
Efficient Trajectory Bending with Applications to Loop Closure

Gijs Dubbelman1,2 and Isaac Esteban1,2 and Klamer Schutte1

Abstract— In robotic applications the absolute pose is often
obtained as the integral of successive relative rigid-body mo-
tions. As each relative rigid-body motion is typically the product
of statistical inference, the integrated absolute pose will exhibit
error build-up and the estimated trajectory will differ from the
true trajectory undertaken by the system. Some application ar-
eas allow the system to receive additional information about its
current absolute pose, for example from loop detection, which
is more accurate than the integral of the relative rigid-body
motions. The availability of this absolute information is usually
less frequent than the information underlying the relative rigid-
body motions. This contribution addresses an efficient closed
form algorithm which minimally bends a trajectory such that
the integrated pose is exactly equal to any particular desired
pose. The manner in which the bending is distributed over the
trajectory is controllable using weights. The proposed method
will be compared against a maximum likelihood solution on
simulated trajectories as well as on trajectories estimated from
binocular and monocular data. The results indicate that the
performance differences between the closed form approach and
the maximum likelihood solution are negligible while the closed
form approach is significantly more efficient.

Index Terms— loop closure, visual odometry, visual recon-
struction.

I. INTRODUCTION

Loop closure can conceptually be divided in three different

phases, namely, loop detection, updating the current pose

and updating the map and/or trajectory. This contribution

focusses on the last phase, more precisely, updating the

complete trajectory such that the final pose is exactly equal

to a particular desired pose. This desired pose is typically

derived from loop detection but it can, for example, also

be attained from a Global Position System (GPS) and an

Inertial Navigation System (INS). The proposed algorithm

can be applied to any trajectory, the focus is however on

trajectories estimated from visual data. In recent years visual-

odometry has gained significantly in accuracy, for example

Nister et al. [15], Dubbelman et al. [5], Dubbelman and

Groen [6], Konolige et al. [12], Konolige and Agrawal

[11] and Comport et al. [4]. To reduce the error growth

in the estimated trajectory, techniques such as Simultaneous

Localization and Mapping (SLAM), Thrun et al. [18], or

Bundle Adjustment (BA), Triggs et al. [19], are frequently

used. Given the current accuracy of visual-odometry, their

main benefit is the ability to update the complete trajectory

and/or map when additional (absolute) pose information

Electro-Optical Systems1, TNO Defence, Security
and Safety, Oude Waalsdorperweg 63, 2509 JG The
Hague, The Netherlands, {gijs.dubbelman,
isaac.esteban,klamer.schutte}@tno.nl

Intelligent Systems Laboratory Amsterdam2 (ISLA), University of Am-
sterdam, Science Park 107, 1098 XG Amsterdam, The Netherlands

becomes available. Even without considering their compu-

tational complexity, these methods are not without disadvan-

tages. For example, BA theoretically provides a maximum

likelihood (ML) solution by minimizing reprojection errors

in all images. The ML solution is, however, challenging to

obtain efficiently due to data which does not adhere to the

assumptions made i.e. outliers. SLAM methods which use a

Rao-Blackwellized particle filter, such as FastSLAM, Thrun

et al. [18] and Montemerlo et al. [13], suffer from particle

deprivation [18]. In short, as the uncertainty in the estimated

trajectory and map grows over time, the fixed amount of

particles no longer suffices to represent the complete pdf.

adequately. As a consequence, there can be a point in time

before which all particles share a common ancestor and

therefore have exactly the same trajectory and map. When

this occurs at loop closure, the particle filter can no longer

update the trajectory nor map before this point. Furthermore,

the possible trajectories during loop closure are limited by

the particle distribution. When no particle, with a trajectory

ending close to the desired pose exist, loop closing will

be sub optimal. Considering SLAM approaches which use

an EKF or an IKF, performing a trajectory or map update

during loop closure by means of a filter update can yield

unsatisfactory results, for an explanation see Castellanos et

al. [3] and Baily et al. [2]. As a possible improvement

Newman et al. [14] proposed an algorithm which bends

an trajectory such that the final pose is equal to a desired

pose. Their approach finds an ML solution by using non-

linear iterative constrained optimization. This optimization

scheme runs detached from the SLAM filter and its sole

purpose is to update the trajectory at loop closure. When

many probabilistic links between poses exist, using a method

as proposed in [9] can be advantageous.

