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Abstract— Currently, pseudo-omnidirectional, wheeled mo-
bile robots with independently steered and driven wheels seem
to provide a solid compromise between complexity, flexibility
and robustness. Yet, such undercarriages are imposed to the
risk of actuator fighting and suffer from singular regions within
their configuration space.

To address these problems we expand a previously developed
potential field (PF) based approach by expanding it with
a predictive horizon. The proposed method is based on a
model predictive control (MPC) approach, incorporating a
gradient descent optimization step via the Pontryagin minimum
principle. To enforce adherence to the constraints during
optimization, we modify the Lagrange-multipliers within the
backpropagation of the costates. The proposed approach is
evaluated simulatively w.r.t. the undercarriage of the Care-O-
bot R⃝ 3 mobile robot and is compared to the potential field
based and a model predictive control approach.

I. INTRODUCTION

Future service robot applications will impose high re-

quirements on the employed mobility concepts [1]. Lately,

pseudo-omnidirectional, wheeled mobile robots whose un-

dercarriage is composed by independently steerable and

drivable wheels [2], [3], [4], have emerged as an intermediate

term solution. Such systems present a viable compromise

between complexity, robustness and flexibility.

According to the work by Campion et al. [5], such robots

have 3 degrees-of-freedom (DoF). These DoF are split into

the degree of steerability �s = 2, associated to the number of

independently steerable wheels, and the degree of mobility

�m = 1, associated to the instantaneously accessible velocity

space for the planar motion. Thus, pseudo-omnidirectional

mobile robots are able to realize arbitrary velocity and rota-

tional commands, however only after reorienting its wheels.

Furthermore, this means that such systems are often over-

actuated [6]. Therefore, it is important to precisely coordinate

all motions to reduce actuator fighting [7], [8]. Moreover,

such pseudo-omnidirectional, wheeled mobile robots suffer

from singular regions within their configuration space [9],

[10], [11]. One possibility to solve this problem [9], [10]

is to take into account the singular regions already during

trajectory planning and to constrain the accessible velocity

space of the robot to a region without singular configurations.

Another approach [11] is to avoid singular configurations by

treating them as obstacles in a navigation problem and im-

plementing a Potential Field (PF) [12], [13] based controller.
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Fig. 1. Care-O-bot R⃝ 3, without coating. To allow quasi-omnidirectional
motion the mobile base is composed by four actively steered and driven
wheels (www.care-o-bot-research.org).

Yet, while successfully applied to various navigation prob-

lems [14], [15], [16], PF’s are known for some drawbacks.

For instance PF’s are sensitive to local minima. Moreover,

when applied to systems changing fast compared to their

sample time, PF approaches may lead to local oscillations

[17]. Introducing a predictive horizon – according to the

methodologies developed within the model predictive control

(MPC) domain [18], [19] – promises to remedy the last

mentioned problem. While originally focusing on systems

with slow dynamics there exists meanwhile a series of

works applying MPC approaches to the field of mobile

robot navigation. Several works [20], [21], [22] motivated

the objective function via repulsive potential fields.

Within this work, a potential field approach with a pre-

dictive horizon is derived and applied to the control of a

pseudo-omnidirectional mobile robot. To address the inter-

connected problems of non-holonomic constraints and ac-

tuator concurrency control is performed within the spherical

representation of the ICM space. To motivate the introduction

of a predictive horizon, we draw from the methodologies

developed in the MPC domain. Therefore, we start from

gradient descent based optimization of the objective function

via the Pontryagin minimum principle (PMP) [20], [22].

Then, constraints on the system velocity are enforced by

modifying the costates during backpropagation. Therefore,

the analogy between Lagrange-multipliers and forces is ex-

ploited. Moreover, the calculation of equilibrium velocities,

where frictional and attractive forces cancel out each other

[12], is expanded to take into account also repulsive forces.

The algorithm is evaluated in simulation and compared to

the earlier implemented PF- and a MPC-approach.
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Fig. 2. Top and front view of Care-O-bot R⃝ 3’s mobile base

II. PROBLEM FORMULATION

A. System Architecture

The platform (Fig. 1 and Fig. 2) has a rectangular shape

with a length of approximately 60 cm and a width of

about 50 cm. The steering-axes of the wheels lie at xa,i =
±23,5 cm and ya,i = ±18,5 cm. The wheels are sidewards

off-centered to the steering-axes by dw,a = 2,2 cm. The

chassis clearance ℎ1 is about 5 cm. The total height of the

system ℎ2 is approximately 35 cm.

