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Abstract— This paper describes a speedup and performance
improvement of multi-channel semi-blind ICA (MCSB-ICA)
with parallel and resampling-based block-wise processing.
MCSB-ICA is an integrated method of sound source separation
that accomplishes blind source separation, blind dereverber-
ation, and echo cancellation. This method enables robots to
separate user’s speech signals from observed signals including
the robot’s own speech, other speech and their reverberations
without a priori information. The main problem when MCSB-
ICA is applied to robot audition is its high computational cost.
We tackle this by multi-threading programming, and the two
main issues are 1) the design of parallel processing and 2)
incremental implementation. These are solved by a) multiple-
stack-based parallel implementation, and b) resampling-based
overlaps and block-wise separation. The experimental results
proved that our method reduced the real-time factor to less than
0.5 with an eight-core CPU, and it improves the performance
of automatic speech recognition by 2–10 points compared
with the single-stack-based parallel implementation without the
resampling technique.

I. INTRODUCTION

A. Background
Our goal is to develop a robot that can recognize a user’s

speech from a mixture of sounds and can interact with
humans naturally through speech in various environments.
For example, a robot can talk with a target user near a loud
television, a person may talk to it from far away, and a user
can interrupt a robot’s utterance and begin speaking while
the robot is speaking (called “barge-in”). Since speech is
the most natural communication channel for humans, such
robots are useful and can help us in many situations, such as
in housekeeping or rescue tasks. To achieve such a robot-
audition system, we must cope with the following three
problems at the same time:

1) Multi-source (speech and other noise) signals,
2) The robot’s own speech signal, and
3) Their reverberations.
These problems are caused by the microphones that are

installed on robot’s body, and not attached close to the
user’s mouth (Fig. 1). This degrades the performance of
conventional automatic speech recognition (ASR) seriously
because many ASRs or spoken dialogue systems work well
in the laboratory but not in such noisy and reverberant
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Fig. 1. Our target problems

environments. Additionally, robots must have the least prior
information about the environment and should be adaptive
to any environments to work even in unknown environments.
Therefore, we can say that robot audition presents many
challenges for researchers.

B. Our Approach and Contribution
We adopted multi-channel semi-blind ICA (MCSB-ICA)

[1] for robot audition. We used it for two reasons:
1) It is theoretically robust against Gaussian noise, such as

that from fans, and
2) It can theoretically deal with blind source separation,

blind dereverberation (separation of reverberation), and
echo cancellation (separation of robot’s speech) with the
linear order calculation cost of reverberation time [2].

Here, “blind” means without a priori information.
The problem with applying MCSB-ICA to robot audition

is its high computational cost, especially when many micro-
phones are used. The number of microphones is important
because the number of microphones theoretically equals the
number of sound sources that can be separated.

We tackle this problem by introducing multi-threading
processing to MCSB-ICA. The two main issues are 1) the
design of parallel processing and 2) incremental implemen-
tation. The reason we treat the incremental implementation
is that MCSB-ICA usually works with batch processing,
and the techniques used by Saruwatari et al. [3] cannot be
applied because the dereverberation mechanism is different
from that in ordinary ICA. We cannot adopt the beamformer
combination approach such as [4] because their scheme does
not consider the reverberation problem which ordinary ICA
cannot cope with. Therefore, it is necessary to re-estimate of
the separation matrix for MCSB-ICA.

These two issues are solved by a) multiple-stack-based
parallel implementation, and b) re-sampling-based overlaps
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Fig. 2. Overview of whole separation process.
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Fig. 3. Signal flow of MCSB-ICA.

and block-wise separation. The former technique is one of
the designs of parallel processing of ICA, and this performs
better than single stack based implementation. The latter is a
technique to reduce the computational cost of re-estimating
the separation matrix and block-wise processing. The key
points of these techniques are overlapped processing and data
selection in estimating the separation filter of ICA. Note that
we have ignored the problems of permutation to evaluate the
pure performance of MCSB-ICA, and that we can use the
permutation solvers [5], [6] that have been proposed in other
papers in practical use.