In this contribution the focus is on trajectories where the

probabilistic links between absolute poses are only governed

by the uncertainty in the relative rigid-body motion estimates

i.e. the trajectory is exactly sparse. These trajectories are a

typical product of visual odometry systems. In this setting

an efficient closed form algorithm is proposed to update the

complete trajectory at loop closure. When the uncertainties

in the relative rigid-body motion estimates are known, they

can be used to distribute the updates proportionally over

the trajectory. The experiments on synthetic, monocular and

binocular data indicate that satisfactory results are obtained

when using the proposed closed form algorithm. When

comparing the closed form algorithm against a ML solution,

which in spirit is similar to that of Newman et al. [14], the

observed performance differences are fractional while the

proposed algorithm requires significantly less computation

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 4836

time. For example, the proposed algorithm is 1000 times

faster for trajectories consisting of 350 poses. This makes the

proposed algorithm well suited for embedded applications

where computational resources are typically limited. In this

contribution the applicability of the proposed algorithm is

demonstrated with respect to loop closure. In further research

the proposed algorithm can be utilized to perform sensor

fusion with absolute position and orientation sensors such as

GPS/INS. Furthermore, the proposed closed form algorithm

can be used to initiate further non linear optimization such

as BA or can be integrated with existing SLAM approaches.

II. BENDING OF RIGID-BODY TRAJECTORIES

Let the relative rigid-body motion at time n be denoted

as Mn. The absolute pose at time n, denoted as A, is the

integral of all relative rigid-body motions i.e.

A = M1....Mn =
i=n
∏

i=1

Mi . (1)

The desired absolute pose at time n is denoted as Â. The

goal of the algorithm is to update each Mn with an additional

rigid-body transformation Ûn such that

Â =

i=n
∏

i=1

(

MiÛi

)

(2)

i.e. when integrating the relative rigid-body motions with

their respective updates the trajectory ends in the desired

pose. The rigid-body transformation U that brings A onto

Â is obtained with U = A−1Â. Using the technique of sec.

II-A allows this update motion U to be divided in n relative

rigid-body motions such that U = U1....Un. These updates

can be concatenated to the rigid-body motions, which results

in

Â = M1....MnU1....Un . (3)

The next step is to transform each of the interpolated update

motions Ui to its equivalent Ûi, because then they can be

applied distributed over the trajectory as in eq. 2. Start by

considering which transformation T has to be applied to the

final update Un such that T(Un) = Ûn can be integrated

after Mn and such that the final absolute pose remains the

desired pose Â, more formally,

Â = M1....Mn−1 MnT(Un) U1....Un−1 . (4)

From eq. 4 it can be derived that the transformation is

Ûn = T(Un) = (U1....Un−1) Un (U1....Un−1)
−1. (5)

Also note from eq. 3 that by using the substitution

U1....Un−1 = (M1....Mn)−1ÂU−1
n the transformation of eq.

5 can be written as

T(Un) = (M1....Mn)−1Â Un Â−1(M1....Mn). (6)

Applying this transformation allows eq. 3 to be rewritten as

Â = M1....Mn−1MnÛnU1....Un−1. (7)

Note that the final update Un is transformed to Ûn such that

it can be applied according to eq. 2 (i.e. after Mn) without

changing the desired final absolute pose Â. Now consider

transforming the next update Un−1 such that

Â = M1....Mn−2 Mn−1T(Un−1) MnÛnU1....Un−2. (8)

Similarly to eq. 5 this transformation is

T(Un−1) = (MnÛnU1....Un−2)Un−1(MnÛnU1....Un−2)
−1.

(9)

Again note from eq. 7 that by using the substitution

(MnÛnU1....Un−2) = (M1....Mn−1)
−1ÂU−1

n−1
the transfor-

mation of eq. 9 can be written as

T(Un−1) = (M1....Mn−1)
−1Â Un−1 Â−1(M1....Mn−1).

