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Abstract— Robotics research tends to focus upon either non-
contact sensing or machine manipulation, but not both. This
paper explores the benefits of combining the two by addressing
the problem of classifying unknown objects, such as found in
service robot applications. In the proposed approach, an object
lies on a flat background, and the goal of the robot is to interact
with and classify each object so that it can be studied further.
The algorithm considers each object to be classified using color,
shape, and flexibility. Experiments on a number of different
objects demonstrate the ability of efficiently classifying and
labeling each item through interaction.

I. INTRODUCTION

Visual sensing and machine manipulation are well-studied

topics within robotics research. Most of this effort, how-

ever, concentrates on only one topic or the other without

considering the significant coupling of the two. To be sure,

an important body of work has been aimed at using remote

sensing to assist in real time with manipulation, e.g., visually-

guided manipulation [1][2]. However, there has been rela-

tively little work aimed at the reverse problem, namely, using

manipulation to guide non-contact sensing in meaningful

ways [3] [4].

Yet, humans routinely adopt this latter approach of

“manipulation-guided sensing.” For example, we routinely

shuffle through papers on a desk or sift through objects in

a drawer to more quickly and efficiently identify items of

interest. In such cases, it is our interaction with the environ-

ment that increases our understanding of the surroundings,

in order to more effectively guide our actions to achieve the

desired goal. In a similar manner, animals such as raccoons

[5] and cats use their front paws to poke, swat, and rummage

to better understand their surroundings.

As a first step in addressing this problem, Katz and Brock

[3] describe a system in which a manipulator learns about the

environment by interacting with it. Video available from an

overhead camera is analyzed by tracking feature points on an

object in order to determine the number, location, and type

(revolute or prismatic) of joints. In later work, Brock and

colleagues [6] use video to locate and track objects. To de-

scribe this new approach toward autonomous manipulation,

they introduce the term “interactive perception.” Rather than

solving action and perception separately, interactive percep-

tion (also known as manipulated-guided sensing) argues that

both should be addressed simultaneously.

Inspired by the above work, this paper introduces a new

approach to interactive perception, in which successive ma-

nipulations of objects in an environment are used to increase

vision-based understanding of that environment, and vice

Fig. 1. The proposed setting for manipulation-guided sensing. The robotic
system automatically learns the characteristics of an object by interacting
with it. An overhead camera (not shown) is used for sensing the object.

versa (see Figure 1). We show that deliberate actions can

alter the environment in a way that simplifies perception and

consequently future interactions. Our work differs from that

of Katz and Brock [3] in its purpose and scope. Our system is

applicable to both rigid and non-rigid objects, and it produces

a richer description of the object including a skeleton and

appearance model, both of which are used to guide future

interactions.

Another piece of related work is that of Saxena et al. [7],

in which information about a scene is gathered to generate

a 3D model of each object in the scene which is then

compared against a database of previously created models

whose grasping locations have already been determined.

Other work on grasping is presented in [8] [9]. Our method

is different in that the objects being examined are unknown

a priori.

Our work is also related to affordance learning [10] [11]

[12]. In [10] [11], a robot learns the properties of an object

(e.g., whether it rolls when tapped), as well as the association

of properties (color, shape) and words spoken audibly by

a trainer to their meaning. The work of [12] is similar

in that it addresses the problem of learning about visual

properties and spatial relations. Though related, our approach

differs from these in that our goal is not to learn semantic

associations with a tutor but rather to autonomously learn

low-level properties for classification and manipulation.

II. APPROACH

A. Overview

The purpose of this work is to automatically learn the

properties of an object for the purpose of classification

and future manipulation. Figure 2 presents an overview of

our classification process. First, the object is located in the

image, and a color histogram model [13] is captured in

order to model the object. Then, a 2D skeleton of the object

The 2010 IEEE/RSJ International Conference on 
Intelligent Robots and Systems 
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 1728



Fig. 2. Overview of our system for manipulation-guided classification of
an unknown object.

is determined using a standard image-based skeletonization

algorithm. The robotic arm then interacts with the object

by prodding it from different directions. By monitoring the

object’s response to these movements, the revolute joints of

the object are computed, as well as potential grasp points.

We focus in this work on revolute joints because they are

common in everyday situations (e.g., stapler, scissors, pliers,

hedge trimmers, etc.) and because they more closely model

the behavior of non-rigid objects containing stiffness (e.g.,

stuffed animals). Each of the boxes in the flowchart are now

described in more detail.