C. Organization of paper
This paper consists of seven sections. Section 2 explains

the MCSB-ICA algorithm. Section 3 explains the parallel
implementation, and Section 4 presents the block-wise pro-
cessing with the re-sampling technique. We discuss evalua-
tions of our method in Sections 5 and 6. The last section
concludes the paper and discusses future work.

II. ALGORITHM FOR MULTI-CHANNEL
SEMI-BLIND ICA

We only focus on the core algorithm of MCSB-ICA
because its other parts are not as closely related to the
design of parallel and block-wise processing. Please see
Takeda et al.[1] for the precise modeling and deviation of
the algorithm. The signal flow for MCSB-ICA is outlined in
Fig. 3.

A. Definition of Variables
The MCSB-ICA model described here uses a short-time

Fourier transformation (STFT) representation [7], which is
a form of multi-rate processing (Fig. 2). We denote the
spectrum after STFT as sω[t] at frequency-bin index ω ∈
{N,N−1, ..., 0} and frame index t. Note that all separation
process are executed in all frequency bins.

We denote the spectra observed at microphones
M1, ...,ML as xω,1[t], ..., xω,L[t] (L is the number
of microphones) and its vector form as xω[t] =
[xω,1[t], ..., xω,L[t]]T . We also represent a known-source
(robot’s) spectrum as sr,ω[t]. The inputs of MCSB-ICA are
observed spectrums xω[t] and robot’s spectrums sr,ω[t] and
the output is an estimated user’s spectrum, ŝω[t].

B. Pre-processing
Linear transformation called spatial sphering is applied

to the observed spectrum. Spatial sphering de-correlates
microphone input ignoring the time correlations. First, we
decompose the correlation matrix of microphone inputs.

E[xω[t]xH
ω [t]] = Ex,ωΛx,ωEH

x,ω and (1)
E[sr,ω[t]s̄r,ω[t]] = λr,ω, (2)

where E[·] means the expectation about time t, ·H represents
the conjugate transpose, Ex,ω is the unitary matrix consisting
of eigenvectors, Λx,ω is the diagonal matrix with eigenval-
ues, and λr,ω is the variance of known (reference) signal.

With these values, we transform the input signals as

zω[t]=V x,ωxω[t], V x,ω = Ex,ωΛ
−1/2
x,ω EH

x,ω, and (3)
s̃r,ω[t]=λ−1/2

r,ω sr,ω[t]. (4)

Then, the input signals are decorrelated and normalized and
the known signals are also normalized.

Here, let us define the observed block vector, Zd,ω[t],
and the known-source vector, Sr,ω[t] with initial interval
parameter d and filter taps Mbd and Mec:

Zd,ω[t] = [zω[t− d], ..., zω[t− d−Mbd]]
T and (5)

Sr,ω[t] = [s̃r,ω[t], ..., s̃r,ω[t−Mec]]
T . (6)

C. Separation and Filter Estimation
The estimated spectra, ŝω[t], are obtained as

ŝω[t] = W bs,ωzω[t] + W bd,ωZd,ω[t] + W ec,ωSr,ω[t], (7)

where W bs,ω, W bd,ω , and W ec,ω correspond to separation
matrices for blind separation, blind dereverberation and echo
cancellation. The dimension of ŝω is L, and W bs,ω , W bd,ω ,
and W ec,ω become L×L, L×L(Mbd+1), and L×(Mec+1)
separation matrices, respectively.

Now, we have the following learning algorithms for W bs,
W bd, and W ec.