(10)

When the same process is continued for all other updates,

starting from Un−2 down to U1, it can be derived that the

general transformation T is given by

Ûm = T(Um) = (

i=m
∏

i=1

Mi)
−1ÂUmÂ−1(

i=m
∏

i=1

Mi) . (11)

The interesting property is that the transformation of each

Ui only depends on the relative rigid body motions up to

pose i i.e. M1....Mi and the desired absolute pose Â. The

solution to trajectory bending can therefore be obtained in

closed form, has complexity O(n) and can be computed in

any specific order. Furthermore, the amount of floating point

operations per update is merely in the order of four hundred.

For further sections it is useful to also define the inverse of

T as

Um = T−1(Ûm) = Â−1(

i=m
∏

i=1

Mi)Ûm(

i=m
∏

i=1

Mi)
−1Â. (12)

.

A. Relative interpolation on SE(3)

Clearly there are infinitely many combinations of n rela-

tive rigid-body motions which when integrated result in the

update motion U = A−1
n Ân. It seems natural however to

bend the trajectory minimally, furthermore, control over the

distribution of bending over the trajectory is desired. These

intuitions will be described more formally in sec. II-B. In

this section a technique is presented that divides U in n rela-

tive rigid-body motions of minimal magnitude. Furthermore,

the magnitude of each update is controllable by weights

w1,, wn with w1+w2+w3,,+wn = 1. For this purpose

it is convenient to parameterize an element of SE(3), i.e. the

group of rigid-body motions, using a unit quaternion q and

a translation vector t. A unit quaternion consists of a one

dimensional real part q and a three dimensional spatial part

~q = (qi, qj , qk), thus q = (q, ~q). The inverse of a quaternion

is denoted as q−1 and multiplication simply as q1q2. See

Grassia [8] for more information on quaternion algebra and

its relation to rotation. To shorten notation a rigid-body

motion is denoted with M = (q, t). One can define the

identity, group multiplication and inversion, denoted as I,
M1M2 and M−1, for this parametrization straightforwardly.

4837

Or the chosen parametrization can be transformed back

and forth to the usual four by four homogenous matrix

representation if preferred. Note that the formulas of sec.

II are independent from the choice of parametrization. For

the purpose of interpolating between rotations the following

mappings on unit quaternions are useful

q = log(q) =







arccos(q) ~q
‖~q‖ , q 6= 1

(0, 0 , 0) , q = 1

, (13)

q = exp(q) =







(cos(‖q‖) , sin(‖q‖) q

‖q‖), ‖q‖ 6= 0

(1, 0, 0, 0) , ‖q‖ = 0

,

(14)

Grassia [8]. Note that ‖q‖ is half the angle of rotation and the

direction of q is the rotation axis. For optimality considera-

tions it is important that the interpolation is performed over

the minimal length trajectory from An to Ân. In that respect

we recall that the intrinsic left invariant metric between two

rigid body motions is expressed as

d(M1,M2)α =

√

‖log(q1
−1q2)‖

2
+ ‖α(t2 − t1)‖

2
. (15)

Park [16]. Note the α in eq. 15 which specifies the weighting

between the rotational and translational differences. The

magnitude of a rigid-body motion M is then defined as

d(I,M)α. Considering this metric the following mappings1on

elements of SE(3) are defined

m = log(M) = (log(q), αt) , (16)

M = exp(m) = (exp(q),
1

α
t) . (17)

They are based on the double geodesic approach, Altafini

[1], and apply the mappings eq. 16 and eq. 17 on the

rotational part while scaling the translational part. The map-

pings can be extended over the entire manifold of SE(3)
by right multiplication i.e. logM1

(M2) = log(M−1

1
M2) and

expM1
(M2) = M1 exp(M2). The reason for this construct

is that the minimal length trajectory between two rigid-

body motions M1 and M2 becomes a straight line in TM1

i.e. the tangent space of M1 (and also in TM2
for that

matter). Therefore, the intrinsic distance between two rigid-

body motions M1 and M2 can now be expressed conveniently

as

d(M1,M2)α =
∥

∥logM1
(M2)

∥

∥ =
∥

∥logM2
(M1)

∥

∥ (18)

i.e. it is the Euclidean length of the tangent vector rep-

resenting M2 in the tangent space of M1 and vice versa.

