
A Distributed Maximum Likelihood Algorithm for Multi-Robot

Mapping

Dario Lodi Rizzini, Stefano Caselli

RIMLab - Robotics and Intelligent Machines Laboratory

Dipartimento di Ingegneria dell’Informazione

University of Parma, Italy

E-mail {dlr,caselli}@ce.unipr.it

Abstract— In the last decade, several algorithms, usually
based on information filtering techniques, have been proposed
to address multi-robot mapping problem. Less interest has been
devoted to investigate a parallel or distributed organization of
such algorithms in the perspective of multi-robot exploration.

In this paper, we propose a distributed algorithm for map
estimation based on Gauss-Seidel relaxation. The complete
map is shared among independent tasks running on each
robot, which integrate the independent robot measurements
in local submaps, and a server, which stores contour nodes
separating the submaps. Each task updates its local submap
and periodically checks for inter-robot data associations. Gauss-
Seidel relaxation is performed independently on each robot
and afterwards on the contour nodes set on the server. Results
illustrate the potential and flexibility of the new approach.

I. INTRODUCTION

Mapping has become an important task for several robotic

applications. A global representation of the environment is

often required by a mobile robot to perform other tasks

like navigation. When such representation is not available,

the robot has to build the map using its uncertain motion

information and sensor observations. Map building and lo-

calization are coupled problems and in literature are often re-

ferred to as Simultaneous Localization and Mapping (SLAM).

In literature, several methods, either based on Bayesian

filtering or on maximum-likelihood (ML) estimation, have

been proposed to address SLAM and mapping problems.

Multi-robot SLAM is the construction of a joint map by

a group of robots that concurrently explore a given environ-

ment. This problem raises additional issues with respect to

the single-robot formulation. First, in a multi-robot context

the map may be stored in a single repository or splitted into

local submaps hosted by each robot. Second, the message

exchange rate depends on the way the map is built. On one

hand, robots continuously send the odometric information

and the acquired observation to the map repository in a

centralized solution. On the other hand, the required com-

munication band is minimal, when the local maps are learnt

independently by each robot and finally merged after the

acquisition. Thus, multi-robot mapping algorithms may be

classified with respect to the degree of distribution as well

as to the required communication rate. In the initialization of

a multi-robot system, it is usually assumed that the mutual

initial poses of the robots are known either perfectly or with

uncertainty.

ML methods are good candidates for multi-robot map-

ping, since they rely on the graphical formulation of the

mapping problem. Indeed, the graphical model captures the

connectivity between the variables of the problem allowing a

decomposition of the map among different robotic platforms.

Nonetheless, to the best of our knowledge multi-robot ML

mapping has not been thoroughly investigated in the robotics

community except for few recent works [1].

In a previous paper [2], we proposed a parallel Gauss-

Seidel relaxation method to solve a constraint network. The

algorithm is based on the constraint network decomposition

and on the node reordering induced by this decomposition.

In this paper, we develop a distributed mapping algorithm

based on the previous contribution. In particular, the mapping

system consists of mapping units and of a server. The

mapping units are independent tasks running on each robot

that integrate the measurements in a local map. The server

handles the repository of the contour nodes, which separate

robot submaps and have been introduced in [2]. Each map-

ping unit updates its local submap and periodically checks

for inter-robot data associations. Gauss-Seidel relaxation is

performed independently on each robot and afterwards on

the contour nodes set on the server.

II. RELATED WORK

Several adaptations of single robot mapping techniques

have been proposed for the multi-robot context. The stan-

dard Extended Kalman Filter is not considered suitable for

multi-robot extension [3] due to the quadratic complexity

of the algorithm that would be reflected into a quadratic

complexity of the communication. Therefore, the research

focused on information filters, which exploit the sparsity

of information matrix to decompose the problem. Thrun et

al. [4] proposes a multi-robot Sparse Extended Information

Filter that exploits two properties of the filter: additivity

of information, which allows the composition of multiple

maps, and locality, which confines the submap updates to

the pose and the landmarks detected by a single robot. Thus,

the computation of the joint map is rather a batch operation

consisting of a coordinate transformation of the submaps and

a detection of corresponding landmarks. Constrained Local

Submap Filter (CLSF) [5] also performs map merging in a

“patch-work fashion”, but it introduces a better definition of

map-to-map and vehicle-to-vehicle data association through

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 573

the computation of the maximum common subgraph. An

offline map merging algorithm based on Hough transform

has been proposed in [6], [7]. In [8] the Split Covariance

Intersection method has been combined with information

filter to extract submaps of size adaptable to the bandwidth

of the channel.

