too small to be detected by AdaBoost 

in the input images. The vehicles situated at close distance are 

so large that they are not completely shown in the input 

image. 

     
  (a) 

   
(b) 

       
(c) 

Fig. 5 Haar-like features used to train AdaBoost (a) Original 

haar-like features (b) upright extended features (c) 45° rotated 

features 

 
(a) 

 
(b) 

Fig. 4 Examples of training images (a) vehicle images, (b) non-vehicle 

images 

 

Fig. 3 The result of calibration. ⅹ: real world coordinates, +: 

estimated real world coordinates 
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Fig. 2 Markers used in the camera calibration, X: markers used in the 

calibration. 
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We computed the image coordinate 50mv  corresponding to 

50m in the real world coordinate as: 
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where PT  is perspective transform matrix and is inverse of 

IPT.  Likewise, the image coordinate 6mv
 
corresponding to 

6m in the real world coordinate can be computed as: 
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Then we scanned the input images with sub-window whose 

bottom position is between 
6mv and 

50mv  to locate vehicle 

candidates using AdaBoost. This scanning process is 

time-consuming, because AdaBoost searches the entire area 

of interest with sub-window of various sizes for vehicles. We 

could speeded up this process, exploiting the facts: the width 

of vehicles of our interest is ranged from 1.5m to 2.7m; 

vehicles situated at further distance are located at higher 

position and their size is smaller than vehicles that are 

situated at closer distance in the images. We can compute the 

range of vehicle width  min max,W W  at each image coordinate 

 ,u v  using IPT matrix (Table  I). 
 

 
Once the range of vehicle width is computed, we do not 

need to compute the range again, unless camera position is 

changed, because the range depends only on IPT matrix.  

Then our modified scanning scheme only classifies the 

sub-windows whose left-bottom position is  ,u v  and width 

W  is between  min ,W u v  and  max ,W u v
 
(Table II). 

The size of vehicles widely varies in the images depending 

on distance. Therefore we set the parameters for sub-window 

scale: min 1S  , max 10S  , 1.2stepS  . The vertical and 

horizontal scanning steps were tuned to be 2stepu   and 

1stepv  . The initial sub-window size was 24. 

 
This modified scanning scheme reduced the entire 

processing time by factor of 6 in our experiments. This 

process also performs filtering the extracted vehicle 

candidates based on their width. 

D. Candidate Verification 

Even though AdaBoost detected vehicle candidates based 

on their appearances and the extracted candidates were 

filtered based on their width in the candidate extraction step, 

it is still probable that non-vehicle images were detected as 

vehicles. To reduce the false positive detections, we verified 

the extracted vehicle candidates based on the facts that 

vehicles have strong vertical edges on the left and right sides; 

vehicles have strong horizontal edges at the bottom. 

We detected edges using the 3 by 3 Sobel mask as: 

   
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
                                                       (4) 

where xS  and yS  denote the Sobel mask, I  represents the 

grayscale input image and * denotes convolution. We 

detected only vertical and horizontal edges and rejected 

diagonal edges that vehicles do not have. The condition for 

edges to be vertical was: 

1

3

y

x

G
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                                                                              (5) 

The condition for edges to be horizontal was: 

3
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x

G
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                                                                               (6) 

We computed the orientations of edge pixels as the 

absolute values of the slopes, because this method is much 

faster than arc tangent function.  

The edges show that vehicles have strong vertical edges on 

both the left and the right sides (Fig. 6b) and have strong 

horizontal edges in many parts of vehicles (Fig. 6c): bumper, 

rear windshield, and shadow. Therefore the existence of such 

edges can be important feature of vehicles. 

In urban area, however, many buildings exist and they have 

strong vertical and horizontal edges. 

Table II. 

Modified scanning scheme 

for (
minscale S ; 

maxscale S ;  stepscale S  ) 

step step stepv S v   

step step stepu S u 
 

stepW S W   

for (
50mv v ; 

6mv v ; 
stepv v  ) 

for ( 0u  ; 
imageu W ; 

stepu u  ) 

if     min max, ,W u v W W u v   

classify the sub-window 

else 

skip 

 

Table I. 

Algorithm for computing the range of sub-window size 

• for  ,u v  

Compute the real world coordinate  ,Lx y  of  ,u v  

1

Lz x u

z y IPT v

z

   
   

 
   
      

 

Compute the minimum and maximum right position 
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Compute the minimum and maximum window width 

   min min max max, ;   ,W u v u u W u v u u     
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Those edges can cause false detections to be verified as 

positive detections. To avoid this, we searched the longest 

vertical edges in lower regions of the vehicle candidates (Fig. 

7a). The regions were centered at the left and the right side of 

the detected regions. The width and heights were proportional 

to the width of the detected window size. In our experiments, 

1 0.5f   and 
2 0.25f   were used. 

We also searched the longest horizontal edges in the lower 

region of each vehicle candidate (Fig. 7b). The size of the 

region was also proportional to the size of the vehicle 

candidates. In our experiments 
3 0.5f   was used. 