Following the minimal length trajectory from An towards

Ân can therefore be performed by scaling the tangent vector

representing Ân in the tangent space of An i.e.

I(s) = expAn
(s logAn

(Ân)) , (19)

where 0 ≤ s ≤ 1. The relative motions U1..Un can therefore

be obtained with

Um = I(

i=m−1
∑

i=1

wi)
−1I(

i=m
∑

i=1

wi). (20)

Note that indeed A−1
n Ân = U1..Un and that the since the

metric eq. 15 is left invariant the magnitudes of U1..Un are

proportional to the weights w1....wn.

B. Maximum likelihood

It is interesting to consider for which optimization criteria

the proposed closed form algorithm attains a maximum like-

lihood solution. To specify the appropriate objective function

and constraint function each update Ûi is parameterized by

a six dimensional vector ûi. This vector is a tangent vector

of SE(3) at the location of its respective relative motion

estimate Mi i.e. ûi ∈ TMi
. The uncertainty of Mi is also

expressed in its tangent space and it is denoted as the six by

six dimensional matrix Σi. Generally, the uncertainty in the

motion estimates is anisotropic (not of equal magnitude for

each DoF.) and inhomogeneous (different for each motion es-

timate). The translational and rotational subspaces of SE(3)
also are on different units for which no natural weighting

exist, hence the α in eq. 15. The uncertainty in the rotational

part is modeled with N (0,Σqi) and is independent from the

translational part which is modeled with N (0,Σti) (therefore

Σi is block diagonal). The maximum likelihood solution to

the trajectory bending task can be found by minimizing the

objective function

f(u1, ..., un) =
i=n
∑

i=1

û⊤i Σ−1

i ûi (21)

with respect to ûi....ûn under the non linear constraint

log
Ân

(

i=n
∏

i=1

(

expMi
(ûi

)

)) = 0 (22)

i.e. when the updates are applied to their relative motions

the trajectory ends in the desired pose Ân. Apart from the

non linearity of the constraint, the challenge is that the

objective function is expressed as a sum over all individual

tangent spaces. Due to the fact that SE(3) does not admit

a bi-invariant metric, Park [16], the probability of the same

update is different in each tangent space (even when the

noise would be isotropic and homogeneous). In other words

the magnitude of a motion is not preserved when applying

eq. 11. Therefore, to obtain the ML solution one does not

only have to consider the constraint and the uncertainty

distributions but also the local geometry of the trajectory.

Intuitively speaking, the local geometry of the trajectory

has to be exploited to find an ML solution. Solving this

optimization task requires computational intensive non-linear

optimization techniques. The remainder of this section can

be skipped at first reading. The question arises: which

simplifications have to be made to the objective function

and the assumptions such that the closed form algorithm

can be proven to provide a maximum likelihood solution.

In that respect, consider the case where the uncertainty in

the relative motion estimates is inhomogeneous but isotropic

i.e. N (0, σ2
qiI) and N (0, σ2

tiI) and the ratio between σqi and

σti is similar for each motion estimate. Because then α can

be set to
σqi

σti

. This ensures isotropy i.e. σqi = σti = σi and

4838

therefore all tangent vectors of equal length share the same

probability in their respective tangent spaces. In this setting

consider the following objective function

f(u1, ..., un) =

i=n
∑

i=1

∥

∥log(T−1

i (exp(ûi)))
∥

∥

2

σ2
i

(23)

which again is minimized with respect to û1....ûn under the

same non linear constraint of eq. 22. The main difference is

that this objective function is expressed in the tangent space

of a common reference frame instead of over all tangent

spaces individually. Now consider the solution obtained

by the closed form algorithm where the weights are set

according to

wi =
σ2

i

i=n
∑

i=1

σ2

i

. (24)

Due to the isotropy a decrease in the eq. 23 can only be

obtained by reducing the length of a tangent vector. The

reduction causes a residual in the constraint which must be

compensated by the other updates. Since the length of these

compensations are measured in the same common reference

frame, and since the update U is of minimal magnitude, the

sum of the lengths of these compensations is equal to the

length of the residual. Due to the quadratic nature of eq. 23

this cause an increase of the objective function. Therefore,

the solution obtained by the closed form algorithm when

using weights according to eq. 24 is the global minima of

eq. 23 under constraint eq. 22 for isotropic noise. Following

a similar argumentation it is clear that the solution is also

unique.

