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Abstract— This paper presents a nonlinear controller for
hovering flight and landing control on a moving platform for
a Vertical Take-off and Landing (VTOL) Unmanned Aerial
Vehicle (UAV) by exploiting the measurement of the average
optical flow. The VTOL vehicle is assumed to be equipped with
a minimum sensor suite (a camera and an IMU), manoeuvring
over a textured flat target plane. Two different tasks are
considered in this paper: the first one concerns the stability
of hovering flight and the second one concerns regulation of
automatic vertical landing on a moving platform using the
divergent optical flow as feedback information. Simulation
and experimental results performed on a quad-rotor UAV
demonstrate the performance of the proposed control strategy.

I. INTRODUCTION

Recent advances in technology and potential applications

have led to a growing interest in aerial robotic [25]. UAVs

turn out to be necessary for many indoor and outdoor

applications that jeopardize human or material safety such as

military or civilian inspection, hazardous material transporta-

tion, navigation through cluttered environments and close to

obstructions (obstacle avoidance, take-off and landing), etc.

A major issue in UAV control is the difficulty of landing the

vehicle on a moving platform such as a ship deck or a landing

pad, a field that has been investigated using a prediction or a

model of the vertical motion of landing platform [16], [26],

a tether-guide [18] or a known target [22], [21]. The main

idea of the prior work consists in obtaining a knowledge of

the motion of the platform to perform a landing manoeuvre

that ensures the safety of the vehicle as well as possible

by providing a feed-forward compensation. An alternative

approach that stems from the insight into the behaviour of

flying insects and animals uses visual flow [23]. Since optical

flow provides relative velocity and proximity informations

with respect to obstacles [12], it is an ideal cue that can be

used to perform landing control strategies [23], [19] as well

as obstacle avoidance [2], [7], [4], terrain following [10],

[20], [6] or even visual servo control [14]. It is rare that

mobile obstacles are considered in such robotic applications

using optical flow but it is well known that insects show great

capabilities in achieving landing tasks on a moving object

such as, for example, a bee landing on a flower. Moreover,

the full vehicle dynamics analysis is rarely discussed. the
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flight regime of insects is highly damped due to their high

drag to mass ratios and the control strategies that have been

observed in the various biological studies do not generalise

to high-inertia, low-drag aerial vehicles.

In this paper, a control law for hovering flight and landing

manoeuvre on a moving platform of a UAV capable of

quasi stationary flight is proposed by focusing just on the

translational dynamics of the vehicle. A ‘high gain’ controller

is used to stabilise the orientation dynamics, an approach

classically known in aeronautics as guidance and control

(or hierarchical control) [3]. The image feature considered

is the average optical flow obtained from the measurement

of the optical flow of a textured target plane in the inertial

frame using additional information provided by an embedded

IMU for derotation of the flow. A non-linear PI-type con-

troller is designed for hovering flight while another nonlinear

controller, exploiting the vertical optical flow (similar to

the optical flow divergence) as feedback information, is

proposed for vertical landing on a moving platform with

bounded dynamics. Lyapunov analysis is used to prove semi-

global exponential stability and convergence of the closed-

loop system for the considered objectives. Experimental

results are obtained on a quad-rotor UAV capable of quasi-

stationary flight developed at CEA (French Atomic Energy

Commission). The proposed closed-loop control schemes

demonstrate efficiency and performance for the hovering

flight and vertical landing manoeuvre.

The body of the paper consists of five sections followed by a

conclusion. Section II presents the fundamental equations of

motion for an X4-flyer UAV. Section III describes the average

optical flow that is used and presents the control strategy

for hovering manoeuvre. Section IV presents the proposed

control strategy and the stability analysis adopted for the

vertical landing manoeuvre. Section V describes simulations

results and finally Section VI describes the experimental

results obtained on the quad-rotor vehicle.

II. UAV DYNAMIC MODEL AND TIME SCALE SEPARATION

The VTOL UAV is represented by a rigid body, of mass m
and of tensor of inertia I, with external forces due to gravity

and forces and torques applied by rotors. To describe the

motion of the UAV, two reference frames are introduced: an

inertial reference frame I associated with the vector basis

[e1, e2, e3] and a body-fixed frame B attached to the UAV

at the center of mass and associated with the vector basis

[eb
1, e

b
2, e

b
3]. The position and the linear velocity of the UAV in

I are respectively denoted ξ = (x, y, z)T and v = (ẋ, ẏ, ż)T .