Current and velocity control for the actuators is provided

by off-the-shelf motor controllers. The lowest software-layer

comprises the control loop for the robot velocities (vx, vy, !)
generating the set point values ( ˙⃗'s, ˙⃗!d) for all motor con-

trollers. It provides an interface for higher level components,

for instance, a user interface such as a joypad (Fig. 3(a)),

the navigation module (Fig. 3(b)) which closes the position

loop or the arm-control module (Fig. 3(c)) sending velocity

requests to the platform. Therefore, the velocity control loop

has to:

1) ensure adherence to the non-holonomic constraints

a) identify the valid configuration ('⃗s, ˙⃗'d)
b) derive a valid trajectory ('⃗s, ˙⃗'s, ˙⃗'d, ¨⃗'d)
c) respect the actuator limits ( ˙⃗'s,u, ˙⃗'d,u)

2) approach the commanded velocities fast

3) compensate the steer/drive-coupling

(vx, vy, !)

ICM based velocity controller

WM1-Ctrl WM2-Ctrl WM3-Ctrl WM4-Ctrl

( ˙⃗'s, ˙⃗'d)

a) b) c)

Fig. 3. Schematic of Care-O-bot R⃝ 3’s software-structure. The ICM
based velocity controller synchronizes the motion of all wheels. The WMx-
controllers synchronize the steer and drive motors of the single wheels.

B. State-Space Representation

To decouple the control of the undercarriage from the

trajectory-control and to provide a simple interface for com-

manding velocities, the state-space of the undercarriage is

reduced to the velocities in the robot coordinate system. The

current state of motion t⃗r then becomes a function

t⃗r = g⃗('⃗s, ˙⃗'d) (1)

of the directions '⃗s and the rotations ˙⃗'d of all wheels.

Within this work, we focus on a kinematic description

of the undercarriage and therefore omit the calculation of

wheel-ground contact forces. As a result we have to take

into account the non-holonomic constraints of each wheel

resulting in eight additional constraints P. According to [5]

this results in a system with 3 DoF, from which two are

associated to the configuration space of the system �s = 2
and one is associated to its motion space �m = 1. Based

on [5] and [9] we motivated in [23] that one possible state

representation of the combined motion and configuration

space of such a system is the spherical coordinate transform

of its twist-vector

t⃗r =

⎛

⎝

�r
'r

�r

⎞

⎠ =

⎛

⎜
⎜
⎜
⎜
⎝

√

v2x,r + v2y,r + (!r ⋅ dmax)2

arctan2

(
vr,y

vr,x

)

arctan

(

!r⋅dmax√
v2
r,x+v2

r,y

)

⎞

⎟
⎟
⎟
⎟
⎠

, (2)

where vx,r and vy,r are the robot’s linear velocities in the

robot coordinate system, !r its rotational velocity and dmax

a norming factor. Hence, the kinematics equations can be

reformulated to calculate steering angles and rotational rates

as a function of the spherical twist vector.
(

'⃗s, ˙⃗'d

)T

= f⃗k⃗1 ,⃗k2

(�r, 'r, �r) (3)

(
˙⃗'s, ¨⃗'d

)T

= ∇f⃗k⃗1 ,⃗k2

⋅
(

�̇r, '̇r, �̇r

)T

, (4)

where k⃗1 and k⃗2 are parameters characterizing the configu-

ration of the undercarriage during startup.

C. Input Saturation and State Constraints

This state-space representation and the according inverse

kinematics equations become singular, when the instanta-

neous centre of motion (ICM) passes through one of the

steering axis. In effect, the steering velocity of a wheel grows

unbounded, as the ICM moves close to that wheel (Fig. 4).

However, due to the non-holonomic constraints of the system

it is unfeasible to simply constrain the commanded steering

velocities ˙⃗'s to their maximum values. Doing so destroys the

synchronicity of the wheels and leads to actuator conflicts,

causing unsteady motions or damaging the actuators.

In [11] a potential-field based controller was applied to

avoid the critical regions by representing them as repulsive

potentials. However, due to the limited time resolution prob-

lems such as oscillations in the vicinity of the repulsive

potentials were encountered. The introduction of a predictive

horizon, which can be motivated through the MPC formal-

ism, has the potential to remedy these problems.
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(a) Steering velocities with respect to position of ICM in cart. space
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(b) Steering velocities with respect to position of ICM in spher. space

Fig. 4. Worst case approximation for necessary steering velocity for an
ICM motion with constant absolute speed of 1.5� rad/s. Dark red spaces
indicate regions where the necessary steering velocity grows bigger than
8� rad/s, which is the maximum allowed steering rate for a wheel-module.

