
Coordinated Navigation of Multi-Robot Systems with Binary

Constraints

Bernd Brüggemann and Dirk Schulz

Abstract— In this paper we present a method for navigating a
multi-robot system through an environment while additionally
maintaining a predefined set of constraints. Possible constraints
are the requirement to keep up the direct line-of-sight between
robots or to ensure that robots stay within a certain distance.
Our approach is based on graph structures that model move-
ments and constraints separately, in order to cover different
robots and a large class of possible constraints. Additionally,
the partition of movement and constraint graph allows us to use
known graph algorithms like Steiner trees to solve the problem
of finding a target configuration for the robots. We construct
so called separated distance graphs from the Steiner tree and
the underlying roadmap graph, which allow assembling valid
navigation plans fast.

I. INTRODUCTION

A. Motivation

The use of a multi-robot system (MRS) has several advan-

tages over single-robot solutions: a group of robots is more

robust against failure, it can perform many tasks faster, and

specialized robots for specific sub-tasks can be employed to

more effectively achieve a common goal. However, to exploit

these advantages, the task execution of the group of robots

needs to be coordinated. In this work, we look at planning

the joint task execution. More specifically, we investigate the

problem of coordinated multi-robot navigation, if additional

constraints need to be fulfilled. Such constraints are not

directly related to the goal to be achieved, but have to hold

throughout task execution, to ensure a successful mission.

In this paper we propose a graph-based approach that

allows specifying and maintaining a large class of such

constraints, like

• ensuring that each individual robot never departs from

the group by more than a certain distance,

• maintaining a formation in which every robot can be

seen by its neighbors, or

• keeping up the wireless communication within a com-

plete group of robots.

Note that maintaining such constraints may require more

robots than fulfilling the direct goals of a mission alone, e.g.

if additional robots are required as relays to ensure the com-

munication. Our planning approach also allows estimating

the number of robots required to fulfil such a task.

In this article we will explain the graph construction un-

derlying our planning approach, mostly using the problem of

B. Brüggemann and Dirk Schulz are with Unmanned
Systems Group, Fraunhofer FKIE, 53343 Wachtberg,
Germany {bernd.brueggemann|dirk.schulz}
@fkie.fraunhofer.de

reaching a given set of goal positions while maintaining ad-

ditional constraints as an illustrating example. The main idea

of our approach is to use two separate models for the actual

motion planning and for ensuring a global constraint. In a

nutshell we construct a constraint graph from all given sets of

binary constraints between robots and employ a Steiner tree

algorithm for computing the final robot placements that fulfil

the global constraint and achieve the mission objective. The

actual navigation of the robots is planned using a navigation

roadmap graph. Generating a navigation plan towards a target

placement of the robots requires linking both graph structures

in order to find possible paths for all robots. We introduce a

third graph structure called separated distance graph (SDG)

for this purpose that allows to quickly find feasible paths,

which do not violate the group constraint. Based on the SDG

we develop a search algorithm for coordinated navigation

plans for a group of robots. We present several simulation

experiments illustrating the properties and the performance

of our approach in different types of environments.

The reminder of this paper is organized as follows: after

a short overview showing robot navigation and coordination

approaches, we define the important graph structures needed

for our approach, and show some of their basic properties

in Section II. Section III describes the planning problem and

a possible solution. In Section IV some planning results of

representative toy problems are presented to illustrate the

algorithm. We conclude in Section V with a summary and

some suggestions for future work.

B. Related Work

Only a well coordinated multi-robot system is able to fully

utilize its capabilities. In the last years, as MRS got into focus

of research, different kinds of coordination systems for MRS

were developed.

When coordinate a MRS several different aspects have

to be taken into account. Usually there are several different

tasks to fulfil. Not only reaching a target position is important

but also to achieve a mission goal. Especially when several

robots have to work together because a single robot is not

able to solve the problem (e.g. building up a communication

line to get information from a specific robot) So task alloca-

tion is one important problem MRS have to cope with (see

e.g. [4], [10], [11]).

When moving several robots in the same physical environ-

ment to different targets the problem of deadlocks as well as

congestion occurs. If several robots have to reach different

target locations in an environment with narrow passages,

the robots may block or hinder themselves and non-optimal

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 3854

Fig. 1. An example for a roadmap graph and a constraint graph. Both have
exactly the same vertices. The weight of each connection is 1.

paths have to be chosen. So the coordinated execution of a

navigation plan in a MRS is a subject of research. There

are several approaches to solve this problem in an either

centralized or decoupled way (see e.g. [2], [6], [12]).

The here presented problem of moving a group of robots

to certain destinations bear analogy to the so called multi-

robot routing [5]. While we want to position one robot at

each target, in multi-robot routing each target has to be

visited by at least one robot. Nevertheless some problems

occurring are similar e.g. finding the overall shortest path.