III. EXPERIMENTS AND RESULTS

From a practical point of view it is interesting to inves-

tigate the performance differences of the closed form and

ML algorithms and relate it to their computational efficiency.

Both artificial as well as real data will be used to verify the

applicability of the proposed algorithm. While the noise is

generally anisotropic it is still desirable to choose the weights

w1..wn such that they are proportional to the uncertainty

in their respective relative motion estimates M1..Mn. A

convenient value for α is given by

α =

i=n
∑

i=1

√

trace(Σqi)

i=n
∑

i=1

√

trace(Σti)

, (25)

where the trace function provides the sum of the diagonal

elements of a matrix. The weights can then be computed

with

wi =
trace(Σqi) + α2trace(Σti)

i=n
∑

i=1

trace(Σqi) + α2

i=n
∑

i=1

trace(Σti)

. (26)

For isotropic noise this automatically reduces to eq. 24. The

ML optimization task is solved by employing a Sequential

Quadratic Programming (SQP) algorithm. Since the desired

final pose is typically a result from statistical inference, it

is of little practical value to enforce it to within machine

precision (as is the case for the closed form algorithm).

Therefore, the SQP stops iteration when the residual of

the constraint is within the one standard deviation ellipsoid

of the update uncertainty. Typically it takes in the order

of 5 iterations to do so. Despite the few iterations the

computation time of the SQP algorithm is unfavorable for

trajectories consisting of many poses. This was already noted

by Newman et al. [14] for their particular approach. Their

solution was to divide the trajectories in segments and only

optimize with respect to those poses which link the segments

together. In essence it can be seen as a sub-map approach.

The same approach will be used for the ML algorithm in

this research.

A. Synthetic data

Two artificially generated trajectories will be used to

compare the proposed closed-form and ML algorithms. The

first trajectory consists of 350 poses, the second trajectory

consists of approximately 3500 poses. For both trajectories

the first pose is equal to the last pose. To each relative

rigid-body motion in these trajectories inhomogeneous and

anisotropic noise is added, see sec. II-B. The closed form

algorithm is applied on all poses of both trajectories. When

applying the ML algorithm, the second trajectory consisting

of 3500 poses, is divided in 350 sub-maps of 10 poses

each. The mth ground truth absolute pose is denoted as

Ām = (q̄m, t̄m). The mth absolute pose, obtained from inte-

grating the simulated erroneous relative rigid-body motions,

is denoted by Am = (qm, tm). The positional error at pose

number m i.e. Pm and the orientational error Om are defined

as the running means

Pm =
1

m

i=m
∑

i=1

‖tm − t̄m‖ (27)

and

Om =
180

mπ

i=m
∑

i=1

∥

∥2 log(q̄−1

m qm)
∥

∥ . (28)

For a single experiment the trajectories are plotted in fig.

1.a and 1.b. The average positional and orientational errors

over one hundred experiments are plotted in fig. 1.c,d,e,

and 1.f. From the results plotted in fig. 1 it can be seen

that both methods reduce the overall error for both trajec-

tories. As expected the ML solution is more accurate, the

performance differences are fractional however. The run-

time of the closed-form algorithm for the first and second

trajectory is 0.09 s. and 0.9 s. respectively. For the ML

algorithm when using 350 poses/sub-maps the run-time is

100 s. Clearly, for an equal amount of poses the closed-

form algorithm is significantly more efficient e.g. a factor

1000 times faster when using 350 poses. The computation

time of the ML algorithm can be reduced by lowering the

4839

(a) (b)

(c) (d)

(e) (f)