W
[j+1]
bs,ω = W

[j]
bs,ω+ µ

[

DωW
[j]
bs,ω

]

, (8)

W
[j+1]
bd,ω = W

[j]
bd,ω+ µ

[

DωW
[j]
bd,ω− E[φ(ŝω[t])ZH

d,ω[t]
]

, (9)

W [j+1]
ec,ω = W [j]

ec,ω+ µ
[

DωW [j]
ec,ω− E[φ(ŝω[t])SH

r,ω[t]
]

,(10)

where

Dω = diag(E[φ(ŝω[t])ŝH
ω [t]])− E[φ(ŝω[t])ŝH

ω [t]]. (11)
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Fig. 4. Behavior based on single-stack-based implementation

Here, [j] means the number of iterations, µ is the step-size
parameter, and φ(x) = [φ(x1), ..., φ(xL)]H is the non-linear
function vector. We used x∗/|x| as a non-linear function that
is defined in a continuous area, |x| > ε.

The initial value of the separation matrix at the frequency-
bin ω, W

[0]
bs,ω, was set to that of the estimated matrix at the

frequency-bin ω + 1, W bs,ω+1. We used the unit matrix for
the initial value of the first separation matrix. Empirically,
the performance of MCSB-ICA degrades if we use the unit
matrix as the initial value of the separation matrix for every
frequency bin.
D. Post-processing

We scale the output spectrum using the approach by
Murata et al. [8]. We multiplied the i-th row and j-th column
element cj of Ĥbs,ω = (W bs,ωV x,ω)−1, which satisfies
Eqs. 12 and 13 for the scaling of the j-th element of ŝω[t].

lj = arg max
l
|Ĥbs,ω(l, j))| and (12)

cj = Ĥbs,ω(lj , j). (13)
As mentioned in the previous section, we aligned output

signals by using reference (original) signals to solve the
permutation problem.

III. IMPLEMENTATION OF PARALLEL
PROCESSING

This section explains the parallel processing technique for
MCSB-ICA which we carry out by using multi-threading
programming. We assume that P threads are available for
parallel processing.
A. Parallelism of MCSB-ICA

The most efficient part for parallel processing is consid-
ered to be the separation of frequency-bin units because
all separations are executed independently except for the
dependence of the initial value of the separation matrix. Of
course, smaller-scale parallelizations may also be effective,
such as the parallel calculation of matrices. However, no
matrix is too large, i.e. 160 * 300, and the cost of creating
a thread is larger than that of doing calculations. This leads
to increased processing time. In fact, when we use a Parallel
Basic Linear Algebra subprograms (PBLAS), which is a
mathematical library, the processing time becomes longer
than that without parallelization.
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Fig. 5. Behavior based on multiple-stack-based implementation

B. Single-stack-based Implementation (SSI)
A simple implementation is processing from a high to a

low frequency bin, and the initial value of the separation
matrix is that of the nearest processed frequency bin (Fig.
4). This mechanism can easily be implemented by using a
stack, and this implementation is efficient because no threads
need to wait to begin working. This single-stack-based
implementation is given in Alg. (1). Here, “selectW(W, x)”

Algorithm 1 SSI ; apply to all threads
- push unprocessed bin induces from low frequency bin to
the stack, named UPBIN={N,N-1,...,0};
- W = φ;
while (ω = pop(UPBIN)) != null do

- W
[0]
bs,ω = selectW(W, ω);

- estimate ŝω , W bs,ω , W bd,ω , and W ec,ω according to
Eqs. (1) – (13);
- W←W ∪W bs,ω;

end while

returns the estimated W bs,x with the nearest and larger
frequency-bin index, x, from the set of estimated matrices,
W. It returns unit matrix, I , if W = φ or W does not include
the corresponding object.

This implementation does not take into account that the
influence of the initial value of the separation matrix may
degrade performance because the matrix is not an adjacent
one.

C. Multiple-stack-based Implementation (MSI)
We divide the frequency bins into various segments, and

restrict the number of threads assigned to each segment
to avoid the initial value problem (Fig. 5). A segment,
x ∈ {0, ...,K}, has Px threads and Nx − (Nx+1 − F ) bins,
where Nx = N(N −

∑x
k=1 Pk)/P and F is the number

of overlapping bins. This overlap has the effect of avoiding
the initial value problem. In assigning threads, the highest
frequency-bin segment only has two threads to process data,
and we assign two or three threads to other segments. K
changes according to the P and N .