Mosteo et al dealt in [9] with the problem of solving the

multi-robot routing with communication constraint. In their

algorithm connect tree, in contrast to our approach, the

constraint problem is solved locally. To reach a target a group

of robots is send to it. If the signal quality drops below a

certain threshold a robot from this group has to stay as relay

(detailed described in [8]). If a target can be reached depends

on the number of robots in the group which is assigned to

this target. As this number is not known in advance and

can only be estimated, re-planning is necessary if a group

contains to few robots. In this approach the plan consist of

an intelligent way of assigning targets to the groups. Beside

the slightly different task, there are some difference in the

abilities of the connect tree algorithm and our approach.

Although both algorithm guarantees a plan which do not

violated the constraint our approach depends heavily on the

world model to predict if the constraint between to points in

the environment holds. in the current state of development it

cannot deal with local changes. Furthermore, the connect

tree algorithm is limited to the communication constraint

while the here presented algorithm supports a larger group of

constraints. In the end our global planning approach prevents

the necessaries of re-planning during execution.

II. BASICS AND DEFINITIONS

In the following we will briefly introduce the notation used

throughout the remaining article and formulate the actual

task.

Our approach basically computes coordinated navigation

plans on a roadmap graph Gm = (Vm, Em, d) within the free

space of the environment, where d denotes the edge costs.

Each vertex represents a position in (or a small area of) the

environment and the edge costs correspond to the path length

between the corresponding positions in the environment. The

maximum “distance” between two neighbouring vertices is

crucial in our approach, because it must not exceed the

limits of the physical constraints we want to ensure, e.g.

the reliable communication range of a Wi-Fi device if we

want to maintain group communication.

Our aim is to move a group of robots from a given start

configuration S0 to some target configuration St. Here, a

configuration S = (v1, . . . , vK) for a group of K robots is a

vector that assigns each robot to a vertex of Gm. A motion

action a(S, S′) transfers a configuration S of the multi-robot

system into a new configuration S′ by “moving” a single

robot along an edge of Gm.

Within Gm motion planning for the MRS can be carried

out by searching for a sequence of motion actions leading

from S0 to St, e.g. using the A*-algorithm. However, we

want to ensure that a global constraint on the multi-robot con-

figuration holds during the whole motion sequence, which

requires additional efforts.

We introduce a constraint graph Gc = (Vc, Ec, w) for this

purpose. The vertex set Vc of this graph coincides with Vm

and the edges in Ec formalize binary constraints between two

positions in the environment. A binary constraint (v, v′) ∈
Ec holds in a configuration S if two robots are located at v

and v′ in S. Intuitively, such a constraint models a physical

requirement in the real world. For example, if we want

to ensure the wireless communication between two robots

located at positions v and v′, we have to make sure that the

expected signal strength L(v, v′) between the two vertices

exceeds a certain threshold Lthresh. In that case we add

constraints to all pairs of adjacent vertices in the navigation

roadmap, (v, v′) ∈ Em, for which L(v, v′) ≥ Lthresh.

For both graphs (see Fig. 1), we set edge weights w

and d to 1. For the navigation roadmap this is achieved by

arranging the vertices in a regular grid. For the constraint

graph, the arbitrary choice of 1 has some convenient effects

as we shall see later.

In our approach we now use the constraint graph to

constrain complete configurations of the MRS. We say a

configuration S is valid if Gc restricted to the vertices in

S is a single-component sub-graph of Gc. Additionally, we

say a motion action a(S, S′) is valid if it transfers the valid

configuration S into a valid configuration S′.

The constrained motion coordination task now is to find

a sequence of valid motion actions that transfers a valid

initial configuration S0 into a valid target configuration St.

However, the user generally specifies only a set of target

locations Z ⊂ Vm, |Z| ≤ k, for the robots, based on the

mission to be accomplished. Note that Z, interpreted as a

multi-robot configuration, might not be valid, because the

global constraint between the robots is generally not taken

into account. The overall task can therefore be divided into

two separate parts:

1) Given the constraint graph Gc and the set of targets

Z, find a valid target configuration St.

2) Given a valid start configuration S0 for k robots, the

3855

constraint graph Gc, the navigation roadmap Gm and

the valid target configuration St, find a sequence of

valid motion actions, a1, . . . , at that transfers S0 into

St via a sequence of valid intermediate configurations.

III. CONSTRAINED MOTION COORDINATION FOR MRS

A. Finding a Valid Target Configuration

The task of finding a valid target configuration for the

multi-robot system involves placing robots at each mission

target zi ∈ Z, and placing additional robots on vertices of Vc

in such way, that the resulting configuration is valid. For a

valid configuration S there always exists at least one holding

constraint in the constraint graph for each vertex in S, and

the corresponding edge of the constraint graph connects

this vertex with some other vertex in S. The vertices in S

together with the subset of holding constraint edges build a

single-component sub-graph within the constraint graph. For

this reason, one can obtain a valid target configuration by

constructing its corresponding single-component constraint

sub-graph. For this purpose we have to place the additional

robots to achieve single-connectedness. This task is closely

related to the Steiner tree problem.