The orientation of the UAV is given by the orientation matrix
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R ∈ SO(3) from B to I. Finally, let Ω = (Ω1,Ω2,Ω3)
T be

the angular velocity of the UAV defined in B.

A translational force F and a control torque Γ are applied

to the UAV. The translational force F combines thrust, lift,

drag and gravity components. For a miniature VTOL UAV

in quasi-stationary flight one can reasonably assume that

the aerodynamic forces are always in direction eb
3, since the

thrust force predominates over other components [15]. The

gravitational force can be separated from other forces and

the dynamics of the VTOL UAV can be written as:

ξ̇ = v (1)

mv̇ = −TRe3 + mge3 + ∆ (2)

Ṙ = RΩ×, (3)

IΩ̇ = −Ω × IΩ + Γ, (4)

In the above notation, g is the acceleration due to gravity,

and T a scalar input termed the thrust or heave, applied in

direction eb
3 = Re3 where e3 is the third-axis unit vector

(0, 0, 1). The term ∆ gathers all disturbances and unknown

dynamics. The matrix Ω× denotes the skew-symmetric ma-

trix associated to the vector product Ω×x := Ω × x for any

x.

The full vectorial term TRe3 will be considered as control

input for the translational dynamics (2). We will assign

its desired value u ≡ (TRe3)
d = T dRde3. Assuming

that actuator dynamics can be neglected, the value T d is

considered to be instantaneously reached by T . For the

orientation dynamics of (3)-(4), a high gain controller is used

to ensure that the orientation R of the UAV converges to the

desired orientation Rd. The resulting control problem is then

simplified to

ξ̇ = v, mv̇ = −u + mge3 + ∆ (5)

Thus, we consider only the control of the translational

dynamics (5) with a direct control input u. This common

approach is used in practice and may be justified theoretically

using singular perturbation theory [11].

III. STABILISATION OF THE HOVERING FLIGHT

In this section a control design ensuring hovering flight

over a static textured flat plane is proposed. The camera

is assumed to be attached to the center of mass so that

the focal point of the camera coincides with the origin of

the body-fixed frame. The control problem considered is

the stabilisation of the linear velocity about zero despite

unmodeled constant (or slowly time varying) dynamics by

exploiting the measurement of the average optical flow1.

Note that due to the rotational ego-motion of the camera,

the optical flow involves the angular velocity as well as the

linear velocity [12]. Let η ∈ I denote the unit normal to the

target plane. We define an inertial average optical flow from

1The optical flow can be computed using a range of algorithms
(correlation-based technique, features-based approaches, differential tech-
niques, etc) [1].

the integral of all observed optical flow around the direction

of observation η corrected for rotational angular velocity

w = −(RtΛ
−1RT

t )R

∫∫

W2

(ṗ + Ω × p) dp (6)

where ṗ is the derivative of an image point p observed by

a spherical camera, W2 is the aperture around η, Λ is a

diagonal matrix depending on the aperture and Rt is the

orientation matrix from a frame of reference with η in the z-

axis to the inertial frame I (see details in [9]). The orthogonal

distance of the camera to that target plane is denoted d =
−〈ξ, η〉. One has that

w =
v

d
+ noise (7)

In this section, A PI-type non-linear controller depending

only on the measurable variable w is proposed for the trans-

lational dynamics (5). The result is stated in the following

theorem.

Theorem 3.1: Assume that η is known and invariant and

∆ is a constant. Consider the dynamics (5) and assume that

the control input u is chosen as

u = kP w + kI

∫ t

0

wdτ + mge3, kP , kI > 0 (8)

Then, for any initial conditions d0 = d(0) > 0, the linear

velocity v converges asymptotically towards zero. More

precisely:

1) ḋ = −〈v, η〉 converges to 0 while guarantying that

d(t) = −〈ξ, η〉 > 0, ∀t,
2) the horizontal velocity v‖ = πηv converges to zero.