III. MODEL PREDICTIVE CONTROL

A. General Approach

The idea of model predictive control is to solve an optimal

control problem for a system

˙⃗x = Ax⃗+Bu⃗ , (5)

where x⃗ is the vector of system sates, u⃗ are the input

variables, A the matrix representing the system dynamics

and B is representing the influence of the input variables on

the system. The MPC approach then derives the input u⃗ such

that it optimizes the objective function

J = �(x⃗(T )) +

∫ T

t=0

ℒ(x⃗, u⃗, t)dt (6)

over a finite time horizon T , by predicting the future devel-

opment of the system. In this context �(x(T )) penalizes a

deviation of goal state and predicted end state and ℒ is the

Langrangian of the system. For discrete time systems the

integral in (6) is replaced by a sum over the timesteps until

the prediction horizon. A straight forward choice for ℒ is

ℒ = Jz + Ju , (7)

Jz = 1/2 ⋅ (x⃗cmd(t)− x⃗(t))TQ(x⃗cmd(t)− x⃗(t)), (8)

Ju = 1/2 ⋅ u⃗(t)TRu⃗(t) , (9)

where R and Q are both positive semidefinit diagonal

matrices. Thus, the deviation of the current or predicted

state x⃗(t) from the target state x⃗cmd(t) along the trajectory

are penalized, as well as the applied control effort Ju. The

advantage of model predictive control is, that it is straight

forward to take into account state constraints or input satu-

ration when calculating the optimal input u⃗. Therefore, it is

possible to address the singularities mentioned in section II-C

by incorporating them via the Langrangian ℒ (section IV-A)

into the objective function.

B. Optimization by Gradient Descent

One possible method to perform the optimization step

is gradient descent based optimization by the Pontryagin

minimum principle (PMP) [20], [22]. The basic idea of the

PMP is to minimize the Hamiltonian

ℋ(x⃗, u⃗, �⃗, t) = ℒ(x⃗, u⃗, t) + �⃗T (t)f⃗(x⃗, u⃗) (10)

which incorporates the objective functional J through the

Lagrangian and the system dynamics f⃗(x⃗, u⃗) via the costates

or Lagrange-multipliers �⃗. As the approach is not constrained

to linear systems the dynamics is expressed by the function

f⃗(x⃗, u⃗) instead of using equation (5). One prerequisite for

obtaining an optimal solutions is that the Hamiltonian ℋ
and thus the objective function J has to be continously

differentiable. Then a solution optimizes the problem if the

conditions

˙⃗x = ∂ℋ/∂�⃗ , (11)

˙⃗
� = −∂ℋ/∂x⃗ , with (12)

�⃗(T ) =
∂�(x⃗(T ))

∂x⃗
and (13)

∂ℋ/∂u⃗ = 0 (14)

are fullfilled. It has to be noted that equation (14) is not

applicable if u⃗ is constrained to an intervall with optimal u⃗opt

at the edges or outside this intervall. Optimization in discrete

time is performed analogously, while the Hamiltonian

ℋ(x⃗k, u⃗k, �⃗k, k) = ℒ(x⃗k, u⃗k, k) + �⃗T
k+1f⃗(x⃗k, u⃗k) (15)

then depends on the costate �⃗k+1 from the next time step.

An explicit formulation of the optimization procedure when

embedded into a MPC approach can be found in [20],

[22]. Employing the PMP for optimization is especially

appropriate, as the gradient descent has analogies to theo-

retical mechanics and thus fits especially well to the earlier

implemented PF approach.
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IV. PREDICTIVE POTENTIAL FIELDS

A. Specifying Dynamics and Objective Function

To ensure adherence to the non-holonomic constraints the

system state is composed by the spherical coordinates of the

twist vector, as described in equation (2). Choosing this state

representation the transformation into the according steering

angles and drive rates as given in equation (3) becomes

nonlinear. Thus, the resulting commanded steering velocities
˙⃗'S are a function of both, the command inputs (�̇r, '̇r, �̇r)

T

as well as the current state (�r, 'r, �r). Therefore and to

achieve smooth control inputs, the state vector is augmented

by adding an additional integration step and by choosing

B in equation (5) such that only the augmented states

(�̇r, '̇r, �̇r)
T are directly controlled through the inputs u⃗k.