Fig. 1. Results on simulated trajectories, trajectory consisting of 350 poses
(a), trajectory consisting of 3500 poses (b). Ground truth (green), no loop
closure (red), closed form algorithm (blue) and ML solution when using
350 sub-maps (magenta). Running mean errors averaged over one hundred
experiments (c,d,e) and (f). The black cross depicts the loop-closing point.

number of sub-maps. For example, when using five sub-

maps the computation time reduces to 1.3 s. In this setting,

the performance of the ML algorithm on the trajectory

consisting of 3500 poses reduces significantly, as can be

observed from fig. 2. The average computation times of both

algorithms are summarized in table I. All implementations

are based on Matlab and ran on a single core of an Intel Xeon

(2.66GHz) processor. Considerable speed-ups can therefore

be expected when implementing both algorithms in a more

efficient programming language. When doing so, the relative

differences in computation time between both algorithms are

expected to remain similar.

(a) (b)

Fig. 2. Results on the simulated trajectory consisting of 3500 poses (fig.
1.b). Ground truth (green), no loop closure (red), closed form algorithm
(blue) and ML algorithm when using 5 sub-maps (magenta).

TABLE I

AVERAGE COMPUTATION TIME ON SYNTHETIC DATA

Algorithm 350 poses 3500 poses 350 sub-maps 5 sub-maps

Closed form 0.09 s. 0.9 s.

ML 100 s. +10 h. 100 s. 1.3 s.

B. Binocular data

The binocular data set, consisting of approx. 1200 images,

is recorded using a stereo camera with a baseline of 0.4 m.,

a resolution of 640 by 480 pixels and a FoV. of 45 deg. The

stereo camera was mounted on a vehicle which drove an

urban trajectory of approximately 600 m. The relative rigid-

body motions are estimated using the EM-SE(3) algorithm of

Dubbelman et al. [5]. This algorithm applies intrinsic robust

clustering on motion hypotheses which are generated using a

fundamental subset strategy. The interesting property of this

algorithm is that besides a robust estimate of the relative

rigid-body motion, it also returns a monte carlo estimate

of the covariance matrix which is expressed in the tangent

space of the robust estimate. These covariance matrices are

used during trajectory bending. The estimated trajectory exist

of approx. 1200 poses. When using the ML approach the

trajectory is again segmented in 350 sub-maps. The results

are plotted in fig 3. It can be seen that both approaches

(a)

(b) (c)

Fig. 3. Results on trajectory consisting of approx. 1200 poses estimated
from binocular data, arial image overlay (a), close-up of lower left corner
(b), close-up of lower right corner (c). Binocular odometry (red), closed
form algorithm (blue), ML solution (magenta) and differential GPS (green).
The black cross depicts the loop-closing point.

close the loop satisfactory, however, the trajectory obtained

with the ML approach differs significantly from the ground

truth. In contrary to the simulation of sec. III-A where the

noise characteristics were known exactly, here the true noise

4840

characteristics of each relative motion is unknown and is

approximated by a Gaussian pdf. Recent research indicates

that the noise in motion estimates is typically biased (or

skewed) instead of pure Gaussian [6]. The approximation

of the true unknown noise characteristics by a Gaussian pdf

influences the ML solution significantly more than is does

influence the closed form approach. It seems that the cost

function in eq. 23 optimized by the closed form approach

is better suited for the underlying error structure of visual-

odometry. Further research on this topic is required. It is

interesting to observe that the accuracy of differential GPS is

limited for certain segments of the trajectory. A quantitative

comparison between the closed form and ML solution on

basis of differential GPS is therefore omitted. The computa-

tion time of the closed form algorithm is approximately 0.4

s. for the ML solution using 350 sub-maps it is again 100 s.

C. Monocular data

The monocular odometry data set is recorded using a

camera with a resolution of 640 by 480 pixels and a FoV. of

45 deg. A total approx. 2000 images are recorded covering

a total distance of approx. 900 m. The camera motion is

estimated robustly using RANSAC, where the normalized 8-

point algorithm [10] is used to generate the fundamental sub-

set hypotheses. That hypothesis which has the largest number

of inliers, based on the Sampson error, is selected. From

the inliers of this best hypothesis a new motion estimate is

obtained. A local iterative refinement step, which minimizes

reprojection errors, is used to optimize both the camera pose

and the camera calibration. This approach offers a favorable

tradeoff between satisfactory accuracy and computational ef-

ficiency. The results on the monocular data set are plotted in

fig. 4. It can be seen that the monocular odometry algorithm

induces a drift in the trajectory that accumulates over time.