Proof:

Proof of part 1: Recall the dynamics of the vehicle (5)

and consider the component v⊥ = 〈v, η〉 in direction η, it

yields:

mv̇⊥ = −kP
v⊥

d
− kI

∫ t

0

v⊥

d
dτ + 〈∆, η〉 (9)

Note that v⊥ = −ḋ. Equation (9) can also be written as

follows:

md̈ = −kP
ḋ

d
− kI

∫ t

0

ḋ

d
dτ − 〈∆, η〉 (10)

= −kP
ḋ

d
− kI ln

(

d

d∞

)

(11)

where d∞ = d0e
−〈∆,η〉/kI . The control law is well defined

and smooth for d > 0. Define, for any initial conditions such

that d0 = d(0) > 0, the Lyapunov function candidate Lη by

Lη =
m

2d∞
ḋ2 + kI

[

d

d∞

(

ln

(

d

d∞

)

− 1

)

+ 1

]

≥ 0 (12)

Differentiating Lη and recalling equation (11), it yields

L̇η = −kP
ḋ2

dd∞
(13)

This implies that Lη < Lη(0) as long as d(t) > 0. Two

different cases may occur depending on the initial value of
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L: Lη(0) < kI and Lη(0) ≥ kI . From the expression of

the Lyapunov function (12), the first case (Lη(0) < kI )

implies that there exists ε > 0 such that d(t) > ε > 0, ∀t.
Consequently, d remains strictly positive and equation (11) is

well defined for all time. Application of LaSalle’s principle

shows that the invariant set is contained in the set defined

by L̇η = 0. This implies that ḋ ≡ 0 in the invariant set.

Recalling (11), it is straightforward to show that d converges

asymptotically to d∞.

For the second situation (Lη(0) ≥ kI ), we have to show

that d 6= 0 for all time. Assume that there exists a first time

t1 such that ḋ(t1) < 0 and 0 < d(t1) < d∞. If we show

that there exists a second time t2 > t1 such that ḋ(t2) = 0
and d(t2) > 0 then, Lη(t2) < kI and conditions of the first

case are verified. Therefore, d > 0 for all time t > t2 and

consequently d > 0 for all time t > 0. We proceed using

a proof by contradiction. Assume that for all time t > t1,

ḋ(t) < 0. This implies d(t) < d(t1) < d∞, ∀t > t1. Thus,

recalling equation (11), it follows that there exists ε > 0
such that d̈(t) > ε > 0, ∀t > t1. As a consequence, there

exists a time T > t1 such that d converges to 0 (d ≥ 0)

when t tends to T . Recalling equation (11), it yields:

d̈ > −kP

m

ḋ

d
> 0, ∀t > t1 (14)

Integrating this equation, it follows:

ḋ − ḋ(t1) > −kP

m
ln

(

d

d(t1)

)

, ∀t > t1 (15)

Since d converges to 0, ḋ converges to +∞. This contradicts

the fact that ḋ < 0,∀t > t1 and consequently d(t) > 0,∀t
and converges to d∞.

Proof of part 2: Let v‖ be the planar velocity πηv ∈ I.

Recall the control law in equation (8) in the plane normal to

η:

u‖ = πηu = kP
v‖

d
+ kI

∫ t

0

v‖

d
dτ + mgπηe3 (16)

Recall the dynamics of the component of (5) in this plane:

mv̇‖ = −kP
v‖

d
− kI

∫ t

0

v‖

d
dτ + ∆‖ (17)

where ∆‖ = πη∆. Let δ1 be the following variable:

δ1 =

∫ t

0

v‖

d
dτ − ∆‖

kI
(18)

Differentiating δ1, it yields:

δ̇1 =
v‖

d
(19)

Consider the following Lyapunov function candidate:

Lπη
= kI

‖δ1‖2

2
+ m

‖δ2‖2

2
(20)

where δ2 = v‖/
√

d. Differentiating Lπη
and recalling equa-

tion (17), one obtains:

L̇πη
= −‖δ2‖2

(

kP + mḋ/2
)

d
(21)

Using the fact that (d, ḋ) converges to (d∞, 0), one can insure

that there exists a time T and ε > 0 such that

(kP + mḋ/2)

d
> ε > 0, ∀t > T

This implies that Lπη
(t) < Lπη

(T ), ∀t > T . Application of

LaSalle’s principle shows that the invariant set is contained

in the set defined by L̇πη
= 0. This implies that δ2 ≡ 0 in

the invariant set and therefore v‖ converges asymptotically

to 0. Moreover, recalling (17), it is straightforward to show

that δ1 converges to 0.