B. Color histogram labeling

A color histogram is a representation of the distribution

of the colors in a region of an image, derived by counting

the number of pixels with a given set of color values [13].

Color histograms are chosen in this work because they are

invariant to translation and rotation about the viewing axis,

and for most objects they remain stable despite changes

in viewing direction, scale, and 3D rotation. Objects are

matched by comparing their color histograms with models

of previously encountered objects using the technique of

histogram intersection [13], which is conveniently affected

by subtle differences in small areas of color while at the

same time being guided by the dominant colors. We use

eight bins for each (red, green, blue) color channel, leading

to 512 total bins. The histogram intersection is normalized

by the number of pixels in the region, leading to a value

between 0 and 1 that can be interpreted as the probability of

a match.

C. Skeletonization

Skeletonization is the process of determining the internal

structure of a 2D image region. One way to describe a

skeleton uses the analogy of a prairie fire: The boundary

of the region is set on fire, and the skeleton is the loci

of pixels where two or more fronts meet and quench each

other [14]. The skeleton is therefore a single-pixel-wide

Fig. 3. LEFT: An isolated object to be classified. MIDDLE: The binary
mask of the object. RIGHT: The image-based skeleton.

representation of the object’s 2D shape. From the skeleton, it

is possible to estimate candidate grasp points by noting the

end points of the skeleton (where a branch terminates), while

candidate revolute joints are given by intersection points of

the skeleton (where two branches meet). It is widely known

that the skeletonization process is extremely susceptible to

noise in the image; therefore, an additional interactive step is

necessary to refine these estimates. Figure 3 gives an example

overhead image of a stuffed bunny on a table, along with its

binary mask (obtained by thresholding) and skeleton.

D. Monitoring object interaction

To improve upon the noisy skeletonization model, the

robot interacts with the object by repeatedly pushing it.

The end effector is placed two inches away from an end

point of the object, and the end effector is moved in the

direction of the vertical or horizontal axis of the image

plane (depending on the distance of the end point to the

top and left image borders). As the robot interacts with

the object, Kanade-Lucas-Tomasi (KLT) features [15] are

tracked between successive image frames to monitor the

scene changes that result from the object motion. These

features are detected and tracked in the largest image region

resulting from graph-based segmentation [16] that does not

touch the image border. We have found it necessary to first

dilate this region by one pixel to ensure that features along

the boundary of the object are included. See Figure 4 for

example features found on an object.

Fig. 4. LEFT: KLT features detected in the whole image. RIGHT: The
subset of features that are located within the foreground region found by
graph-based segmentation.

Tracked features are automatically clustered based on

their Euclidean distance and motion vectors in the image

plane. Features that are near each other and moving sim-

ilarly are grouped together, while those that are far apart

and/or moving differently are separated into distinct groups.

The clustering algorithm is run every five frames to allow

sufficient motion to accumulate. In contrast to the work

of [3], in which small groups with three or fewer features
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are discarded from the image, we have found that such

groups are important when the object contains small regions,

and some of the features have been lost. Therefore, in our

approach all groups with at least two features are retained;

while groups with a single feature point are attached to

the nearest group using Euclidean image distance. Figure

5 illustrates the clustering of feature points.

Fig. 5. Example of clustering feature points according to inter-distance
values, in Euclidean space: (a) Before clustering and (b) after clustering
with decision boundary.

E. Labeling revolute joints using motion

After the features in the region have been grouped, any

group whose computed motion is greater than a prespecified

threshold is determined to be movable and hence connected

to the rest of the object via a revolute joint. The assumption

is that the region with which the robot is interacting moves,

while the other areas remain relatively stationary. In the

case of a rigid, non-articulated object, of course there is

just one region since the entire region moves together. The

surrounding ellipse of the group is computed using principal

component analysis (PCA) [17], and the revolute joint is

considered to be the intersection point closest to the point

of maximum curvature (along the major axis) of the ellipse

toward the interior of the object. Figure 6 gives an example

of the ellipse fitting.

Fig. 6. Example of grouping feature points to locate revolute points near
the endpoints of the major axis.

Figure 7 illustrates the initial skeleton labeled with inter-

section points and end points, along with the revised skeleton

showing revolute joints labeled after several interactions with

the robotic arm. In the revised skeleton, the end points that

are considered noise in the skeleton are removed, where

this determination is made based on whether the nearest

intersection point (traversed along the skeleton) to the end

point is a revolute joint. That is, the only branches in the

skeleton that are considered extremities of the object (and

therefore retained) are those whose intersection point is a

revolute joint.