1951
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Fig. 6. Block-wise and overlapping processing

This multiple-stack-based implementation is shown in Alg.
(2). The difference between SSI and MSI is that MSI has
overlapping bins.

Algorithm 2 MSI for segment x

- push unprocessed bin induces from low frequency bin to
the stack, named UPBINx={ Nx,..., max(Nx+1 − F, 0)};
- W = φ, and it is common object among all the segments;
while (ω = pop(UPBINx)) != null do

- W
[0]
bs,ω = selectW(W, ω);

- estimate ŝω , W bs,ω , W bd,ω , and W ec,ω according to
Eqs. (1) – (13);
- W←W ∪W bs,ω;

end while

IV. BLOCK-WISE, OVERLAP AND RE-SAMPLING
BASED IMPLEMENTATION

A. Block-wise implementation

We must extend MCSB-ICA to work on-line for robot
audition because MCSB-ICA usually estimates the separa-
tion matrices by batch processing. Theoretically, MCSB-ICA
can output separated signals frame-by-frame. However, its
separation performance results in very poor outcomes and its
convergence speed is critically slow because the estimation
of the dereverberation matrix, W bd, uses the statistical time
structure of the speech signal and its properties vary from
frame-to-frame.

We adopted block-wise implementation for on-line pro-
cessing. Since ICA buffers various duration data to stably
estimate the separation matrix, we use the previous Ib

samples (buffer-size) for time [t − Ib t] separation. We
introduce cycle-size Ic to reduce latency caused by buffering.
As illustrated in Figure 6, if Ic is increased, the latency
also increases instead of low computational cost; if Ic is
reduced, computational cost increases instead of achieving
low latency. Note that there are two kinds of delay; the
first is buffering time Ic and the second is processing
time. The total delay is obtained by adding them.
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Fig. 7. Our re-sampling scheme

A re-sampling phase is introduced to block-wise process-
ing to balance the computational cost and latency. This re-
sampling reduces the number of samples to the important-
data size, Iv, which is used for MCSB-ICA and selected from
the buffered data. If we choose the samples optimally, high-
performance and low-computational-cost processing will be
achieved because filter estimation is based on the expectation
operator as seen in Eqs. (8) – (10).

B. Re-sampling Technique for Overlapped Processing
We empirically adopt an all-pass filter for cycle-size data

and down-sampling for overlapping data, as shown in Fig. 7.
The down-sampler selects the (Iv − Ic) data corresponding
to the the following time index, t̃i.

t̃i =
Ib − Ic

Iv − Ic
i + (t− Ib), i = 0, ..., (Iv − Ic) (14)

The expectations in Eqs. (8) – (10) are calculated by using
these re-sampled data.

Of course, there will be more techniques that perform
well for re-sampling MCSB-ICA because we already know
the separated data that make up more than 50% of the
important data, which is caused by overlapped processing.
A more effective algorithm may be derived if we use this
information. However, we have not focused on this precisely
in this discussion and have only examined the performance
of re-sampling.

V. EXPERIMENTS
We evaluated MCSB-ICA by using ASR performance

with simulated data. The data were generated by using
the impulse responses recorded in a real environment, and
impulse responses can reconstruct acoustic property, such as
reflections. Note that robot’s noises, such as fan noise, are
not recorded and not used.

A. Experimental Settings
1) Data for evaluation: The impulse responses for speech

data were recorded at 16 kHz in a reverberant room, whose
RT20 was about 940 [ms]. Here, RT20 means the reverbera-
tion time. The size of the room was 4.8 × 5.55 × about 3 [m]
(depth x width x height). The target speaker was 1.0 [m] from
a microphone mounted on the head of humanoid robot. The
noise speaker was located 1.5 [m] from the robot, and the
angles between the noise speaker and the front of the robot

1952



TABLE I
CONFIGURATION FOR DATA AND SEPARATION

Impulse response 16 kHz sampling
Reverberation time (RT20) 940 [ms]