Finally, using the fact that v = v⊥η + v‖, it follows that

v converges to zero.

IV. LANDING CONTROL

In this section we consider the landing manoeuvre of the

aerial robot on a horizontal plane moving vertically. The

primary goal is to address the question of the vertical landing

on a moving platform (target) with unknown dynamics. The

most important application concerns landing on a deck of a

ship in high seas and tough weather [16], [18], [21], [22]. A

common model of the vertical motion zG of the platform as

the motion of the ship involved by the sea waves is [16]:

zG =

n
∑

i=1

ai cos (ωit + φi) (22)

where ai, ωi, φi are unknown constants. The classical

approach estimates the parameters of motion and uses these

to add a feed-forward compensation term in the control input.

In this paper, we consider a more general vertical motion

zG of the platform with respect to the inertial frame I. We

assume that zG is a smooth function of class C2 (zG and żG

are continuous functions of time t) such that z̈G is bounded

by a known value.

We also assume that the target plane belongs to the plane

x-y of the inertial frame so that d ≡ h is the height of the

vehicle with respect to the moving platform. Thus, unlike

the previous section (III), the relative velocity of the vehicle

with respect to the target is (v − żGe3). Consequently, it is

straightforward to verify that (7) becomes (see [8] and [9]):

w =
v − żGe3

h
+ noise

and,

wz = 〈w, e3〉 = − ḣ

h
+ noise (23)

Define

wd = (0, 0, ω∗)T , ω∗ > 0,

as the desired average optical flow. Note that the vertical

component of the inertial average optical flow acts anal-

ogously to optical flow divergence. It is straightforward

to show that when w = wd one has (vx, vy) = (0, 0)
and vz = h0ω

∗ exp(−ω∗t) along with h = h0 exp(−ω∗t)
insuring a smooth vertical landing.

Therefore, previous control law (8) for the x-y dynamics

may be used to stabilise the flight over the landing pad. We
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still need to provide the control scheme for the remaining

degree of freedom (h ≡ |z− zG|). In particular, we consider

the desired set point, ω∗, for the flow divergence (the flow

in the normal direction to the target plane) and look for

a control law that achieves regulation of (ḣ/h + ω∗). The

controller is a direct application of the controller proposed

in [17], along with a complete and more rigorous proof of the

exponential convergence and stability of the couple (h, ḣ) to

(0, 0) despite unknown dynamics and unknown terms:

mv̇ = −u + mge3 + ∆(t) (24)

Theorem 4.1: Consider the dynamics of the vertical com-

ponent of (24) and assume that the vertical component uz of

the thrust vector of u is the control input. Choose uz as

uz = mk(wz − ω∗) + mg (25)

Assume that zG is at least C2 and that z̈G and ∆ are bounded.

Choose the control gain k such that:

k >
|∆z|max + m|z̈G|max

mω∗
(26)

Then, for all initial conditions such that h0 > 0 (h0 ≡
|z(0) − zG(0)|), h(t) > 0 remains positive and converges

exponentially to zero.

Proof: Since the dynamics of the considered system

are decoupled, recall the dynamics of the third component

of (24):

mv̇z = −uz + mg + ∆z (27)

It follows that the height dynamics can be written:

mḧ = mk(wz − ω∗) − ∆z + mz̈G (28)

= −mk

(

ḣ

h
+ α(t)

)

(29)

where,

α(t) =

(

ω∗ +
∆z

mk
− z̈G

k

)

Recalling condition (26), it is straightforward to show that

α(t) is a bounded positive function (α(t) > 0, ∀t > 0).