Howard [9] proposes an adaptation of Rao-Blackwellized

Particle Filter for multi-robot SLAM and addresses the

problem of robot mutual observation. Several other works

adopting particle filters and shared grid maps [10], [11] focus

more on the issues of robot exploration than on mapping.

The extension of ML methods for multi-robot SLAM

has been addressed sporadically and in quite recent works.

While ML methods rely on graphical formulation, which

is naturally adaptable to a decomposition of the mapping

task among different robotic platforms, the interest of the

robotic community for such approach increased only during

the last few years. To our knowledge, the Multi-Frontal QR

factorization (MFQR) algorithm [12] is the first attempt to

address such issue. MFQR exploits the structural sparsity

of the problem for a recursive tree-based factorization into

small dense factors. The factorization can be performed in

parallel with only the exchange of QR update messages.

Tectonic SAM [13] is an algorithm not designed for multi-

robot ML, but to speed-up the optimization by dividing the

problem into submaps. Nonetheless, it is suitable for an

adaptation. However, none of the mentioned works discusses

the issue of vehicle to vehicle data association, which is

the real challenge for robot communication, nor proposes an

online incremental use of the algorithm. A recent work [1]

discusses the application of several ML techniques, like

gradient descent and relaxation, to multi-robot localization

and mapping.

III. A DECOMPOSABLE GAUSS-SEIDEL SOLVER

This section discusses the general formulation of the max-

imum likelihood (ML) approach, a solution algorithm based

on Gauss-Seidel relaxation to solve the resulting equations

and a decomposition of the graph suitable for multi-robot

mapping. Graph-based SLAM can be expressed according

to feature based or delayed-state representations [14]. In

the latter representation all the map variables correspond to

robot poses, since the map features are implicitly referred

to pose values either by anchoring sensor observations to a

local frame [15] or by marginalizing feature-based maps [16].

Thus, the mapping problem is modelled as a graph whose

nodes correspond to the robot poses and whose edges corre-

spond to the constraints between pairs of poses. The Gauss-

Seidel relaxation illustrated in the following may be applied

to both representations, but in this paper we will refer to the

more homogeneous delayed-state one.

Furthermore, we present a node reordering technique to

achieve a decomposition of the constraint network into clus-

ters that can be solved independently. Such decomposition

corresponds to a block-border diagonal form of the linearized

matrix associated to the network. The node reordering was

proposed in [2] for a better exploitation of multi-core pro-

cessors. Here, the decomposition is applied to distributed

mapping.

A. Pose Graph and Gauss-Seidel Relaxation

Let p = [p1 · · · pn]T be the vector of robot poses

pi = [pix
, piy

, piθ
]. The notation upi will be used to note

that pose pi belongs to partition with numeric id u, when

distributed relaxation is discussed. Otherwise, the partition

label will be omitted. Let δij and Ωij be respectively the

mean and the information matrix of an observation of node j

seen from node i. Let fij(p) be a function that computes a

zero noise observation according to the current configuration

of the nodes j and i

fij(p) =





(pjx
− pix

) cos piθ
+ (pjy

− piy
) sin piθ

−(pjx
− pix

) sin piθ
+ (pjy

− piy
) cos piθ

pjθ
− piθ





(1)

Thus, the error on constraint 〈i, j〉 is given by

eij(p) = fij(p) − δij (2)

Let C = {〈i1, j1〉 , . . . , 〈iM , jM 〉} be the set of pairs of

indices for which a constraint δimjm
exists. Then the aim

of ML approach is to minimize the negative log-likelihood

or error function on the observation

χ2(p) =
∑

〈i,j〉∈C

eT
ij(p) Ωij eij(p) (3)

Several numeric techniques have been proposed in order

to find the minimum of χ2(p). Here, we illustrate part

of the relaxation algorithm proposed by Frese et al. [17].