Direction of speaker B 10
◦, 20

◦, 30
◦, 60

◦, 90
◦

Number of microphones Eight (embedded in robot’s head)
STFT analysis Hanning: 64 [ms] and shift: 20 [ms]

Input wave data [-1.0 1.0] normalized

TABLE II
CONFIGURATION FOR SPEECH RECOGNITION

Test set 200 sentences
Training set 200 people (150 sentences each)

Acoustic model PTM-Triphone: 3-state, HMM
Language model trigram, vocabulary size of 21 k
Speech analysis Hanning: 32 [ms] and shift: 10 [ms]

Features MFCC 25 dim. (12+∆12+∆Pow)
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Fig. 8. Layout for room, robot and speaker.

were five patterns of 10, 20, 30, 60, 90 degrees. We also
recorded the impulse response from the robot’s speech. The
height of the microphones was 1.25 [m] and that of the other
speakers was 1.4 [m]. These settings are outlined in Figure 8.
The relative amplitude of these impulse responses was saved.
All data (16 bits, PCM) were normalized to [−1.0 1.0] for
processing.

2) Separation parameters: Eight microphones are in-
stalled on the humanoids robot developed by HONDA. The
STFT parameters were set to the same values for all three
experiments: the window size was 1024 points (64 [ms])
and the shift size was 320 points (20 [ms]). The frame
interval parameter, d, was 2, and the default filter taps
for echo cancellation and dereverberation were the same,
Mbd = Mec = 20. The parameters for adaptive step-size
control were set to Takeda et al.’s settings [9]. There were
15 iterations when the filter was estimated, which is not a
huge number of iterations. Note that the voice-active section
was given in our experiments.

3) Configuration for ASR: We used 200 Japanese continu-
ous speech utterances from JNAS database for the speaker’s
and robot’s speech, and they were convoluted in the cor-
responding recorded impulse responses. Julius1 was used
for hidden Markov model (HMM)-based ASR with the sta-
tistical language model. Mel-frequency cepstral coefficients
(MFCC) (12+∆12+∆Pow) were obtained after STFT with
a window size of 512 points and a shift size of 160 points
for the speech features, and we then applied cepstral mean
normalization. A triphone-based acoustic model (three-state
and four-mixture) was trained with 150 sentences of clean
speech uttered by 200 male and female speakers (word-
closed). The statistical language model consisted of 21,000

1http://julius.sourceforge.jp/

words, which were extracted from newspapers. The other
experimental conditions are summarized in Tables I and II.

4) Environments for machine and development: We used
a computer with two Intel(R) Xeon(R) CPUs (X5570 2.93
GHz), and it had a total of eight cores. The memory size was
12 GB, and its operating system was Ubuntu 9.04 (jaunty)
with kernel Linux 2.6-28-18-generic.

The compiler was an Intel(R) C++ Compiler 11.1 Profes-
sional Edition for Linux, and we implemented MCSB-ICA
by using its Math Kernel Library (MKL) 2.

B. Combination of Noise Patterns and Evaluation Criteria
We evaluated performance of MCSB-ICA under four noise

combinations:
1) Target speech,
2) Target speech and robot speech for barge-in situation,
3) Target speech and noise speech for simultaneous-talk

situation, and
4) Target speech, noise speech and robot speech for worst

situation.
The performances are measured by the word correctness

(WC, Cor.) of the target speech (Target sp.) and noise speech
(Another sp.). The correctness is defined by

Cor. =
# of correct words

# of all words . (15)

Cor. increases if the words in the sentence are recognized
without missing words. Since insertion error can be recov-
ered by techniques in spoken dialogue system, such as [10],
we adopt WC as an evaluation criteria.

Real-time factor (RTF) is used for evaluating the process-
ing time of MCSB-ICA. RTF is calculated by using P and
I , which correspond to the process time and data time (du-
ration), and defined by RTF = P

I . In block-wise processing,
I is substituted with Ic, and then RTF is calculated.