To allow shorter formulation the states (�r, �̇r)
T are omitted

in the following. These states do not influence the critical

steering commands. Hence, the vector x⃗r representing the

system state of the pseudo-omnidirectional undercarriage and

the input-vector u⃗r are set to

x⃗r =
(

'r, �r, '̇r, �̇r

)T

, (16)

u⃗r = (F',r, F�,r)
T

(17)

and the system dynamics become

f⃗(x⃗, u⃗) = (x3, x4, u1/m, u2/m)
T

, with (18)

A = ∂f⃗/∂x⃗ , (19)

B = ∂f⃗/∂u⃗ . (20)

The introductiuon of the integration constant m in equa-

tion (18) was chosen to stick to the analogy of the input

u⃗ to virtual forces (F',r, F�,r)
T . For a convenient writing it

is following assumed that m = 1 and the integration constant

is omitted.

Thus, saturation of the steering actuator inputs can be

avoided by formulation of a state constraint on the aug-

mented state-space. Therefore, the critical regions are incor-

porated into the fitness criteria in form of repulsive potentials

J = �(xN ) +

N−1∑

k=0

(

Jz + Ju +

M∑

i=0

Jo
i

)

(21)

Jo
i =

{

�o
(

1

ri
− 1

r0

)2

∀ ri ≤ r0

0 ∀ ri > r0
(22)

ri =

√
(
'r − 'o

i

a

)2

+

(
�r − �oi

b

)2

, (23)

where M is the number of steerable wheels, �o is a scaling

factor to adjust the gradient of the repulsive potentials, r0
constrains the region of influence of the potential fields and

(', �)oi is the position of the i-th wheel’s steering axis after

transformation into the spherical twist coordinate space. To

continue with the analogy to forces and potential fields,

the derivatives ('̇r,cmd, �̇r,cmd) along the commanded state

trajectory are set to 0⃗ by default. Accordingly, the diagonal

elements of Q associated to the derivatives of the original

states are set to

q33 = q44 = k� , (24)

resembling friction coefficients while the diagonal elements

associated to the original state variables are set to

q11 = q22 = kp (25)

resembling a proportional spring coefficient. Therefore, our

system and objective function is analogous to a mechanical

system subject to attractive, repulsive and dissipative forces.

B. Costate Enforcement

The so far proposed control scheme can be inadequate

if the state shows a large control difference in the original

states (xr,1, xr,2)
T . As all states enter the objective function

quadratic, this can result in control-inputs which lead to high

velocities (xr,3, xr,4)
T . However, increasing k� to penalize

high velocities leads to a slow system response. One pos-

sibility to cope with this is to define an additional penalty

Jz∗ wich only penalizes (xr,3, xr,4)
T with a high value k∗� ,

that is only taken into account when (xr,3, xr,4)
T exceed

a certain limit. For a more cenvenient writing we write v⃗r
instead of (xr,3, xr,4)

T in the following. One drawback of

this approach is, that high gains usually tend to adversely

influence stability and convergence. Moreover, this measure

is only effective when the velocity has already reached a

high value.

An alternative was sketched by Khatib in his potential

field approach [12]. With respect to velocity servo-control

he proposed to calculate an equilibrium velocity

v⃗eq = kp/k� ⋅ (x⃗cmd − x⃗) , (26)

where attractive and frictional forces would cancel out each

other. This velocity is then compared with the maximum

allowed velocity vmax. The smaller one is chosen and the

forces associated to the attractive potential are calculated

based on the deviation of the system’s current velocity from

this equilibrium velocity

Fatt = k�(min

(

1,
vmax

∣v⃗eq∣

)

⋅ v⃗eq − v⃗r) . (27)

Bearing in mind the analogies of the Hamiltonian used in

mathmatical optimization and the Hamiltonian as defined in

theoretical mechanics we propose to transfer the approach of

Khatib to the calculation of the costates. In mechanics the

Hamiltonian ℋ∗ resembles the total energy of the system

ℋ∗ =
∑

i

p⃗i ˙⃗qi − ℒ∗ (28)

where ˙⃗qi are the generalized coordinates of the system, p⃗i are

the generalized momenta or the impulses respectively and ℒ∗

is the Langrangian as defined in mechanics. The evolution of

the system is then governed by the two canonical equations

˙⃗p = −∂ℋ∗

/∂q⃗ , (29)