 
Vehicles that are situated at close distance may have 

discontinuous edge pixels, because of their detailed texture 

and distortion caused by the camera. Therefore we allowed 

the longest edges to have small number of discontinuous edge 

pixels. In our experiments, the number of maximum 

discontinuous edge pixels was 5.  

We verified candidates that have edges longer than 

thresholds as vehicles. The threshold for the vertical edges on 

the left and the right sides was determined to be verticalW T . 

Likewise, the threshold length of horizontal edges was 

determined to be horizontalW T . In our experiments we used 

the parameters: 0.25verticalT   and 0.5horizontalT  . 

E. Clustering Detected Regions 

AdaBoost detects many regions around vehicles (Fig. 8a) 

and the regions should be clustered to represent one region for 

each vehicle (Fig. 8b).  

 
Let one detected region have width 

1W  and be centered at 

 1 1,x y ; another detected region have width 
2W  and be 

centered at  2 2,x y  (Fig. 9).  

 
Then the criterions for the two detected regions to belong 

to the same vehicle are the distance (4) and the size (5). 

 

 

1 2 1 2

1 2 1 2

overlap

overlap

x x W W f

y y W W f

   

   
                                            (4) 

 2large size small large sizeW f W W f                                 (5) 

where largeW  is the width of the larger region; 
smallW  is the 

width of the smaller region between 
1W  and 

2W . In our 

experiment, 0.5overlapf   and 0.5sizef   were used. 

F. Position Correction 

The detected vehicles can have incorrect vehicle regions 

(Fig. 10a). Driver assistance systems and autonomous vehicle 

systems require exact regions of vehicles to avoid collision. 

We can also estimate approximated distance from the 

ego-vehicle to the detected vehicles using IPT matrix if we 

know the exact bottom positions of detected vehicles. The 

detected region can be corrected using the edges and the 

shadows of the detected vehicles (Fig. 10b). 

 
The left and the right positions of the detected vehicles 

were corrected to be the position at which we found the 

longest vertical edges in the verification step. The bottom 

position of the detected vehicles can be corrected using 

shadows underneath the vehicles. Even though, the shape and 

the intensity of shadow vary depending on both lighting and 

 
(a)                                             (b) 

Fig. 10 Position correction (a) incorrect vehicle region (b) corrected 

vehicle region 

 
Fig. 9 The parameters that used in clustering 

 
(a)                                                    (b) 

Fig. 8 Detected vehicles (a) detected region (b) average of detected region 

 
(a)                                                      (b) 

Fig. 7 The region in which edges were searched to verify vehicle 

candidates, dotted box : a detected region, solid box : regions in which 

edges were searched 

 
(a) 

 
(b)                                                   (c) 

Fig. 6 Detected vertical and horizontal edges (a) original image (b) 

vertical edges (c) horizontal edges 
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surface conditions, we can estimate the bottom position form 

the shadow. First, we performed histogram equalization (Fig. 

11b) to reduce the effects of lighting condition. Second, we 

performed binarization to obtain dark regions of images 

which include shadows of vehicles (Fig. 11c). Third, we 

performed filtering of shadow based on the width (Fig. 11d).  

 
The filtering process scans the binary image in horizontal 

direction, searching the start position and the end position of 

dark pixels. If the width is not shorter than the minimum 

width of vehicles at the position, the dark pixels are marked as 

shadow (Table III). 

Then the bottom position  of a detected vehicle is estimated 

to be the bottom position of the filtered shadow. We have no 

clue that indicates whether the detected region is either lower 

or higher than the actual vehicle region. Therefore we 

scanned the bottom of the filtered shadow around the bottom 

position of the detected vehicle region. The range in which 

shadow is searched is determined to be proportional to the 

height of the detected vehicle. The bottom position is 

corrected if the estimated bottom position exists in the search 

range. 

 

III. RESULTS 

Our algorithm was tested on a laptop computer (Intel ®  

Core
TM

2 T7200, 2.00GHz, 1.00GB RAM). We detected 

vehicles in 320 by 240 input images obtained from a CCD 

camera (Point Grey FL2-03S2C) mounted on the front 

windshield of the experimental vehicle. Under the test 

condition, our algorithm took 37.13ms on average to process 

one frame. 

During urban driving, drivers should pay attention to the 

three closest vehicles in the left, the right and the ego lanes, 

because those vehicles are probable to collide with the 

ego-vehicle if drivers are careless. Therefore we counted the 

detections of those vehicles and all false detections in the 

three lanes under various lighting conditions (Table IV) in 

urban traffic (Fig. 12).  

Vehicle detection rate was computed as the ratio of the 

number of positive detections to the number of vehicles (7).  

# of positive detections

# of vehicles
                            (7)  

False detection rate was computed as the ratio of the number 

of false detections to the number of detections (8). Detections 

of non-vehicle regions and parts of vehicles in whole region 

of interest were considered as false detections. 