Fig. 7. LEFT: Original image with initial skeleton overlaid. RIGHT:
Original image with revised skeleton overlaid after multiple interactions.

III. EXPERIMENTAL RESULTS

The proposed approach was applied in a number of

different scenarios to test its ability to perform practical

interactive perception. A PUMA 500 robotic arm was used

to interact with the objects, which rested upon a flat table

with uniform appearance. The objects themselves and their

type were unknown to the system. The entire system, from

image input to manipulation to classification, is automatic.

A. Articulated rigid object

In [3], revolute and prismatic joints on a rigid object were

categorized using a similar technique of grouping feature

points within a video sequence. One scenario shown is that

of determining the revolute joint of a pair of hedge clippers.

To demonstrate that our approach can calculate similar

information, Figure 8 presents the result of our algorithm on

a pair of pliers, along with the steps taken by the algorithm.

For comparison, the result of [3] on the pair of hedge clippers

is shown in Figure 9.

B. Classification experiment

We conducted an experiment with a set of eight unknown

non-rigid objects to demonstrate the classification process

and the possible uses of labeling individual objects for further

learning. The system captured an image of each isolated

object, from which the color histogram and final skeleton

were computed. The images and skeletons are shown in

Figure 10.

After the database of histograms and skeletons was built,

the objects were randomly rearranged in a new order to test

the classification performance of the system. The probability

that the test and training objects were the same was comput-

ing using the color histogram, the number of revolute joints,

and the number of extremities. Two versions of the algorithm

were compared, one using only information available from

vision, the other using information from both vision and the

final skeleton resulting from interaction. Figure 11 shows

the images gathered in the second run along with the best

matching image from the first run. These results demonstrate

that the color histogram and skeleton are fairly robust to

orientation and non-rigid deformations of the objects.
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object object mask skeleton with points

feature points mapped points final skeleton

Fig. 8. Example of our approach on a pair of pliers. In lexicographic order: The original image of the object, the binary mask of the object, the skeleton
with the intersection points (red dots) and end points (green dots) labeled, the feature points gathered from the object, the image after mapping the feature
points to the intersection points, and the final skeleton with the revolute joint (red point) automatically labeled. The red dots represent the intersection
points (possible revolute joints) of the skeleton. The green dots represent the end points (interaction points) of the skeleton.

Fig. 9. Results of [3] on a pair of hedge clippers, with the green dot representing the revolute joint.

1 2 3 4 5 6 7 8

Fig. 10. TOP: Images of the individual objects used for creating a database of previously encountered items. BOTTOM: The final skeletons of the objects
with revolute joints automatically labeled (red dots).

1→ 1 2→ 2 3→ 3 4→ 4 5→ 5 6→ 6 7→ 7 8→ 8

Fig. 11. Results from matching query images obtained during a second run of the system (top) with database images gathered during the first run (bottom).
The numbers indicate the ground truth identity of the object and the matched identity. All of the matches are correct.
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Tables I and II display the comparison matrix indicating

the probability of each query image matching each database

image using vision only and using vision plus interaction,

respectively. The higher the value, the more likely the two

images match. Bold is used to indicate, for each query image,

the database image that contains the highest match value.

Note that Item #1 is correctly classified only when interaction

information is used.

TABLE I

EVALUATING PROBABILITIES OF STUFFED ANIMALS USING VISION

ONLY: THE ROWS REPRESENT QUERY IMAGES AND THE COLUMNS

REPRESENT DATABASE IMAGES.

# 1 2 3 4 5 6 7 8

1 0.84 0.27 0.25 0.22 0.15 0.27 0.92 0.18

2 0.33 0.81 0.35 0.39 0.26 0.38 0.46 0.33

3 0.54 0.50 0.70 0.67 0.45 0.40 0.56 0.36

4 0.41 0.45 0.60 0.88 0.56 0.41 0.39 0.48

5 0.19 0.19 0.25 0.41 0.90 0.20 0.15 0.42

6 0.39 0.51 0.32 0.33 0.27 0.69 0.47 0.35

7 0.78 0.36 0.28 0.24 0.16 0.33 0.97 0.25

8 0.29 0.33 0.37 0.61 0.51 0.33 0.24 0.83

TABLE II

EVALUATING PROBABILITIES OF STUFFED ANIMALS USING VISION AND

THE SKELETON: THE ROWS REPRESENT QUERY IMAGES AND THE

COLUMNS REPRESENT DATABASE IMAGES.