C. Items for Evaluation
We conducted three experiments.

Exp. A: RTF of batch and other block-wise processing
Exp. B: ASR performance of SSI and MSI
Exp. C: ASR performance of HARK, batch, and other

block-wise processing
First, we derive the processing speed by parallel process-

ing in terms of the number of threads P and filter length Nbd.
In these experiments, we used three values of Ic = 50 (1 [s]),
Iv = 150 (3 [s]) and Ib = 150 (3 [s]). We set the overlap

2http://software.intel.com/en-us/intel-compilers/
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Fig. 9. RTF of batch processing. Left graph shows results without robot’s own speech, and right one is with robot’s speech.
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Fig. 10. RTF of block-wise processing. Left graph shows results without robot’s own speech, and one at right is with robot’s speech.

parameter of MSI to F = 15(P ≥ 5) and F = 10(P < 5).
Of course, batch processing uses all data for estimating the
matrix.

Second, we derive the ASR performance with SSI and MSI
in batch and block-wise processing. We fixed the number
of threads P to eight. The parameter settings of block-wise
processing were also the same as those in Exp. A.

Finally, we derive the ASR performance with re-sampling
block-wise processing, and compare our method with that of
other state-of-the-art robot audition software, HARK [11],
as a baseline method. In block-wise processing, we selected
three patterns for the parameters, i.e., [Ic Iv Ib] = pat.1:
[50 100 100], pat.2: [50 100 150] and pat.3: [50 150 150].
There are two reasons we set Ic = 50 and Ib = 150. The
first for Ib = 150 is that MCSB-ICA needs 3 [s] of data to
enable stable separation. The second for Ic = 50 is that 1 [s]
is the maximum latency permissible by ASR. We fixed the
number of threads to eight in this experiment.

We used default parameters in HARK, and did not separate
the data with the robot’s own speech because HARK does
not have a module to remove known signals. The network file
of HARK mainly consists of “GSS” and “Postfilter” module.
The directions of speaker and the impulse response with 36
directions at RT20 = 50 [ms] were given.

VI. DISCUSSION
A. Results

1) Exp. A: Figures 9 and 10 plot the RTFs for batch
and block-wize processing. The horizontal axes represent the
number of threads, and the vertical ones plot the RTFs.

In batch processing, the RTF decreases as the number of
threads increases. The RTF is less than 1.0 with any filter

taps and with/without the robot’s own speech if we use two
threads. For 19 taps, the ratio of RTF between one and eight
threads becomes 6.6. The ideal ratio should be eight, and
there is a 17% loss in computational efficiency. This is caused
by the overlapped processing bin, F , and other processes,
such as data-copy procedures.

The RTF in block-wise processing is larger than that
of batch processing because it includes the overlapping
separation related to the parameters, Ic and Iv. Unlike batch
processing, we need six threads to satisfy RTF < 1.0. The
RTF ratio between one and eight threads is 6.8 and this is
almost the same as that with batch processing.

In total, we can conclude that we achieved a speedup
in processing with MCSB-ICA by multi-threading program-
ming. The total delay from the beginning of the input signal
to the end of separation is about 1.5 [s] which is calculated by
Ic(1+RTF). This means that it takes only about Ic×RTF [s]
to achieve separation after finishing the proceeding of the
buffer data.

2) Exp. B: Table III lists the ASR results for SSI and the
MSI algorithm. The ASR performance with clean speech is
about 92%. The “no proc.” means the results without any
processing. The “w/o noise” with ”no proc.” represents the
results affected only by the reverberation of the environment.

First, block-wise processing degrades performance more
than batch processing. The difference is about 15–20 points,
and degradation can be distinguished for multiple sources.
We can see that only dereverberation is categorized into
an easy problem. This seems to be partially caused by the
insufficient separation of the head of speech because there
is not enough data at the beginning of speech.

Second, we focus on the results for SSI and the MSI
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TABLE III
ASR PERFORMANCES (%) OF BATCH AND BLOCK-WISE PROCESSING WITH SSI AND MSI.