# of  false detections

# of positive detections +# of false detections
                   (8) 

 
The lighting condition at noon (Fig. 12c) was the best for 

our algorithm. In morning, shadows of buildings and trees are 

lying on road and vehicles (Fig. 12b), causing lighting 

conditions to be frequently changed. Therefore the vehicle 

detection rate and false detection rate was the worst in 

morning. Under the lighting conditions in dawn (Fig. 12a) 

and afternoon (Fig.12d), vehicles are shown less clearly in the 

images, because the input images are shown darker than they 

are shown at noon. Sometimes, backlight makes the situation 

worse. Therefore the detection rates were worse than the 

detection rate at noon. 

We can also see that some oncoming vehicles were 

detected even though front views of vehicles are not included 

in the training set because the front and rear views of some 

vehicles are very similar (Fig. 12abc). 

The average speed of the experiment vehicle was about 

60 km/h and frame rate was 20 frames/sec. During the 

experiments, no motion-blurred image was taken even though 

the speed of the experiment vehicle was higher than 100 km/h 

because of high shutter speed of the camera (0.02ms). 

Therefore, there was no degradation of detection rate caused 

by motion blur. 

Though camera saturation occurred in the sky region (Fig. 

12), the saturation did not affect the detection rate because the 

region of our interest was road region in images. Vibration of 

experiment vehicle on float roads also did not degrade the 

detection rate. 

Table IV. 

Vehicle detection rates and false detection rates under various lighting 

conditions 

 Detection rate False detection rate 

Dawn 79.37 7.33 

Morning 70.83 16.78 

Noon 90.77 7.81 

Afternoon 85.57 8.42 

 

Table III. 

Shadow filtering algorithm 

• Histogram Equalization 

• Compute binary image B  

• Estimate shadow 

for v  

for u  

if  , 0B u v   and shadow false  

;   shadow truestart u   

else if   , 0B u v   and shadow true  

1;   shadow falseend u    

width end start   

if minwidth W  

 mark pixels between  ,start v and  ,end v as shadow 

 

 
(a)                                               (b) 

 
(c)                                               (d) 

Fig. 11 Shadow estimation (a) input image (b) histogram equalization  

(c) binarized image (d) estimated shadow 
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In rainy day, the shape and the intensity of shadow are 

shown differently compared to they are shown in sunny day 

because the appearances of vehicles are reflected on the wet 

road surface (Fig. 13). However, the proposed algorithm can 

detect vehicles in heavy rain, because our algorithm does not 

utilize shadow underneath vehicles in the detection. The 

proposed position correction method also works well on wet 

roads. 

 
However, there are two major factors that degrade the 

detection rate of our algorithm. One factor is raindrops on the 

front windshield, causing input images to be locally distorted. 

The cause of this problem is that raindrops on the front 

windshield are not immediately wiped out as they fell on the 

front windshield. If a vehicle is completely distorted (Fig. 

14a), our algorithm fails to detect the vehicle. In contrast, our 

algorithm can detect partially distorted vehicles (Fig. 14b). 

 

Another factor is occlusion by wipers. In case where 

after-image of wipers makes a vehicle shown darker, our 

algorithm could detect the vehicle (Fig. 14c). However 

wipers can interfere with the verification of a vehicle by 

horizontal edge, causing our algorithm to fail to detect the 

vehicle (Fig. 14d).  

These problems are inevitable in rainy day. Therefore the 

vehicle detection rate of our algorithm is degraded in rainy 

day. 

IV. CONCLUSION 

We detected front vehicles in the images that were obtained 

from a camera mounted on the front windshield. First, we 

computed IPT matrix which describes the relation between 

image coordinate and the real-world coordinate. Second, we 

extracted vehicle candidates using AdaBoost. This process 

was speeded up using IPT matrix. The extracted candidates 

were verified by the existence of vertical and horizontal edges. 

Then the detected regions were clustered based on the 

distance and the size to represent one region per vehicle. The 

vehicle regions were then corrected based on the edge and 

shadow. The proposed algorithm took average time of 

37.13ms per frame. Under normal lighting condition, the 

detection rate and false detection rate were 90.77% and 

7.81%, respectively. This detection performance can be 

improved if more images are added to the training image set. 

The proposed algorithm can also detect vehicles in rainy day. 

However, wipers and raindrops on front windshield of the 

experimental vehicle sometimes occluded or distorted vehicle 

images, causing degradation of the vehicle detection rate. 
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(a)                                            (b) 

 
(c)                                             (d) 

Fig. 14 Major factors that degrade the vehicle detection rate in rainy day 
(a, b) distortion caused by raindrops on the front windshield (c, d) 

occlusion by wipers 

 
(a)                                              (b) 

Fig. 13 Vehicle detection in rainy day 

 
(a)                                                (b) 

 
(c)                                                (d) 

Fig. 12 Test conditions (a) dawn (b) morning (c) noon (d) afternoon 
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