The Steiner tree problem is a well known problem in

graph theory, often encountered in communication and in

technical computer science. Let G = (V,E, c, T) be a single-

component, non-directed graph. V is the set of vertices, E

the set of edges and c the weight associated with the edges.

The set T , called terminals, is a subset of the vertices. A tree

in graph G is called Steiner tree if it connects all vertices

from T and the sum of all weights is minimal. A Steiner

tree normally consists of more than the terminal vertices.

The additional vertices are called Steiner vertices.

Considering the set of targets Z as terminals, the Steiner

tree problem exactly matches the task of finding the target

configuration St. The Steiner tree G = (Vc, Ec, w, Z) for the

constraint graph Gc is one possible valid target configuration

St. In fact, this solution achieves optimality with respect to

the number of robots required. As Gc has only equal edge

weights of one, the Steiner tree minimizes the number of

Steiner vertices.

Proof: The total weight of a Steiner tree is Σ
|G|
i=1

ci

where |G| is the number of edges in the tree. If all weights

are 1, the sum is equal to the number of edges. As the Steiner

tree is a tree, the number of edges is equal to the number

of vertices minus 1. As the number of terminals is fixed, the

Steiner tree minimizes the number of Steiner vertices.

To sum up, finding a valid target configuration where all

targets are reached by a robot and the global constraint

is fulfilled, is equal to computing the Steiner tree on the

constraint graph with the robots’ mission targets as terminals.

Unfortunately, computing the Steiner tree is NP-complete

[3], but several heuristics exist which compute near optimal

Steiner trees in polynomial time (see e.g. [1]).

Knowing that the Steiner tree is a solution for the problem

of finding St, we can state two properties of the problem:

First, you need at least |Z| plus the number of Steiner

vertices robots to fulfil the task.

S

V

1234

5 6 7 8 T

Fig. 2. There is no non-trivial upper limit for the number of relay robots
needed. Constraint Graph edges are dashed lined and connections of the
roadmap are not displayed. Each vertex is connected by an edge to its
direct neighbour in horizontal and vertical direction. Depending on how the
constrain graph is build relay robots may be needed on each vertex.

Proof: As stated above, for graphs with all weights

equal to one, the Steiner tree minimizes the number of

Steiner vertices. Since the Steiner tree is one solution for St,

it is also the solution with the minimal number of vertices.

Therefore, you need at least that many robots to obtain a

valid target configuration.

This limit is hard and gives the number of robots needed

for any valid target configuration. But it is not guaranteed

that you can reach this configuration with the same number

of robots. More robots might be necessary for intermediate

configurations.

Second, as can be seen in Figure 2, if you allow any set

of binary constraints, in the worst case the number of robots

required to obtain a valid plan is equal to |Vc|.
This shows that it may be difficult to move a robot from

vertex a to vertex b without violating the constraint. The

problem to find positions for relay-robots if needed arises.

This leads to the question how many robots are need to get

the robot to b.

B. Finding Valid Navigation Plans

As can be seen in Figure 2. All robots have to reach certain

target vertices (either a Steiner vertex or a terminal) in the

target configuration St and the global constraint between the

robots has to be maintained throughout the navigation. While

the robots’ motions are planned based on the navigation

roadmap Gm, the constraint can only be checked based on

the constraint graph Gc. To plan valid paths, we therefore

frequently have to map between constraint paths in Gc and

motion paths in the navigation roadmap Gm. As shown in

Figure 2, such paths are not necessarily shortest paths to the

target vertices; they may have any topology. Additionally, to

navigate a robot to its target vertex, further robots may be

needed to build up relays to ensure the global constraint.

To ease this planning problem we introduce a graph

structure that we call Separated Distance Graph (SDG). A

SDG(v) = (VS(v), ES(v), W) is constructed for a specific

vertex v; its vertices VS(v) are v together with all vertices

directly connected to v in Gc. Let Gsub
m (v) be the navigation

roadmap restricted to the vertices in VS(v). There is an edge

between v and a vertex in SDG(v) if there is a path in

Gsub
m (v) between both. The weight of this edge is equal to

the number of vertices on this path.

Intuitively, an edge (v, x) ∈ ES(v) states that a robot can

travel without violating its binary constraint to x as long

3856

as a robot is located at the vertex v. The set of separated

distance graphs for a given planning problem now allows

us to derive a search algorithm for an abstract navigation

plan that achieves the target configuration. This algorithm

performs a search for valid intermediate robot configurations

instead of searching in the much larger space of possible

motions in the navigation roadmap Gm.