Noise angle method Target Another
type SSI MSI SSI MSI

w/o noise
no proc. 26.0 16.9

batch 84.7 85.6 – –
block-wise 75.9 79.6 – –

Speech

10
no proc. 10.9 5.0

batch 68.1 68.3 42.8 42.0
block-wise 49.7 53.8 25.3 29.2

20
no proc. 11.1 3.4

batch 74.2 75.8 54.9 58.0
block-wise 57.6 62.1 37.3 42.1

30
no proc. 10.5 3.6

batch 79.7 79.9 64.5 65.4
block-wise 65.7 67.6 44.8 48.7

60
no proc. 12.3 5.1

batch 80.8 81.2 68.1 67.1
block-wise 65.7 69.3 49.5 51.5

90
no proc. 11.7 5.5

batch 79.4 80.4 65.7 64.7
block-wise 63.8 66.8 46.5 49.9

Noise angle method Target Another
type SSI MSI SSI MSI

Robot
no proc. 15.9 8.4

batch 81.8 82.6 – –
block-wise 64.1 68.1 – –

Speech
& Robot

10
no proc. 9.9 3.9

batch 58.8 59.5 31.2 32.8
block-wise 38.1 42.6 16.1 18.7

20
no proc. 9.9 4.1

batch 68.8 69.8 46.7 50.7
block-wise 46.7 52.0 26.2 30.9

30
no proc. 9.6 3.8

batch 75.1 75.3 55.8 58.1
block-wise 53.5 57.9 32.9 38.1

60
no proc. 9.8 5.2

batch 74.7 76.1 59.0 62.0
block-wise 53.9 57.3 34.9 41.6

90
no proc. 9.1 5.1

batch 75.5 75.5 55.6 56.9
block-wise 54.4 58.6 33.7 41.4

TABLE IV
ASR PERFORMANCES (%) AND RTF OF HARK AND BLOCK-WIZE PROCESSING.

Noise angle method Target Another 8 threads
type Cor. Cor. RTF

w/o noise

HARK 18.9 – <0.02
batch 85.6 – 0.19
pat.1 77.2 – 0.42
pat.2 78.1 – 0.42
pat.3 79.6 – 0.60

Speech

10

HARK 8.3 0.1 –
batch 68.3 42.0 –
pat.1 49.1 23.2 –
pat.2 52.1 25.0 –
pat.3 53.8 29.2 –

20

HARK 8.5 0.1 –
batch 75.8 58.0 –
pat.1 55.6 36.2 –
pat.2 59.8 38.6 –
pat.3 62.1 42.1 –

30

HARK 8.2 0.1 –
batch 79.9 65.4 –
pat.1 63.6 43.3 –
pat.2 67.1 45.2 –
pat.3 67.6 48.7 –

60

HARK 9.9 0.1 –
batch 81.2 67.1 –
pat.1 62.7 47.8 –
pat.2 65.2 51.5 –
pat.3 69.3 51.5 –

90

HARK 9.9 0.2 –
batch 80.4 64.7 –
pat.1 62.1 44.1 –
pat.2 65.4 45.3 –
pat.3 66.8 49.9 –

Noise angle method Target Another 8 threads
type Cor. Cor. RTF

Robot

HARK – – –
batch 82.6 – 0.20
pat.1 65.2 – 0.45
pat.2 67.8 – 0.45
pat.3 68.1 – 0.64

Speech
& Robot

10

HARK – – –
batch 59.5 32.8 –
pat.1 37.2 17.0 –
pat.2 41.1 17.1 –
pat.3 42.6 18.7 –

20

HARK – – –
batch 69.9 50.7 –
pat.1 48.1 26.4 –
pat.2 50.2 29.5 –
pat.3 52.0 30.9 –

30

HARK – – –
batch 75.3 58.1 –
pat.1 52.4 31.3 –
pat.2 54.9 34.7 –
pat.3 57.9 38.1 –

60

HARK – – –
batch 76.1 62.0 –
pat.1 53.0 35.0 –
pat.2 57.5 38.3 –
pat.3 57.3 41.6 –

90

HARK – – –
batch 75.5 56.9 –
pat.1 54.0 35.5 –
pat.2 56.5 37.7 –
pat.3 58.6 41.4 –

algorithm. In batch processing, there is almost no difference
between SSI and MSI. In contrast, there are about 2–6 points
of differences in the ASR results for block-wise processing.
This suggests that the initial value of the separation matrix
is very important under restricted conditions, such as the
number of iterations and the amount of data for separation.