The algorithm consists of two steps. First, the observation

functions fij(p) are linearized around the current value of

the network configuration p̂

eij(p) ≈ fij(p̂) − δij + J i
ij∆pi + J

j
ij∆pj (4)

where J i
ij and J

j
ij are the Jacobians of the observation

function with respect to pi and pj evaluated in point p̂i and

p̂j , ∆pi = pi − p̂i and ∆pj = pj − p̂j . In the following, the

equations are written with respect to the increment variables

∆p. Since Eq. (1) only depends on poses i and j, there are

no additional terms.

Then, the resulting negative log-likelihood χ2(p) is ap-

proximated by a quadratic function [17]

χ2(p) ≈ ∆p
T A ∆p + 2∆p

T b + c (5)

The minimum of the linearized function is easily found by
solving the linear system A p = b and, thus, the value of c is
not used in the computation. The method proposed in [17]
to perform this final step is Gauss-Seidel relaxation. The
value of each pose pi is computed individually by solving
the single block-row equation i with fixed value of pj (j 6= i).
Let Aij be the block of matrix A corresponding to block-row
i and block-column j; let bi be the values for block-row i.

574

Respectively, we have

Aij =
∑

〈i,h〉∈Ĉ

J
h
ih

T
Ωih J

i
ih +

∑

〈h,j〉∈Ĉ

J
h
hj

T
Ωhj J

j

hj (6)

bi =
∑

〈i,h〉∈Ĉ

J
h
ih

T
Ωih (fih(p̂) − δih) +

∑

〈h,i〉∈Ĉ

J
h
hi

T
Ωhi (fhi(p̂) − δhi) (7)

The relaxed solution of equation i at step k is

∆p
(k+1)
i = A

−1
ii

(

bi −
∑

j<i

Aij∆p
(k+1)
j −

∑

j>i

Aij∆p
(k)
j

)

(8)

The estimated value of ∆pi is determined by the neighbor

poses, either already updated (j < i) or not (j > i).

This procedure is performed iteratively until solution is

reached with enough precision. Since A is a symmetric

positive defined matrix, the convergence of the algorithm is

guaranteed.

Gauss-Seidel relaxation is only the basic step of a multi-

level relaxation (MLR) algorithm. MLR defines a hierarchy

between nodes to solve the problem at different levels of

resolution in order to speed up the convergence. However,

the Gauss-Seidel algorithm can be conveniently decomposed

in separate tasks that are performed independently. In the

next section, we describe a parallel version of Gauss-Seidel

relaxation.

B. Constraint Network Decomposition

Two properties can be noted about the structure of the ML

mapping and about the Gauss-Seidel relaxation [2]:

1) Sparsity. The block-row update Eq. (8) of Gauss-Seidel

depends on nodes pj that are connected to the current

node, i.e. the nodes with Aij 6= 03×3. The structure

of the linearized information matrix A depends on

the connectivity of the constraints network. Since the

graph is built incrementally by one or more robots

adding each pose in a trajectory or eventually closing

loops, the resulting matrix is naturally sparse and

locally connected.

2) Variable Order. While the order does not change the

value to which the algorithm converges, it determines

the dependencies among variables. In particular, at a

given iteration k the updated value of pose p
(k+1)
i

depends both on already updated poses, whose index is

j < i, and on the poses yet to be updated (j > i). The

value of the last ones is known before starting a new

iteration, so their values and the value of pose i can

be computed independently. Thus, in order to compute

the nodes of a cluster independently from the nodes

connected to the cluster and not belonging to it, the

contour nodes have to be computed at the end.

Therefore, the detection of clusters, which are groups of

nodes internally connected and separated from each other

by contour nodes, determines a convenient order. Since the

nodes of the clusters do not depend on the nodes of other

clusters, a single Gauss-Seidel iteration of the clusters can

be executed independently with only a synchronization point

given by the computation of contour nodes.