Formally, we want to find a sequence of valid config-

urations S0, . . . , SK that leads to the target configuration

St = (s1

t , . . . , s
K
t) starting from the start configuration

S0 = (s1

0
, . . . , sK

0
). We make two additional assumptions:

1) All robots start at the same location s0.

2) One robot stays fixed, i.e. s
j
t = s0 for some robot.

These two conditions allow to directly use the Steiner tree

corresponding to St as an abstract plan for moving the robots.

The idea is to sequentially cover the nodes of St in the

sequence of a tree traversal through the Steiner tree starting

from s0.

However, implementing this approach is not straight for-

ward. Although two neighbouring vertices in the Steiner

tree always fulfil the constraint that has to be ensured, it

is generally not possible to navigate a single robot on a path

through Gm to this vertex, without violating the constraint

at some intermediate position. This happens, e.g. if reaching

a position requires lengthy detours due to obstacles in the

environment. So in the general case, additional temporary

relay-robots are required. To compute a valid navigation plan

from a vertex a of the Steiner tree to a neighbouring vertex b,

we therefore perform a breadth-first search of valid motions

through Gm.

To find the path and the positions for the relay robots

we build up a search tree. The root of the tree is the start

vertex a. At the root we add those vertices as leafs which are

connected with a in SDG(a). If b is now within the search

tree, there is a direct way from a to b without the need of a

relay robot. Otherwise we perform following steps until b is

in the search tree:

1) Let x be the leaf of the search tree with the lowest

depth

2) Add all vertices from SDG(x) which are not already

in the search tree as leafs to x

If b is added in that way, the positions of the relay robots

can be determined by following the path from b to a in the

search tree. Every vertex visit on that path is a position for

one relay-robot.

By construction, the breadth-first search returns the path

from a to b with the smallest number of intermediate relay-

robots required, i.e. the number of intermediate nodes on

the path. On each temporary relay position, we leave one

robot behind, in order to maintain the constraint. As soon

as the remaining robots reach the next target location, the

temporary relay-robots can catch up, without violating the

constraint, e.g. by moving the farthest robot first.

Following this procedure, the complete target configura-

tion can be reached without violating the global constraint.

A sufficient number of robots to execute this plan is K plus

the maximum number of temporary relay-robots required to

traverse a single edge of the Steiner tree.

C. Summing up

We want to plan the coordinated navigation of a group of

robots which have the task to cover a set of target locations

Z = {z1, . . . , zl}. We assume that all robots start at the same

location z1, that is also a target location – think of a base

station that is supposed to remain fixed. During navigation,

the robots must maintain a global constraint that can be

expressed by a graph of binary constraints between robots.

This constraint is fulfilled if the graph of holding constraints

between robots has a single-component. An example for such

a global constraint is maintaining wireless group communi-

cation during navigation. Due to the additional constraint,

the task might require more than |Z| robots. To solve this

problem, we carry out the following steps:

1) Given the targets Z, a navigation roadmap Gm for

the environment and a symmetric binary relation that

should hold between robots, we compute the corre-

sponding constraint graph Gc for the environment.

2) Given Gm and Gc we compute SDGs for all vertices

of Gc.

3) Given Z and Gc, we compute a valid target configura-

tion St = (s1

t , . . . , s
K
t) by approximately solving the

associated Steiner tree Problem.

4) Given s0, St and the set of SDGs, we compute the

temporary relay positions required to traverse the edges

of the Steiner tree corresponding to St. This procedure

also gives an upper bound on the number of robots

required to execute the task.

5) The final plan now consists of the tree traversal of

the Steiner tree with all robots, placing a robot at

each target location, as well as placing and removing

temporary relay-robots.

D. Computational Complexity

The resulting planning process can be divided into two

parts: The pre-processing and the query. During the pre-

processing, the constraint graph Gc and the set of all SDGs

are build up. When building the constraint graph each pair

of vertices has to be checked whether the binary constraint

is satisfied. Although certain constraints allow to reduce the

number of pairs to check, the overall complexity is in O(n2),
with n being the number of vertices in Gc. The cost of

building the set of SDGs is rather dependent on the number

of neighbors a vertex in Gc has. For each vertex v its SDG

has to be set up. Therefore, each vertex connected with v

in Gc has to be put into the SDG and it has to be checked

whether there is a connection in Gm. Let k be the number

of vertices in the SDGs, and s the number of edges in

Gsub
m (v). As the needed information can be obtained e.g.

by a Dijkstra-Algorithm, the time needed to build up one

SDG is in O(k · log(k) + s). As it has to be done for

each vertex in Gc the overall computational complexity is

in O(n · (k · log(k) + s)).

3857

3858

3859