The dynamics (29) are well defined as long as h(t) > 0,

hence there exists a first time Tmax, possibly infinite, such

that (h, ḣ) is well defined on [0, Tmax). Define the following

virtual state on [0, Tmax):

ζ(t) = h(t) exp

(

ḣ

k

)

(30)

Differentiating ζ and recalling equations (29), it yields

ζ̇ = −α(t)ζ (31)

Since ζ0 = h0, it follows that on [0, Tmax)

h0 exp (−αmaxt) < ζ(t) < h0 exp (−αmint)

It remains to show that ḣ is bounded to ensure, using (30),

that there exist ǫ1, ǫ2 > 0 such that

ǫ1h0 exp (− |α|
max

t) < h(t) < ǫ2h0 exp (− |α|
min

t)

for all time t ∈ [0, Tmax). We will show that Tmax = ∞
using continuity. This will ensure that (h, ḣ) is well defined

on [0,∞), and h(t) converges exponentially to 0.

To do this, we first prove that the sign of ḣ(t) does not

change more than once. Two situations may occur:

• ḣ(0) ≥ 0: to show that there exists a time T on [0, Tmax)
such that ḣ(T ) < 0, assume the converse; that is, ḣ ≥ 0
for all time t. Thus, by exploiting (30),

ζ(t) ≥ h0

Since ζ is exponentially decreasing, it follows that

ζ̇ < −αminζ. Therefore, there exists a time T such

that ζ(T ) < h0. This contradicts the assumption.

• ḣ(0) < 0: to show that ḣ < 0 for all time, assume the

converse; that is, there exists T such that ḣ(T ) = 0 and

ḣ(t) < 0, ∀t < T . Since ḣ is continuous and recalling

(29), it follows that there exists δ > 0 and ǫ > 0 such

that ḧ(t) < −ǫ, ∀t ∈ [T − δ, T ]. Recalling (30), it

yields:

ζ(t) < h(t), ∀t ∈ [T − δ, T ]

Moreover, since ḣ(T ) = 0,

ζ(T ) = h(T )

Hence the contradiction.

To show that ḣ is lower bounded, let J be the following

storage function:

J =
1

2
ḣ2 (32)

Differentiating J and recalling equations (29), it yields:

J̇ = −k
ḣ

h

(

ḣ + αh
)

(33)

It follows that J is negative as long as |ḣ| > αh. Since there

exists a time T such that ḣ < 0, ∀t > T , it follows that h >
0 is upper bounded. Consequently, ḣ is bounded. Therefore,

since ζ is exponentially decreasing, one can ensure that h
remains positive and exponentially decreasing on [T, Tmax).

Now, we prove that Tmax = ∞ and thus that ζ is well

defined on [0,∞). If Tmax 6= ∞, there exists a positive

number δ such that h(t) > 0 (by continuity) and such that

ḣ is unbounded on [Tmax, Tmax + δ). This contradicts the

above discussion. It follows that h converges exponentially

to 0. Moreover, using (32) and (33) with direct application

of the Input-to-State-Stable (ISS) argument, it follows that ḣ
is exponentially stable.

Remark 4.2: Note that the stability of the control law (8)

used for the lateral dynamics can be proved in the case where

∆‖ is constant or slowly varying (∆̇‖(t) ≈ 0); the proof is

similar to the second part of the proof of Theorem 3.1 using

the fact that ḣ is bounded and converges to 0. △
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V. SIMULATIONS

In order to evaluate the efficiency of the proposed servo

control technique, a simulation of the vertical motion of

the idealised quadrotor dynamics (27) is presented. The

simulation considers only the vertical landing problem of

the vehicle on a moving platform. The mass of the vehicle is

chosen m = 0.85kg; it is the mass identified for the physical

system used for experimentation. The control gain is set to

k = 10, the error ∆z is chosen ∆z = −0.9. The vertical

motion of the platform is chosen as follows:

zG = aG sin (2πfGt) with aG = 0.1m and fG = 0.3s−1

The desired set point ω∗ is set to 0.5s−1. Using the above

values of the different parameters involved in the vertical

motion (29), it is straightforward to show that condition (26)

is verified.