˙⃗q = ∂ℋ∗

/∂p⃗ . (30)

4778



Comparing equation (29) and equation (12) of the PMP

optimization and bearing in mind that the derivative of

an impulse ˙⃗p is a force, illustrates the analogy between

the derivative of the costate
˙⃗
� and forces. Writing out

equation (12) and equation (14) one obtains

∂ℋ
∂u⃗

= u⃗TR+ �⃗T ∂f⃗(x⃗, u⃗)

∂u⃗
, (31)

˙⃗
�T = (Δx⃗r)

TQ−
M∑

i=0

∂Jo
i

∂x⃗
︸ ︷︷ ︸

−∂ℒ/∂x⃗k=
˙⃗
�T

− �⃗T ∂f⃗(x⃗, u⃗)

∂x⃗
︸ ︷︷ ︸

:≈v⃗r,pknu

, (32)

where Δx⃗r is the control difference x⃗r,cmd − x⃗r and v⃗r,p
is a pseudo-velocity resulting from pure integration of the

proportional forces on the original states. The first under-

braced term is the negative derivative of the Lagrangian ℒ
and thus resembles the negative of the forces originated by

the potential fields and the frictional coefficients

�̇ℒ1 = ('r,cmd − 'r)q11 −
M∑

i=0

∂Jo
i

∂'r
(33)

�̇ℒ2 = (�r,cmd − �r)q22 −
M∑

i=0

∂Jo
i

∂�r
(34)

�̇ℒ3 = ('̇r,cmd − '̇r)q33 (35)

�̇ℒ4 = (�̇r,cmd − �̇r)q44 , (36)

with '̇r,cmd ≡ �̇r,cmd ≡ 0 by default, as mentioned in

section IV-A.

In analogy to [12] the pseudo-velocities v⃗r,p can be inter-

preted as specifying a desired velocity in a velocity servo-

control. Having in mind the system dynamics as defined in

equation (18) one can see that the evolution of the input u⃗
in equation (31) is directly only influenced by the costates

(�3, �4) associated to the velocities v⃗r. Thus, to ensure that

the controller enforces a limit vmax even if the control-

difference in the original state is large we calculate an

equilibrium velocity according to

'̇eq = 1/q33 ⋅
(

−q11('r,cmd − 'r) +

M∑

i=0

∂Jo
i

∂'r

)

(37)

�̇eq = 1/q44 ⋅
(

−q22(�r,cmd − �r) +
M∑

i=0

∂Jo
i

∂�r

)

(38)

∣v⃗eq∣ =
√

'2
eq + �2eq (39)

and redefine the derivated Lagrangian from equation (32)

�̇ℒ1 := 0 (40)

�̇ℒ2 := 0 (41)

�̇ℒ3 :=

(

min

(

1,
vmax

∣v⃗eq∣

)

⋅ '̇eq − '̇r

)

q33 (42)

�̇ℒ4 :=

(

min

(

1,
vmax

∣v⃗eq∣

)

⋅ �̇eq − �̇r

)

q44 . (43)

V. RESULTS

A. Simulative Results

The proposed approach is evaluated in simulation with

respect to the specific kinematics of Care-O-bot R⃝ 3. The

system is simulated with a time step size of 20ms. The

simulation takes into account a transport delay of the mea-

sured sizes of 10ms and the restrictions on velocity and

acceleration of the wheel modules.

The simulation was done for three different controllers: for

the earlier implemented conventional potential field based

controller (dotted black lines in Fig. 5), for a classical

model predictive control approach with an additional penalty

J∗ = (max(0, (ẋmax − ∣ẋeq∣) k∗nu))2 (dash-dotted blue) and

the proposed predictive potential field (solid green) which is

based on enforcing the costates during the MPC optimization

step. To simplify comparison of the results all controllers

were tuned to be similar fast.

Fig. 5 depicts the results of a simulation run for a sequence

of target configurations, that leads to critical situations for

the system configuration. One can see that the conventional

potential field based approach is clearly outperformed by the

two predictive approaches. Its trajectory shows strong oscil-

lations when running into the repulsive potentials (Fig. 5(a)).