In distributed mapping, the independent clusters should

correspond to the submaps built by the different robots.

However, several differences arise with respect to the simple

parallelization of Gauss-Seidel relaxation. First, if clusters

are associated to a robot, they represent the trajectory of

such robot and may not represent a local portion of the

global map. Since no coordination of robots is assumed,

the balance of cluster sizes and the minimization of the

number of contour nodes are not guaranteed like in the case

of the clustering algorithm used in [2]. Furthermore, the

construction of clusters should be incremental and cluster

balance should be achieved by a migration of nodes from

a cluster to another one. Second, the data association of

poses stored by different robots should be handled carefully

in order to limit robot-to-robot communication. This data

association also challenges clustering techniques because the

addition of inter-robot constraints modifies the connectivity

of the network (within the set of contour nodes). Third,

Gauss-Seidel iterations should be performed asynchronously

in each robot in order to avoid limitations to the efficiency

of the solution.

IV. DISTRIBUTED MAPPING

In this section, the distributed system for multi-robot

mapping is illustrated. The system consists of a server and of

mapping units, one for each exploring robot. The server and

the mapping units communicate using standard TCP sockets.

The server handles the contour nodes, which separate

the clusters stored in different robots and represent the

non parallelizable part of the joint map. Contour nodes

are used as separators between pairs of nodes belonging to

different submaps. The server adds a new contour node to its

repository, when the initial poses of the robots are given and

when new constraints between poses on different mapping

units are established. Each mapping unit updates the submap

using the odometry and the observations made by the local

robot and performs Gauss-Seidel iteration on the local poses.

Since this submap is built using only the sensor data collected

by a single robot, the clusters of nodes are implicitly defined

by the construction method.

In the following, the issues listed at the end of the previous

section are discussed and addressed. In particular, a node

cluster distribution technique to restore a minimum cut is

described. Then, the problems related to inter-robot data

association, i.e. the addition of a node or of a constraint

between poses belonging to different mapping units, are

presented and possible solutions are suggested. Finally, the

Gauss-Seidel technique is applied to the distributed archi-

tecture in order to perform an asynchronous and efficient

optimization of the constraint network.

A. Balanced Distributed Clustering

The poses of the constraints network are partitioned into

clusters by construction, since each robot adds nodes and

575

constraints to its submap. The robots concurrently update

their local map and the submap sizes are approximatively

the same, when only local updates occur. However, the

inter-robot correspondences and the insertion of contour

nodes break the submap size balance and scatter the spatial

distribution of poses among clusters. In particular, when pose
upj on mapping unit u is observed from pose vpi on mapping

unit u 6= v, constraint 〈i, j〉 is established between nodes

belonging to different clusters. The distributed relaxation

method described in the previous section requires that all

clusters are separated by contour nodes. Thus, the following

operation should be performed:

• pose vpi is migrated to contour partition stored by server

(label v is changed to contour label c) and an alias of
cpi is kept by cluster v;

• an alias of cpi is also created on partition u.

Since addition of new nodes to the submap is usually sequen-

tial according to the trajectory of the robot, the migration of
vpi is likely to break the connectivity of cluster.

Therefore, a proper distribution of nodes among clusters,

that balances the clusters and minimizes the number of

contour nodes, is recommended for several reasons. First,

such cluster balance improves the efficiency of Gauss-

Seidel iteration, since contour nodes represent the part of

the algorithm that cannot be executed in parallel. Second,

the convergence to the correct solution is sped up if the

connected parts are stored on the same map unit.

Balance could be achieved by recomputing the partions

from scratch as described in [2], but the algorithm is difficult

to apply to an architecture with distributed memory and

requires extensive message exchange. We propose to meet

these requirements by adopting a heuristic algorithm inspired

by the one proposed in [18]. Each mapping unit periodically

asks information about the mean cluster size and, if the size

of its submap exceeds the given value, Algorithm 1 is applied

to find the list of nodes suitable for migration. In the case of

undersized partition, the mapping unit receives contour nodes

from the server. The server performs a similar layering of the

contour partition.