These experiments revealed that MSI is more effective for
multi-threading programming and ASR performance. Of
course, there are some losses caused by the overlapping bin
parameter, F . However, the amount of loss is only 10% of
the processing time, and this is not a critical problem.
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3) Exp. C: Table IV lists the ASR results and RTF
with HARK and block-wise processing. Since HARK cannot
handle the separation of the robot’s own speech, the results
for robot speech are blank. We only listed the RTF for
one person because RTF only depends on the number of
microphones and threads, and data size.

The results for HARK are all less than 20% for all situ-
ations, and HARK does not work at all under reverberation
conditions. Of course, there are some parameters that can
deal with reverberations. However, the optimum parameters
differ according to the situation, and the cost of tuning is
very high. In terms of computational cost, HARK does not
require that many resources, and its RTF is less than 0.1 with
one thread.

In terms of the effectiveness of re-sampling, we can see
some improvements by comparing pat.1 and pat2. Even
tough the computational costs of these two parameter settings
are almost the same, the ASR results for pat. 2 are better
than those for pat. 1, i.e., about 2–4 points. This means re-
sampling works effectively. Since the gap between pat.2 and
pat.3 is a little too large, improvements to the method of
re-sampling are required.

We concluded that MCSB-ICA can work better even in
block-wise processing and under a reverberant environment
than HARK. We also found the advantageous effects of the
re-sampling technique in this experiment.

B. Remaining Issues
Three problems remain to be solved for robot audition.

The first one is the permutation solver of ICA to improve the
accuracy of separation. We intend to solve this by integrating
previous researches [5], [6]. The second one is an automatic
identification of separated results as speech or noise to avoid
unnecessary ASR processing and treat non-speech activities
appropriately. It can be solved by using machine learning
methods, such as GMM classification.

Last but not least, low ASR performance is caused by
low separation performance when only a few samples of
data are available. This is the most common problem with
the statistical-separation methods. The duration of short
utterances , especially, such as “Yes” , “Hi!” or “Good
morning!” is usually less than 1 [s]. Since most adaptive
statistical separation methods need at least 2 [s] of data
to attain sufficient separation, these short utterances, the
beginnings of long utterances or utterances of a moving
talkers cannot be separated from observed signals. If we do
not use adaptive methods, we must prepare large amounts
of acoustic data in advance to train the separation matrix so
that it should cover all the situations where the system is
deployed.

This problem is difficult to solve at the level of ASR,
because ASR techniques for improving performance in noisy
situations, such as VAD [12] or missing-data techniques [13],
assume high SNR or high-quality separation results. Since
the quality of separated speech is not so good as clean
speech, we must refine these methods for separated sound
signals.

VII. CONCLUSIONS AND FUTURE WORK
The difficult situations for robot audition are multiple

sound sources, barge-in (user’s interrupting utterances during
system’s utterance), and reverberation or reflections. Multi-
Channel Semi-Blind ICA (MCSB-ICA) separates user’s
speech in these situations with high performance. The critical
problem in applying MCSB-ICA for robot audition is to
reduce its computational cost. In this paper, we tackle
the problem by multi-threading programming. For parallel
processing, we develop multiple-stack-based parallel imple-
mentation and for incremental processing, we develop re-
sampling-based overlapping and block-wise sound source
separation. The experimental results prove that out method
reduces the real-time factor to less than 0.5 with an eight-
core CPU and that it improves the performance of ASR by
two to ten points.

In the future, we first intend to integrate MCSB-ICA with
other ASR techniques. Then, we intend to develop a total
robot audition system including a spoken dialogue system
that actually really works in a real environment.
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