By using the proposed trajectory bending algorithm this drift

is reduced. This is particulary visible in fig. 4.c where the

estimated height of each pose is plotted. Note that while

the ML algorithm (again using 350 sub-maps) closed the

loop satisfactory, its trajectory differs significantly from the

ground-truth. Again it seems that the cost function of the

closed form approach is better suited for the underlying error

structure of visual-odometry. Furthermore, the difference in

computation time was significantly larger, i.e. 0.6 s. for the

closed form algorithm and 300 s. for the ML algorithm. Next

the applicability of the proposed closed form algorithm with

respect to monocular 3D reconstruction will be illustrated.

To this purpose 85 images are recorded with a hand held

Digital Reflex Camera (Canon 350D) mounted with a 10

mm. wide angle lens. The images have a resolution of 1728

by 1152 pixels and cover a trajectory of approx. 80 m.

Two example images of this data set are shown in fig. 5.c

and d. Once the camera poses are recovered, by the same

monocular odometry procedure as described earlier, a 3D

model is estimated using [7]. By employing the closed form

algorithm the camera poses can be improved, after which,

the model can be re-estimated. In fig. 5 the reconstructed

model with and without closed form trajectory bending is

(a) (b)

(c)

(d)

Fig. 4. Results on trajectory consisting of approx. 2000 poses estimated
from monocular data (a), top-view (b), side-view (c), arial image overlay
(d). Monocular odometry (red), closed form algorithm (blue), ML solution
(magenta) and differential GPS (green). The black cross depicts the loop-
closing point.

shown. From fig. 5 it is clear that the closed form algorithm

improved the trajectory estimates such that the loop is closed.

Consequently, this improvement in pose estimates enables

the 3D reconstruction algorithm to estimate a more accurate

model.

IV. CONCLUSION

A closed form algorithm is presented which bends a

trajectory consisting of relative rigid body motions such

that the final absolute pose is exactly equal to a desired

pose. Within this contribution its applicability with respect

to loop closure is investigated. It is compared against a

maximum likelihood solution based on sequential quadratic

programming. From experiments using synthetic, binocular

and monocular data it can be concluded that the proposed

4841

(a)

(b)

(c) (d)

Fig. 5. Monocular 3D reconstruction, without closed form trajectory
bending (a), with closed form trajectory bending (b). First and last frame
of trajectories are outlined in red and green respectively. Example images
used for reconstruction, a front-view image (c), a side-view image (d).

closed form approach attains satisfactory results on large

trajectories while its computation time is fractional. On basis

of experiments using synthetic data it can be concluded

that the maximum likelihood solution is in essence more

accurate than the closed form approach. Its computational

complexity, however, prevents it from being applied to each

pose for realistically large trajectories. When the maximum

likelihood solution is applied using a sub-map strategy it

can become less accurate than the closed form approach

while still requiring more computation time. This makes

the proposed algorithm for many applications the algorithm

of choice for trajectory optimization during loop closure.

Furthermore, its computational efficiency enables its use for

embedded applications where computational resources are

typically limited.

REFERENCES

[1] C. Altafini, “The de casteljau algorithm on se(3),” Lecture Notes in

Control and Information Sciences, vol. 258, pp. 23–34, 2000.

[2] T. Bailey, J. Nieto, J. Guivant, M. Stevens, and . Eduardo Nebot. IROS,
“Consistency of the ekf-slam algorithm,” in IEEE/RSJ Conference on

Itelligent Robots and Systems, 2006.

[3] J. A. Castellanos, J. Neira, and J. D. Tardos, “Limits to the consistency
of ekf-based slam,” in 5th IFAC Symp. on Intelligent Autonomous

Vehicles, July 2004.