# 1 2 3 4 5 6 7 8

1 0.78 0.76 0.55 0.54 0.48 0.62 0.77 0.53

2 0.68 0.80 0.72 0.66 0.65 0.73 0.75 0.71

3 0.75 0.70 0.83 0.76 0.72 0.73 0.79 0.72

4 0.67 0.65 0.77 0.79 0.78 0.70 0.76 0.73

5 0.56 0.53 0.68 0.60 0.93 0.60 0.65 0.67

6 0.60 0.60 0.61 0.54 0.62 0.73 0.72 0.62

7 0.69 0.52 0.63 0.48 0.69 0.58 0.92 0.55

8 0.66 0.51 0.72 0.80 0.67 0.64 0.61 0.88

C. Sorting using socks and shoes

Another practical scenario of interactive sensing is that of

sorting socks in a pile of laundry, or organizing shoes by

pairing them. We used typical socks and shoes of different

colors and sizes for this experiment, for which the results

are shown in Figures 12 and 13.

The comparison matrix is shown in Tables III and IV,

indicating the probability of each query image matching

each database image using vision only and vision plus

interaction, respectively. Again, interaction is necessary to

correctly classify all the objects (in this case Item #5).

IV. CONCLUSION

We have proposed an approach to interactive perception

in which an autonomous robot system is able to classify and

label an unknown object. The proposed approach has been

found to be effective over a wide range of environmental

conditions. Monitoring the interaction of the object builds

upon the approach in [3] to group different feature points

together that share similar characteristics. Like [3], the

approach is also able to determine the locations of revolute

TABLE III

EVALUATING PROBABILITIES OF SOCKS AND SHOES USING VISION

ONLY: THE ROWS REPRESENT QUERY IMAGES AND THE COLUMNS

REPRESENT DATABASE IMAGES.

# 1 2 3 4 5

1 0.87 0.69 0.26 0.29 0.16

2 0.62 0.90 0.24 0.38 0.18

3 0.29 0.25 0.86 0.20 0.12

4 0.25 0.26 0.17 0.93 0.38

5 0.26 0.24 0.12 0.99 0.56

TABLE IV

EVALUATING PROBABILITIES OF SOCKS AND SHOES USING VISION AND

THE SKELETON: THE ROWS REPRESENT QUERY IMAGES AND THE

COLUMNS REPRESENT DATABASE IMAGES.

# 1 2 3 4 5

1 0.82 0.43 0.69 0.63 0.59

2 0.47 0.77 0.41 0.39 0.53

3 0.50 0.42 0.75 0.47 0.64

4 0.58 0.32 0.62 0.81 0.56

5 0.49 0.41 0.51 0.73 0.79

joints for planar rigid objects, but it is also applicable to

non-rigid objects.

The proposed approach only begins to address the chal-

lenging long-term problem of interactive perception. Other

avenues can be explored regarding improving the classifi-

cation algorithm and learning strategy. When looking for a

target item, one must consider the orientation of the object

along with the angle from which it is viewed. Additional

interaction and labeling techniques could be used to improve

the ability of the system to determine which characteristics

of an object make it distinguishable from other objects.

Currently, the system only allows interactions from two

directions. Using the camera as a mode of reference, the

robot is able to interact with the top part and the left part

of the object in the classification images, but the and bottom

parts of the object are out of reach from the robotic arm,

because it would occlude the object from the camera’s view

if it tried to interact with these other parts of the object.

One possible solution to this problem would be to place the

isolated objects on a turntable so that the robot would be able

to interact with all directions of the object without occluding

any part of the camera’s viewing area.

Another improvement in the modeling of the object would

be to incorporate a 3D model instead of a 2D model. The 3D

model would provide a more accurate representation of how

each revolute joint moves and give a more detailed skeleton

that describes the overall shape of the object. In the case of

giving the system a round single colored ball, after viewing

and interacting with the ball, the cameras would only see a

circle that does not roll, in a 2D world. The system would

disregard information vital to discovering the dynamics of

each object if the object did something in the 3D world and

looks like another in the 2D world, just like the ball scenario.

We believe these are all fruitful areas for future extensions

of our research.
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1 2 3 4 5

Fig. 12. TOP: Images of the individual objects gathered automatically by the system for the purpose of creating a database of objects previously
encountered. BOTTOM: The final skeletons with revolute joints labeled.

1→ 1 2→ 2 3→ 3 4→ 4 5→ 5

Fig. 13. Results from matching query images obtained during a second run of the system (top) with database images gathered during the first run (bottom)
for the sorting experiment. There is one mistake.
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