The proposed balancing cluster does not require a cen-

tralized and coordinated migration of nodes. For this reason,

it does not achieve the optimum balance of the distributed

graph like in [18], yet it avoids complete unbalance.

B. Inter-Robot Data Association

In order to obtain a joint global map from local submaps,

the system must estimate the constraints between poses

belonging to different submaps. Data association between

two poses stored on the same robot can be performed using

the standard association techniques, since the observations

needed to detect the correspondences are available in the

robot local memory. In the case of inter-robot association

such assumption is not true and measurements should be

transmitted to the mapping unit that requires such data.

Furthermore, the candidates for correspondence are usually

selected using e.g. Mahalanobis distance, whose value de-

pends also from the robot making the observation. The initial

Data: Bu: set of contour node aliases on this mapping unit.
Result: L: queue of nodes ordered according to their transfer

priority.
/* each node has fields label and deg */

/*
¯deg(n): number of adjacent nodes */

/* m with label m.label < n.label */

/* ∀n, m ∈ L, n < m iff */

/* n.label < m.label or */

/* (n.label == m.label and n.deg < m.deg) */

∀n ∈ Bu : n.label = −1;
initialize queue Q = Bu;
while Q not empty do

extract n from Q;
foreach adjacent node m of n do

if m unlabeled then
m.label = n.label + 1;
m.deg = ¯deg(n);
insert m in Q;
insert m in L;

end
end

end

Algorithm 1: Layering Algorithm.

poses of the robots should be known with enough precision.

In the case of feature maps, a different approach based on

structural subgraphs similarities [5] may be applied.

In this paper, all correspondences are assumed to be

known and data association problem is not addressed. Several

other data association issues are not treated in this paper

like the robot-to-robot correspondence and specific sensors

association.

C. Asynchronous Gauss-Seidel Relaxation

When a Gauss-Seidel relaxation is applied for single

robot mapping, an iteration is performed synchronously: the

new value of a pose at iteration k + 1 is computed using

the adjacent poses, whose values have been computed at

current or at the previous step k as expressed by Eq. (8).

The parallel version of Gauss-Seidel [2] also performs a

synchronous update, although the execution is independent

on each cluster. After each iteration, the problem is re-

linearized according to the new values of the poses.

On a distributed architecture, the synchronous execution

of a single iteration may turn quite inefficient since it

would require extensive message exchange. An asynchronous

optimization would limit the required bandwidth without

sacrificing the effectiveness. In particular, each mapping

unit solves its submap as an independent mapping problem

by alternating the linearization of the constraints and a

relaxation step. Each robot keeps locally the aliases of the

contour nodes connected to at least one of the nodes of the

submap. The values of contour poses remain unmodified in

the process. When the local map has been updated, the pose

values connected to contour nodes are sent to the server.

The whole computation on each mapping unit is shown

by Algorithm 2. An aspect not yet discussed is the use of

accumulation variables an and bn, which sum the terms for

the solution of Eq. (8). In the algorithm, the accumulators are

576

Data: Gu = (Nu, Cu): the constraint network stored on
mapping unit u, B: set of contour node aliases on this
mapping unit.

Result: O: set of accumulator for contour nodes; the updated
values of poses Nu.

foreach iteration of relaxation do

Ĉ = Cu ∪ {aliasesconstraint};
/* linearize constraints */

foreach < j, i >∈ Ĉ do

compute Jacobians J i
ij and J

j
ij ;

compute residual rij = fij(p̂) − δij ;
end
/* solve cluster poses */

foreach n ∈ N do

an =
∑

〈i,n〉∈Ĉ
Jn

in
T Ωin Jn

in

+
∑

〈n,j〉∈Ĉ
Jn

nj
T Ωnj Jn

nj ;

bn =
∑

〈i,n〉∈Ĉ
Jn

in
T Ωin (rin − J i

in ∆pi)

+
∑

〈n,j〉∈Ĉ
Jn

nj
T Ωnj (rnj − J

j
nj ∆pj);