While being quite fast for the first two sections (a to b; b

to c) of the trajectory these oscillations result in increased

duration for the last section (Fig. 5(b)). Moreover, the PF

approach causes significantly larger steering rate commands,

exceeding the limits of the system (Fig. 5(c)). Of course the

PF controller can be tuned to show stable behavior with less

oscillations and lower steering rates. However, this results in

a significantly slower control performance.

The two MPC based approaches show similar results.

Yet, one can see that, while the path of the classical MPC

approach is slightly smoother than that of the approach

with predictive potential fields (Fig. 5(a)), the last one is

faster especially in the first two sections (Fig. 5(b)) and

goes with smaller maximum steering rates. Moreover, during

implementation the proposed approach with enforcing the

costates has proven to be more robust to parameter changes

than the conventional MPC approach. One reason for that

might be, that by constraining the equilibrium velocity and

modifying the costates, the inputs stay smaller, even when the

trajectory bumps into a repulsive potential. Thus, especially

the optimization step width could be set to a higher value.

B. Experimental Results

The proposed controller with predictive potential fields

was implemented and tested on the mobile base of Care-

O-bot R⃝ 3. The controller was run on a MacBook Pro

with 2.4Ghz Intel Core2Duo Processor. The processing of

one control step (prediction horizon Np = 32, number

of iterations Ni = 4) took about 5.5 ms. Fig. 6 depicts

the behaviour of the controller for an arbitrary trajectory

commanded manually using a joystick. The experimental

results support the simulation results. The controller avoids

the critical regions following a smooth trajectory and keeps

the steering rate bounded.
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Fig. 5. Simulation Results: ICM path in the (', �)-plane for the
following sequence of four target configurations ( a) (', �) = (0, 0);
b) (', �) = (0, 0.8); c) (', �) = (3, 1.23); d) (', �) = (0,−1.4))
and a maximum velocity ∣ẋeq ∣ = 1� rad/s. The target configurations
are indicated with red dashed lines. Results are depicted for the three
investigated controllers: conventionell potential ield (dotted black), classical
model predictive controller (dash-dotted blue) and controler with enforced
costates (solid green).
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Fig. 6. Experimental Results: Resulting ICM path in the (', �)-plane
for a sequence of six target configurations ( a, b, c, d, e, f, a). The target
configurations are indicated with red dashed lines. The figure shows the
results obtained with the PPF controller (solid green) implemented on Care-
O-bot R⃝ 3 mobile robot. Parameterisation of the controller is identical to
the simulated controller depicted in Fig. 5.
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VI. CONCLUSION AND FUTURE WORK

Within this work, we motivated how the classical potential

field formalisms, with friction terms and constrained equi-

librium velocities, can be expanded by a predictive hori-

zon. Therefore, we drew from the model predictive control

methodologies. Formulating the control law according to the

MPC scheme, performing gradient descent based optimiza-

tion over the prediction horizon according to the Pontryagin

minimum principle the constrained equilibrium velocities

where introduced by modifying the Lagrange-multipliers

during backpropagation of the costates. Additionally, the

constrained equilibrium velocities were extended to cover

the attractive as well as the repulsive forces.

We applied the proposed approach to the control of

a quasi-omnidirectional undercarriage subject to actuator

concurrency and input saturation constraints. The approach

based on predictive potential fields clearly outperformed

the conventional PF approach and showed a slightly bet-

ter performance than the MPC approach. Moreover, dur-

ing implementation we experienced that our approach with

enforced costates was less sensitive to parameter changes.

Sensitivity to parameter changes can be a critical issue during

implementation of model predictive controllers.

It has to be noted that our approach apperently is not

strictly derived through the underlying mathmatical for-

malisms but motivated by some analogies. There are two sig-

nificant differences between the Hamiltonian used in optimal

control and that used in theoretical mechanics. Nevertheless,

interpreting our modifications as calculating a series of

desired velocities along a trajectory, which is then input

to an according controller motivates the legitimacy of the

proposed approach. Moreover, the employed system model

is conceivable simple. In fact, we treated the generality of

MPC approaches against simpler design and dimensioning of

the controller. Yet, the derived formalism is powerful enough

for many reactive navigation tasks, where wheeled mobile

robots are involved.

Besides investigating the behavior of the implemented

controller within the navigation architecture of Care-O-

bot R⃝ 3, we currently plan to apply the derived approach

in context of people following and guiding. This seems

especially interesting as it implies not only to reach a certain

position, but more – by taking into account the motion of

surrounding people – to follow a fast changing trajectory.
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