[4] A. Comport, E. Malis, and P. Rives, “Accurate quadrifocal tracking
for robust 3d visual odometry,” in IEEE International Conference on

Robotics and Automation, April 2007, pp. 40–45.
[5] G. Dubbelman, W. van der Mark, and F. C. A. Groen, “Accurate

and robust ego-motion estimation using expectation maximization,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
September 2008, pp. 3914–3920.

[6] G. Dubbelman and F. Groen, “Bias reduction for stereo based motion
estimation with applications to large scale visual odometry,” in In-

ternational conference on Computer Vision and Pattern Recognition,
June 2009, pp. 1–8.

[7] I. Esteban, J. Dijk, and F. Groen., “Fit3d toolbox: multiple view
geometry and 3d reconstruction for matlab,” in SPIE International

Symposium on Security & Defence Europe, 2010.
[8] F. S. Grassia, “Practical parameterization of rotations using the expo-

nential map,” Journal of Graphics Tools, vol. 3, no. 3, pp. 29 – 48,
1998.

[9] G. Grisetti, C. Stachniss, S. Grzonka, and W. Burgard, “A tree
parameterization for efficiently computing maximum likelihood maps
using gradient descent,” in Proceedings of Robotics: Science and

Systems, June 2007.
[10] R. I. Hartley, “In defense of the eight-point algorithm,” IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, vol. 19, no. 6,
p. 580593, 1997.

[11] K. Konolige and M. Agrawal, “Frameslam: From bundle adjustment
to real-time visual mapping,” IEEE Transactions on Robotics, vol. 24,
no. 5, pp. 1066–1077, October 2008.

[12] K. Konolige, M. Agrawal, and J. Solà, “Large scale visual odom-
etry for rough terrain,” in International Symposium on Research in

Robotics, 2007.
[13] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM

2.0: An improved particle filtering algorithm for simultaneous lo-
calization and mapping that provably converges,” in Proceedings of

the Sixteenth International Joint Conference on Artificial Intelligence

(IJCAI), 2003.
[14] P. Newman, D. Cole, and K. Ho, “Outdoor slam using visual appear-

ance and laser ranging,” in IEEE International Conference on Robotics

and Automation, 2006.
[15] D. Nistér, O. Naroditsky, and J. Bergen, “Visual odometry for ground

vehicle applications,” Journal of Field Robotics, vol. 23, no. 1, pp.
3–20, January 2006.

[16] F. Park, “Distance metrics on the rigid-body motions with applications
to mechanism design,” Transactions of the ASME, vol. 117, pp. 48–54,
March 1995.

[17] J. M. Selig, Geometrical Methods in Robotics, D. Gries and F. B.
Schneider, Eds. Springer, 1996.

[18] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. The MIT
Press, 2005.

[19] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon,
“Bundle adjustment - a modern synthesis,” in International Workshop

on Vision Algorithms: Theory and Practice, 1999, pp. 298 – 372.

1The terminology of logarithmic map and exponential map used in this
paper is related to Riemannian geometry. Similar and related terminology
exist in the theory of Lie algebra. For some algebraic elements, such as
quaternions, these mappings are the same within Riemannian geometry
and Lie algebra. Generally however these mappings are not necessarily
related. Intuitively speaking, the mappings in Riemannian geometry are
used to transfer points, in an intrinsic distance and direction preserving
manner, between the manifold and the tangent space attached to a specific
development point on the manifold. They do however not necessarily share
algebraic properties with the usual exponent and logarithm on natural
numbers. The Lie algebraic mappings do focus more on the group algebraic
properties, however they are no longer necessarily related to intrinsic
distance and direction [16]. An example is the Lie algebraic logarithm
for elements for SE(3), Selig [17], which can not be used to specify the
intrinsic distance of eq. 15 as the Euclidean length of the tangent vector
(i.e. element of the Lie algebra). When using these Lie algebraic mappings

for interpolating between rigid-body motions An and Ân one obtains an

Ad-invariant curve starting at An and ending at Ân [1]. This curve does
not describe the minimal length trajectory in R

3, therefore, using the Lie
algebraic mappings is unfavorable for the application of trajectory bending.

4842