∆pn = a−1
n bn;

end
end
/* accumulator for contour node aliases */

O = {};
foreach n ∈ B do

an =
∑

〈i,n〉∈Ĉ
Jn

in
T Ωin Jn

in

+
∑

〈n,j〉∈Ĉ
Jn

nj
T Ωnj Jn

nj ;

bn =
∑

〈i,n〉∈Ĉ
Jn

in
T Ωin (rin − J i

in ∆pi)

+
∑

〈n,j〉∈Ĉ
Jn

nj
T Ωnj (rnj − J

j
nj ∆pj);

O = O ∪ {an, bn}
end
send accumulator set O to contour set;

Algorithm 2: Asynchronous Relaxation Algorithm.

also used to collect the contributions to be sent to the server.

After receiving the updated values of map unit nodes, the

server computes the value of contour nodes. The proposed

solution reminds the tectonic SAM [13] that carries out local

map adjustment using the so called intra-measurements. The

main difference lies in the use of local reference frames for

the poses on the submap.

Even though the described relaxation method is basically

an offline algorithm, the map adjustment is performed after

the incremental addition of new nodes and re-using the

previously computed network. Expedients may be found in

order to select the poses that need to be recomputed and to

limit the optimization to such portion.

V. RESULTS

In this section, the proposed distributed constraints solver

is validated and assessed. A preliminary version of the

algorithm has been implemented and consists of two kinds of

processes, a mapping unit and a server, which communicate

using standard TCP sockets. The input data of each mapping

unit consists of a sequence of poses and constraints repre-

senting the robot trajectory and the measurements. In order to

obtain such sequences, constraint networks representing the

activity of a robot on a specific path have been extracted from

the commonly used dataset Intel Research Lab (INTEL) [19].

. Other sequences have been generated by simulating the

exploration of an 80 × 20 m office-like environment (SIM)

with Player-Stage. Data have been collected by 4 robots

and the uncertainty on observation has been simulated by

adding Gaussian noise with respectively σpos = 0.02 m and

σpos = 0.5◦ every 0.5 m.

The pose graphs obtained from INTEL and from SIM with

and without Gauss-Seidel relaxation are shown in Figures 1

and 2. In both cases the joint map is shared among 4
mapping units whose submaps that can be distinguished

by the use of different colors. The results show that the

distributed algorithm is able to perform the required map

adjustment. However, the size of contour nodes partition

with respect to the other submaps after the exploration of

the environment is significant. For example, the sizes of

the four clusters are respectively 59, 58, 57 and 55, while

contour partition consists of 169 nodes in the case of INTEL

and similar results hold for SIM (215 contour nodes with

clusters of about 80 nodes). A poor choice of the conditions

activating cluster balance algorithm may be presumed. These

preliminary results guarantee the correctness of the proposed

approach. Further experiments, also in a real environment,

are required to better assess the performance.

VI. CONCLUSION

In this paper, we proposed a distributed algorithm for map

estimation based on Gauss-Seidel relaxation. The complete

map is shared among independent tasks running on each

robot, called mapping units, and a server. The mapping

units integrate the robot measurements in local pose-graph

submaps and the server stores contour nodes separating the

submaps. The separation introduced by contour nodes allows

the parallel execution of Gauss-Seidel relaxation on each

mapping unit. The pose adjustment iterations are performed

asynchronously by each task in order to make the operation

more efficient. Furthermore, partition size balance possibly

perturbed by node addition is restored by applying an incre-

mental graph partitioning method.

We implemented a preliminar version of the algorithm

consisting of processes that communicate with TCP sockets.

Experiments have been carried out on multi-robot datasets

adapted from single-robot datasets. In our future work, we

expect to experimentally validate the proposed method on

a real-robot setup and to address thoroughly the issue of

distributed data association.

VII. ACKNOWLEDGMENTS

This research is partially supported by laboratory AER-

TECH of Regione Emilia-Romagna, Italy.

REFERENCES

[1] E. Nerurkar, S. Roumeliotis, and A. Martinelli, “Distributed maximum
a posteriori estimation for multi-robot cooperative localization,” in
Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2009.