Figures 1 show the closed-loop trajectory of the vertical

motion of the vehicle. We verify that the vertical optical flow

wz remains positive for all time even if it does not reach ω∗

and the height h = −z + zG converges exponentially to

0 despite the fact that the vertical motion of the platform

is unknown. Note that the trajectory in red on the figure

corresponds to the desired trajectory.
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Fig. 1: Simulation of vertical landing using controller (25)

VI. EXPERIMENTAL RESULTS

In this section, experimental results of the above algo-

rithms designed for the full dynamics of the system are

presented. The UAV used for the experimentation is the X4-

flyer (a quad-rotor) made by the CEA (Fig. 2a), described

in the reference [9].

The considered target plane is a large board and textures

are made of random contrasts (Fig. 2b). The camera embed-

ded is looking directly down. A Pyramidal implementation

of the Lucas-Kanade [13] algorithm is used to compute the

optical flow. The efficiency of the algorithm is increased by

defocusing the camera to low-pass filter images. The field

of view of the aperture is of 30◦ around the direction of

observation η = e3. Optical flow is computed on 210 points

on this aperture and a least-square estimation of motion

parameters is used to obtain robust measurements of the

average optical flow w [24]. Given that the divergent flow is

(a) The X4-flyer UAV (b) Hovering flight above the land-
ing pad

Fig. 2

relatively low compared to the lateral flow in the front and

back directions [5] and since only the divergent flow is used

for landing manoeuvre, the control approach is split into two

sequential phases. The first one concerns the hovering flight;

it is performed to insure that the lateral flow is regulated to

zero and then the vertical landing manoeuvre is applied in

a second step. During the experiments, the yaw velocity is

regulated to zero. It has no effect on the proposed control

scheme. The drone is teleoperated near the target, so that

textures are visible. The landing pad is moving laterally and

vertically to show performances of the control algorithms.

Estimation of the UAV’s relative position is computed from

the optical flow as follows:

ξ̃ − ξ̃0

h0

=

∫ t

0

wγ(τ) dτ =

∫ t

0

w exp

(

−
∫ τ

0

wz dδ

)

dτ

(34)

Where ξ̃ denotes the relative position of the UAV with respect

to the platform: ξ̃ = ξ − ξG. Note that

γ(τ) = exp

(

−
∫ τ

0

wz dδ

)

= exp

(

∫ τ

0

ḣ

h
dδ

)

=
h(τ)

h0

(35)

For the vertical landing, the desired set point wd is set to

(0, 0, 0.1)T , this ensures a relatively rapid descent (approxi-

matively in 10s).

Figures 3 show the result using controller (8) for the stabili-

sation of the X4-flyer with respect to the platform (from 0s to

140s) and controller (25) for the vertical landing manoeuvre

(from 140s). For the stabilisation phase, the platform is

moving laterally (from 0s to 100s) and vertically (from

100s to 140s). During the landing manoeuvre (t ≥ 140s)

the platform is moving only vertically. Figures 3 show the

exponential convergence of the height with a good behaviour

while the lateral position remains stable. Note that the

relative position (y−yG) converges around −1, this is due to

an initial bias of the inertial measurements in y-direction that
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has been compensated by the integral term of the controller.

Note also that, contrary to what was expected, the height h is

slowly oscillating during the landing phase. This implies that

condition (26) is not verified for all time t and therefore, the

positivity of α(t) (see Section IV) is not always guaranteed.

This problem is mainly due to the fact that experimental

constraints (large time latency, outer loop’s sampling time

which is of 15Hz) prevent us from choosing a higher gain

k which strictly respect the condition. Note also that, due to

the landing gear, the final position is not h ≡ 0.

This result can be watched on the video accompanying the

paper.
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Fig. 3: Vertical landing on a moving platform

VII. CONCLUDING REMARKS

This paper presented a rigorous nonlinear controller for

vertical landing of a VTOL UAV using the measurement of

average optical flow on a spherical camera along with the

IMU data. Different controllers corresponding to different

control objectives (stabilisation and vertical landing) of the

VTOL UAV with respect to a moving platform have been

proposed and the stability of the closed-loop systems has

been analysed. Experimental results have been presented to

show the performance of the approach considered.
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