[2] D. Lodi Rizzini and S. Caselli, “A parallel maximum likelihood
algorithm for robot mapping,” in Proc. of the IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems (IROS), 2009.
[3] E. Nettleton, H. Durrant-Whyte, P. Gibbens, and A. Goektogan, Sensor

Fusion and Decentralized Control in Robotic Systems III. G.T. McKee
and P.S. Schenker, editors, 2000, vol. 4196, ch. Multiple platform
localization and map building, pp. 337–347.

577

cluster 0

cluster 1

cluster 2

cluster 3

(a) (b)

Fig. 1. Network from INTEL distributed in 4 submaps without the optimization (a) and with Gauss-Seidel relaxation (b).

cluster 0

cluster 1

cluster 2

cluster 3

cluster 0

cluster 1

cluster 2

cluster 3

(a) (b)

Fig. 2. Simulated network SIM distributed in 4 submaps without the optimization (a) and with Gauss-Seidel relaxation (b).

[4] S. Thrun and Y. Liu, “Multi-robot SLAM with sparse extended infor-
mation filers,” in Proceedings of the 11th International Symposium of

Robotics Research (ISRR’03). Sienna, Italy: Springer, 2003.

[5] S. Williams, G. Dissanayake, and H. Durrant-Whyte, “Towards multi-
vehicle simultaneous localization and mapping,” in Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA), 2002, pp. 2743–2748.

[6] S. Carpin, “Merging maps via Hough transform,” in Proc. of the

IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2008.

[7] A. Censi and S. Carpin, “HSM3D: feature-less global 6dof scan-
matching in the hough/radon domain,” in Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA), 2009.

[8] E. Nettleton, S. Thrun, H. Durrant-Whyte, and S. Sukkarieh, “De-
centralised slam with low-bandwidth communication for teams of
vehicles,” in Proc. of Int. Conf. on Field and Service Robots (FSR),
2004, pp. 337–347.

[9] A. Howard, “Multi-robot simultaneous localization and mapping using
particle filters,” Int. Journal of Robotics Research, vol. 25, no. 12, pp.
1243–1256, 2006.

[10] W. Burgard, M. Moors, C. Stachniss, and F. Schneider, “Coordinated
multi-robot exploration,” IEEE Transactions on Robotics and Automa-

tion, vol. 21, no. 3, pp. 4376–86, June 2005.

[11] D. Fox, J. Ko, K. Konolige, B. Limketkai, D. Schulz, and B. Stewart,
“Distributed multirobot exploration and mapping,” Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA), vol. 94, pp. 1325–1339,
2006.

[12] F. Dellaert and P. Krauthausen, “A multifrontal QR factorization

approach to distributed inference applied to multi-robot localization
and mapping,” in Proc. of the National Conference on Artificial

Intelligence (AAAI), 2005, pp. 1261–1266.
[13] K. Ni, D. Steedly, and F. Dellaert, “Tectonic SAM: Exact, out-of-

core, submap-based SLAM,” in Proc. of the IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems (IROS), 2007.
[14] R. Eustice, H. Singh, and J. Leonard, “Exactly sparse delayed-state

filters,” in Proc. of the IEEE Int. Conf. on Robotics & Automation

(ICRA), 2005, pp. 2428–2435.
[15] F. Lu and E. Milios, “Globally consistent range scan alignment for

environment mapping,” Journal of Autonomous Robots, vol. 4, pp.
333–349, 1997.

[16] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Cambridge,
MA: MIT Press, 2005.

[17] U. Frese, P. Larsson, and T. Duckett, “A multilevel relaxation algo-
rithm for simultaneous localisation and mapping,” IEEE Transactions

on Robotics, vol. 21, no. 2, pp. 1–12, 2005.
[18] C. Ou and S. Ranka, “Parallel incremental graph partitioning using

linear programming,” in Proc. of conf. on Supercomputing, 1994, pp.
458–467.

[19] A. Howard and N. Roy, “Radish: The robotics data set repository,
standard data sets for the robotics community.” [Online]. Available:
http://radish.sourceforge.net/

578

